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We introduce a formal state of the radiation field which interpolates between the (pure) number (Fock)
state and the (nonpure) chaotic state. The correlation functions and the squeezing properties are stud-
ied. The study of two quantum optical systems (namely, the Jaynes-Cummings model and resonance
Auorescence for a single atom and many cooperative atoms) in such a state of the radiation field provides
more insight into the gradual behavior as one goes from the number state to the chaotic state. A scheme
for the production of such a state is sought to be realized in a model of multiphoton processes in a
finite-level atomic system. The quasiprobability Wigner distribution function for such a state is also ex-
amined.

PACS number(s): 42.50.Dv, 42.50.Ar, 42.50.Md

I. INTRQDUCTIQN

The number (Pock) state ~n ) of the radiation field is of
fundamental importance to the concept of the photon in
the quantum theory of radiation [1]. Any general pure
photon state of the quantized radiation field is expressed
as a linear combination of the basic states

~ [ n ] ) . For ex-
ample, the single-mode coherent state ~cz) is a Poisson
distribution of the number states with a mean photon
number [ct) [2,3]. In fact, the states )n ) and (ct) are
widely used bases for representation of the radiation field.

For nonpure (mixed) states, an important example is
the chaotic radiation state. For the single-mode case, the
field density operator in the I' representation is defined by
[2,3]

p,„=fd'a 1'(a)
~
a & & a j, (1.1)

(1.2)

with K& T its thermal energy.
In terms of the number states, p, h is given by [2,3]

I n

1+n „=o 1+n
)n&n~= y p~n)& ~n,

n=0

where p„=(n )"/(1+n )'+" is the Bose-Einstein
(geometric) distribution function.

where I' is the Gaussian function,

P(ct)=(~~ct~„) 'exp( —a~ / a~,„),
where

~

a
~
„=n is the mean photon number in the

relevant mode. For the special case of thermal (black-
body) field of frequency co

Recently, Stoler, Saleh, and Teich [4] have introduced
the (pure) binomial state of the radiation field which in-
terpolates between the number state

~
n ) and the

coherent state ~ct ) . For a certain range of parameters an-
tibunching and squeezing properties of the binomial
states are exhibited. The possibility for physical realiza-
tion for this state was discussed by Dattoli, Gallardo, and
Torre [5]. Also, negative binomial states for the field (i.e.,
states with negative binomial distribution) have been
studied [6].

The purpose of the present work is to study the gradu-
al behavior of some quantum optical systems where the
state of the radiation field changes from the pure number
state ~n ) to the (nonpure) chaotic state. This can be done
through the formal introduction of a field state that inter-
polates between the number and the chaotic states. We
call this intermediate state a generalized geometric state,
and it reduces to each with the proper limits.

The paper is planned as follows. In Sec. II we intro-
duce the generalized geometric state and discuss its prop-
erties (bunching; squeezing). In Sec. III we discuss two
specific examples of quantum systems, namely, the
Jaynes-Cummings model and resonance fluorescence. In
Sec. IV we calculate the quasiprobability functions for
such states. This is followed by a scheme for producing
such states in Sec. V. Some concluding remarks follow in
Sec. VI.

II. GENERALIZED GEOMETRIC STATE

A. Definition

We define the normalized generalized geometric state
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M

Y,M & =X, g Y'"In &, (2.1)
B. Properties

where Y is a complex parameter and its phase is random
in general and the normalization constant is

(2.2)
Y M+)

The limiting cases of the definition in (2.1) follow.
(a) Chaotic state. For

I Yl (1 (=n/(1+n )] and
M ~ ~, the density operator in this case is

P, ~= lim —IY,M)& Y,MI
M~ oo

(& &=l~ol'& n IYI".
n=0

(2.5)

In particular, for m = 1,2 we have

(n ) = IA,,I' g nl Yl"

The mean value for the mth moment of the photon
number operator in the generalized geometric state is
given by

= lim lk I' g Y" 'Y*"'"n)(n'
nn =O

(2.3)

and

x [1—(M+»I YIM+Ml YIM+'] (2.6)

If Y'=
I Yle '~ and )I( is a random phase, then the average

over g gives

1 2
(C rq)a. , 2—

Yl(n +n')/2

1+n 277

n=0

=(1—
I
Yl)-'(I —

I

Yl~+')-'

x [ I
YI(1+

I YI ) —(M +I)'I YI

+(2M'+2M 1)l Yl —' M'I Y—
l

+'] .

x I e'" "'"d)tjln )(n'I
co

(
—)n

ln &(n(1+—)n+I (2.4)

(2.7)

Note that from (2.6) and (2.7) we have in the chaotic-state
limit (n ) ~n and (n ) ~n(2n+ 1), and in the number-
state IM) limit (n )~M, and (n ) —+M .

The normalized second-order correlation function is
de6ned by

This is identical with p, h of (1.3) for the single-mode
chaotic state with mean photon number n.

(b) The number state. For
I
Y —+~ and M finite, Eq.

(2.1) reduces to the number state M ).
(c) The Uacuum state IO). This is either obtained by

taking the limit Yl ~0 or equivalently by taking M=0.

(~) 0 &a "a') (n') —(ti &

(a'a )'
& e)'

where a and a are the annihilation and creation field
operators with algebra [a,a ]= 1.

Thus, the use of (2.6) and (2.7) gives

g'2)(O) (I I
Y ~+i)[1+M

l

YIM+i (M+1)
I
YIM]

—2

x [2—M(M +1)I Yl '+2(M' —»
I Yl —M(M —» I

Yl

2 for chaotic state
(1 —1/M) for the number state IM ) (2.8)

For the special case of M= 1, g' '(0) =0, an expected re-
sult since the state

I Y, 1 ) does not contain in its expan-
sion the photon number state I2). Figures 1(a) and 1(b)
show the behavior of g' '(0) against IYI (1. For M=2
[Fig. 1(a)], 0.69 (g' '(0) ( 1.94. In the range
0 (

I Yl (0.36, there is a partial coherent property
[g' '(0) ) 1]. For 0.36 &

I Yl &0.9 the antibunching eff'ect

[g' '(0) & 1] is clear —but it is less compared with the
photon number state [g' '(0)= —,

' for the state I2)]. For
higher values of M = 10, the chaotic behavior is exhibited
[g' '(0)=2] for

I Yl (0.3 [Fig. 1(b)]. In fact as M —+100,
g' '(0) =2 for the whole range of 0 (

I Yl & 0.95.
The ratio of the variance function of the photon num-

ber (b,R') to the mean photon number (the Fano factor)

is defined as

F= &e') —(e&'
&e) (a)

(For a number state, F=0.)
In the special case of M = 1,

(2.9)

(1
1+IYI 1+IYI

(2.10)

the generalized geometric distribution shows sub-
Poissonian behavior [Fig. 2(a)]. For M =2 [Fig. 2(b)] the
sub-Poissonian behavior is shown in the range
0.37(

I
Yl (0.9. The cases of M=10, 100 [Figs. 2(c) and
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1.94
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(bX)'= —'(a'+a '&+(n )+—' ——'(a+a )'
(bP) = ——'(a +a )+(&)+—'+ —'(a —a )

From the definition (2.1), we get

&a )=&Y,Mla Y, M&

= Iz, l'y Y""Y*"'"t/n(n —i)n,
7

n, n'

= I&,l'( Y*)-' g Yl "v'n(n —I)
n =2

—( at2) e

Hence,

(2.12)

(2.13)

M
&a'+a" &=2l~ol'IYI 'cos(A) g v'n(n —1)IYI",

n =2

(2.13')

134
0,1

I

0.3 04 05 0.7 0.8 0 9
Y= Yle'~ (P=2Q) .

Also, we can show that

FIG. 1. The normalized second-order correlation function
g' '(0) against

I Yl ( (1) (a) for M=2 and (b) for M=10.

2(d)] indicate the chaotic character of the state (F) 1).
Now to examine the squeezing property of the general-

ized geometric state, we define the two quadrature com-
ponents for the field (namely, the position and momen-
tum operators)

&a+a'&=2l~ol'IYI '"cos ~ y v'n IYI",
2 ]

(a —a )=2illo'IY ' 'sin ~ g v'n
I
Yl" .

2

The numerical results for the variance expressions,

(2.14)

X= —(a+a ),v'2
(2. 1 1)

S, =2(bX) —1,
S2 =2(bP ) —1,

(2.15)

A.P= — (a —a ).v'2i

Thus the variances (hX) —= (X ) —(X) and (bP) are
expressed as

where S, 2 (0 signify squeezing, are presented in Figs.
3(a)—3(c). In the case M = 1 [Fig. 3(a)], the component S,
shows squeezing for p =0 up to

I Yl =0.98, but for
P= rr/4 a lesser squeezing occurs for shorter range of

I
Y
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FIG. 2. The Fano factor (hatt ) /(tt & against
I Yl ( (1) (a) for M =1, (b) M =2, (c) M=10,
and (d) M=100.
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0.3 0
0

1.5

M=1

I I I

0.I 9,2 0.3 0.& 0.5
lyl

(a)

I

0.8 09

sity operator for the generalized geometric state either in
terms of the number states in ) or the coherent state ia).
So,

P, =iY,M&(Y, Ml

Y" Y*" in &(n'i
n, n'=0

(3.la)

(3.1b)

If Y=—
l
Yle '~ and then we average over the phase 1(, we

get

2~
(Pr, ~)a 2 f Pr, ~df

5.2

M.]0

II

0.2 03 0.~ 0.5 0.6 0.& O.S 0.9
lyl

Hence, for an operator 0, the expectation value in the
l Y,M ) state is given by

(o), =&YMiolYM&
M

=lupi'y lYJ"(viola) . (3.2)
n=0

Also, we may express the density operator
l
n ) ( n

l
for the

number state in terms of that for the (single-mode)
coherent state la ) ( al by the formula [7,8]

g2m
n)(nl=

-0.5
0

I

0.1

I

0.2 0.3

M=50

I

0.~ op og
lyl

r
O.S 0,9

X5(a)5(a*)ia)(ai .
Hence from (3.1b) and (3.3) we get

M d2«&,,
=I&.l'g IYI"f

n=0

(3.3)

FIG. 3. (a) The variance S, =2(AX)' —1 against
i Yi ( ( 1) for

M = 1 and di(ferent phases P =0 ( ), P =vr/4 ( ————)»d
P=~/2 (.. . . . . . ). (b) The variance Sz=2(AP) —1 for hf =10.
(c) The same as (b) for M =50.

(namely, 0(
l Yl &0.7). There is no squeezing at all for

P=~/2. In conformity with the case M=1, the com-
onent S does not exhibit squeezing for the same values

of P. For M = 10, S2 shows some squeezing for
/=0, n/4 [Fig. 3(b)]. The same is true for the case
M =50, but the magnitude of squeezing is less [Fig. 3(c)].
In both cases of M =10 and 50 there is no squeezing in

S, as expected.
Note that for

l

Y'l ))1, both S, z are positive for all P,
hence there is no squeezing. This is consistent with the
fact that as

l Yl ~ ~ the generalized geometric state tends
to a Fock (number) state which does not exhibit squeez-
1ng 1n S1 2.

III. EXAMPLES
OF QUANTUM OPTICAI. SYSTEMS

In order to understand the behavior of some quantum
systems, where the state of the radiation field changes
from the number to the chaotic state, we express the den-

5,2m( o )
X

Bcx Bcx
(3.4)

(3.3')

where
&n'tn~( —)"

P(a, a*)=
(n —m)!m!(n' n+m )!—m —0

gm gn' —n+mx, -5(a)5(a*)
em g

n' —n+m

where & O &.—& ~ IO i
c )» th«xp«tat to»»ue» the

i
a ) state.

Note that form (3.2) is valid for a phase-averaged form
of the states

l Y,M ). It will hold as well for any phase P
if the operator 0 connects only the diagonal elements. In
general for a non-phase-averaged state we have

&o), =lk, i' g Y""Y*"'"&n'loin
& . (3.2)

n, n'=0

Also Eq. (3.4) is valid for phase-averaged state Y;M)
and it holds for any phase p if only (0 ) is a function of
lai Otherwise, (3.3) and (3.4) are generalized to

in' )(n i=7r ' fd'aP(a, a*)ia&&ai,
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M

~o&yM IA,
I

v 1 &2 en'/2 d 2tx g(tz)8(c„g )
v'n ')n t( )n' —n 8m

a, g'=O n+ )t 8 8 „„+ (3.4')

H = cuba a +coS, +g (a tS +S+a ) (3.5)

w ere a a ar
tor
w ere a, a are the field annihilation a d
ors, the atom is described b the

n an creation o era-
or

'
y e spin- —Pauli operators

+ „and g is the coupling constant.

the a
For the radiation fiel d initially m number state In & and

t e atom starting in its excited stat
r e mean atomic inversion is given by I9]

(S,(t) & „=,'cos(2gt&—n + 1) . (3.6)

Then from (3.2) the mean (S, & in theean, ~~ in the generalized
c s a e is given by

We nonow examine the e6'ect of the rad*u

radiation field sta
o e grad*ual change of the

e state from number to chaotic states
'

fundamental quantum o t' 1um optical models.
ic s ates in two

Example 1. The Jaynes-Cummin s mo

tion of a
'

1

model ~9~ "~ ~ describes the interac-
o a sing e two-level atom with a sin

radiation field
'

wi a single mode of the

cavity). Th JC H
e inside a lossless cavit
e amiltonian in the rotatin g wave ap-

A'= 1)
a exact resonance is given by (units of

(S,(t)& r ~ =
—,
' g P„( I

E'I )cos(2gt &n + 1),
n=0

(3.7)

where

& (I 1'I)=
I
1'I"

1 —
I
&1M+'

(3.8)

The expression (3.7
t e parameter Kh

does not depend on the h fp ase o

Note that (3.8) is actually valid for an atom initiall in
its ground or excited state, (S (0) &

=+—'

tial coconditions the solution (3.8) w ld h
For other ini-

wou ave an additional
term dependent on (S (0) &

wh' hw ic is not zero for such a
case s ' ' ' . wi t en contribute.case, so terms for (n'An) in (3.2') 'll h

he numerical results for (S (t) & a
malized time ~=2 t

, t ~M against the nor-
e =2gt are presented i Figs. (4 —6). For

l'I &1, namely,
I Yl =0.5, &S (t &, t r M e hibits more ir-

re u ar e avior as M increases. Th e results for
are shown in Figs. 5(a) and 5(b). Note that the

case for the chaotic-state field
'

e is actually realized for
values of M &10; so for

I
YI—:n/(1+n =0.5 n =

for
I YI =0.95, n =19 Fiigures 4(b) and 5(b) represent the

050-,

M =1 ~ iyl=o. s

Q,50-

M=1, ~yI =O.ss

025-

Q,25-,

ooo- A

0.00-

V —0.25-
- 0.25-

-Qso „'

0.00 20.00 40.00 60.00 80.00
I

100.00 -0.50
0.00

I

20.00
I

40.00 60.00 80.00 100.00

0.50$

M =10.IyI =O.S

0.25-

Q.50-
9= 10~ I y i = O.S5

025-

0,00-

N
LA

V 025-

R
Q.QQ-

- 0.25-

-0.50-,
GOO 20.00 40.00 60.00 SQOO 100.00

- 0.50
0.00 20,00

I

40.00 60.00 80.00

FIG. 4. I. 4. The atomic inversion (S,(t) & in
ma ize tsme ~=2gt for fixed I Y =

FIG. 5. Sam. Same as Fig. 4 but with
I
1'I =0.95.
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0.50-

0.25-

I h

M= 1, i@i= 10

h

(&,( ))„=—
—,
' g ' (b')

n
( )m

o (n —m)!
= —(b') "I- ' " "( b—')

(3.9)

(3.9')

V

o.oo-

-050 ~

0.00 20.00 40.00

llJ (III
I

60.00 80.00 100,00

where b =2iii g /(5 +—,'y ); g is the coupling con-
stant, y is the 2 coe%cient, 6 is the frequency detuning
between that of the external field and of the atom, and
I.„"(x)is the generalized Laguerre polynomial (see, e.g.,
[14]). In the generalized geometric state, we then have

(3.10)

a50-

0,25-

and P„( l Yl ) is given by (3.8).
The formula (3.10) for a single atom is plotted in Fig. 7

where for increasing M=2 to 20, (S,( Oc ) ) reaches its
steady value at slower rate as l Yl increases in the interval

In the limit M ~ ac and for
l Yl = n l(1+n ) ( 1 the for-

mula (3.10) gives

0.00-

-0.25- '

0485

—0.50-—
0.00

I

20.00 40.00 60.00
I

100.00

FIG. 6. Same as Fig. 4 but with
l Yl = 10.

0.&8

cases of relatively weak and strong chaotic fields, respec-
tively, which is in good agreement with the results of Ref.
[10].

For higher lYl) 1, (S, )rM tends to show simple (or
regular) oscillations [Figs. 6(a) and 6(b)], as one would ex-
pect analytically [Eqs. (3.6), (3.7)] since in this case

l Y,M )~ number state lM ) as Yl —+ ec.
Example 2. Resonance Fluorescence. The phenom-

enon of resonance fluorescence essentially concerns a
two-level atomic system radiatively decaying and coupled
to an external radiation field in free space (for example,
the atoms can be prepared as an atomic beam). Although
exact time-dependent results are available for the single-
atom model and both in the case of a single-mode
coherent state field [11,12] and in the case of a single-
mode number- (Fock) state field [8], we shall be con-
cerned here with the steady-state regime (t~ m ). In par-
ticular, we examine the two cases of the N = 1 atom and
the thermodynamic limit in the cooperative many-atom
system in which lV —+ ao.

O
V)

QJ0

0.5—
-0.46

05
Q.i 02 03 0.4 0,5 0.6 0.7 Q.S Og

A. Single atom

The mean atomic inversion for a single two-level atom
system in the case of the external field is described as a
single-mode number state is given in the steady state by
[8,13]

FIG. 7. Atomic inversion (S,(co))r~ (full line) for %= 1

atom (with b'= 10,Eq. (3.10), against l Yl (0 ~
l Yl & 1) (a) for

M=2, (b) M=10, and (c) M=20. The dashed line represents
the scaled atomic inversion with X =10, Eq. (3.15), in the
limit X~~.
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'n
(3.1 1)

1+n „=o 1+n

XI.'-"-"(—b -')
n

(3.11')

1 expIb [n/(1+n)]]
(1+n) 1+b n/(1+n)

(
—)nnl n

( b 2)m
(S( )), —

„=o(1+n =o

0.0

Q, l
0
Vl

0.2-

Q 3
E0

Q.4, -

0.5
02 Og. 0.6

I

0.8 1.0

(3.12)

where the formula (3.12) is valid for b n /(1+n ) (1 see
Ref. [14]).

The formula (3.11) is an alternative form of the derived
result [using the p representation form, Eq. ( .1!]f t
single-mode chaotic-state field [13,15,16]

2——1(S,( ~ ) ),h= ,'(b —n )—'[exp(b n ) ']E,((b n ) ),
(3.13)

where E (x)= f e 'du /u is the exponential integral.X —
J e

FIG. 8. The scaled atomic inversion in the imit 1V~ ao in
the chaotic-state field, Eq. (3.16), against

~
Y~ ( ( 1).

-0.49, —

B. The thermodynamic limit (%~ ~ )

In the case of X cooperative atomic resonance Auores-
cence and in the limit X—+ ~ [with (yX) kept fixed, so
y~0], the scaled atomic inversion at exact resonance in
the number-state field is proved to be [8] -0.47

lim
&~ oo

(S,(
n

1

2

m=0

n pg
1 m!( —X )I I

(3.14)

where X =yN/(2A g ) and C„are the Poisson-
Charlier polynomials. Thus in the generalized geometric
state

-0.5 '

lim
Q —+ oo

= —-'~ ~ (~Y~)C„(-',X') .n
n=0

(3.1S)

-0.43

i.X2)' „=,(1+n )"+'&—+ oo

(3.16)

The case of the chaotic-state Geld is then obtained by let-
ting

~ Y~ = n /(1+ n ), M ~~:
(S,( co )),„

lim

-0.5—
0 t2

(c)
15

The scaled atomic inversion in the limit X~~, Eq.
(3.15), is shown also in Fig. 7 where the same conclusion
applies as in t e sing e-al' '

th
'

gle-atom case but with lesser satura-
tion value.

.16'~forAs M~ ac [case of chaotic-state field, Eq. (3. ) or

( lyl 1.Q3)

FIG. 9. Same as Fig. (7) but against
~
Y~l ) I) (a) for M=2,

(b) M=5, and (c) M=15.
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0.42

O.C3
c,(g) = l~ol' g I YI "L„(lpl'),

n=0
(4.3)

O Q.CC

0.45

0.46
O

P.C7
O

Q.C 8

0.49

where L„(Z) is the Laguerre polynomial defined as

n rzrn ~

L„(Z)= g„=o(r!)(n —r)!
(4.4)

Note that, in the limit where M~oo,
I Yl (1 (chaotic

state) the characteristic function (4.3) takes the form

050
0 &0 20

C (g) =exp (4.5)

0
FIG. 10. Atomic inversions Eqs. (3.9), (3.14) for %=1,~

cases in the number field state
I
n ) against the photon number n

The full line is for X= 1, the dashed line is for X= Oo.

X~ oo] is shown in Fig. 8 where the behavior is in con-
formity with the results obtained for finite N ~ 10
cooperative atoms [15]: the reach to the value of
lim& ((S,( Oe ) ) /X) =0 is very slow and requires
larger values of Y=n/(n+ I) (=0.9). Now, for com-
parison with the Fock state field, the behavior of the
atomic inversion for the single atom (N= 1) and in the
limit N~ Oc, Eqs. (3.10), (3.15), respectively, are shown
in Fig. 9 for

I Yl ) 1: As I Yl &)1 the atomic inversion
values for different M are as follows:

P(a)= f d (exp(a/* —a*()C~(g) . (4.6)

If we insert Eq. (4.3) into Eq. (4.6) we find P is highly
singular. This is due to the nonclassical character of the
state (2.1). Note that by inserting Eq. (4.5) into Eq. (4.6)
one finds the familiar Gaussian form,

1P(a) = exp
~n

(4.7)
1+n

Having obtained the characteristic function, we are
therefore in position to calculate the P representation, 8
(Wigner), and Q functions.

The P representation affords a convenient way of
evaluating the ensemble averages of normally ordered
operators and is given by

2
5

15

—0.491—0.476
—0.436

—0.495
—0.48S—0.469

M Eq. (3.10) Eq. (3.15)

W(a)= ' f" d'gc. (g)e' ~ (4.8)

Similarly we can calculate the Wigner function 8' from
the equation

These values are in excellent agreement with the formulas
(3.9) and (3.14) for the atomic inversions in the Fock field
state representation for N= 1, Oe cases, respectively (Fig.
10).

where C (g) is the characteristic function given by

I2 y I Yl nL ( I
gl2)

—1/2/g/

From Eqs. (4.8) and (4.9) we have

(4.9)

IV. QUASIPROBABILITY DISTRIBUTION FUNCTION

C~ ( g) =Tr[p exp(ga t)exp( —/*a )],
where p is the density matrix of the state (2.1),

p=lY, M)(Y, MI .

(4.1)

(4 2)

From Eq. (2.1), (4.1), and (4.2) after averaging over the
phase g we have

From the earlier work by Wigner [17] and Cahill and
Glauber [18] it is well known that the quasiprobability
functions are important for the statistical description of a
microscopic system and provide insight into the nonclas-
sical features of radiation fields. Therefore we shall turn
our attention in this section to the quasiprobability phase
space distributions to examine the state given by Eq.
(2.1). There are three types of quasiprobability distribu-
tion, P representation, W(Wigner), and Q functions. To
find these functions we have to calculate the characteris-
tic function C~(g).

W(a)= —Idol y ( —)" Yl "L„(4lal )e (4. 10)

In the chaotic state where M —+ Oe,
I Yl ( 1 we get

[W(a)],i, = (n+ —,') 'ex—p[ —(n+ —,') 'Ial ] . (4.11)

Figures (11—13) show the Wigner function W(a) as a
function of a—=Re(a)+i Im(a) for difFerent values of M
and

I
Yl. From (4.10) it is clear that W(a) is a symmetric

function in both Re(a) and Im(a). For
I Yl =0.1, W(a) is

insensitive to M and its Gaussian-like form has its peak at
Re(a) =Im(a) =0 (Fig. 11). As a increases (Figs. 12 and
13) and for M = 1,2, W(a ) exhibits a hole, at the top. As
M increases, a peak value of W(a) emerges at its center
and eventually W'(a) behaves as a Gaussian similar to
that of the chaotic state. In all cases W(a) is positive for

As for
I Yf & 1 and for increasing M the presence of the

Laguerre polynomial terms in Eq. (4.10) is more effective
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round its center Fig.s ne ative arou
htf h

IYI))1 and forIM) namely, in the limit(Fock) state, n
fixed

(4.12)

1.5

operato

2g y plnL ( gl2)
—

~g +a/*Q(a)= d

(4.13)

whic enh' ht ndsto zero for z ))1.
the function, w hich can be use

df io 11 od
rs as a simple integra, a

~ ~) for Il'I =0.1, M=1 (same. 11. Wigner function 8 (n} forFIG. 1

plot is obtained for M

ral in Eq. (4.13) yieldsEvaluating the integra in q.

i~01' I
Q(a)= g IY" e

n=0

or equivalently,

(4.14)

FIG. 12. Same as Fig.
20 (a)—(c},respectively.and M=1,2, , a—
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g(a)—

(4.14')

(
f
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' '

the chaotic state,f the Q fnnction»in formula o espond g

1 + 1) 'exp[ (n—+ 1)[Q(&) la = (4.15)
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.25
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1 —phot on 3—photon2-photon M-photon

p roc. vs process process process

s mbolizing multiphoton pn rocesses inm
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see references in'n 19 ).
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R an processes (seam
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(S —m )~(S +m +j)!
(S —m —j)!(S+m )!

1/2

Im+J &, (5.2a)

(S—m +j)!(S+m)!
S —m)!(S+m —j)t

lm —j& . (5.2b)

under the Hamil-e s stem is evo ving unWe assume that the sys
tonian (5 1) from the initial state

Ig(0)&=I0&p, l&, c &,

for the field andthe vacuum state forwhere IO ~h ts e

(5.3a)

I
=3, M=(, 2 [!a),(b), respec-FIG. 14. Same as Fig.i . 11for
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s
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m= —S- (1+Irl')' (5.3b)
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5.3 for lg(0)) and the relatioations (5.2) weUsing the form (5.3 for
get

1/2

(5.5a)
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Suppose at time t the atom is measured to be in its
ground state

~

—S ), then the state of the field is given by

(5.5b)

where A,o=(cost)/2) . By taking the coupling constants

g tz(2S —j )!+j!Y~~ and 2r =M [i.e., (M+ 1)-level atom]
the field state is then the

~
Y,M ) of Eq. (2.1).

VI. SUMMARY

Experiments to prepare pure number states of the field
have been recently discussed [24). Interpolation between
the pure number state and the coherent state is done
through the binomial state [4]. The generalized
geometric state presented in this article bridges between
the pure number state and the chaotic state. A single-
mode chaotic distribution [Eq. (2.4)] is obtained through
averaging over a random phase. There is no need to in-
vent additional dynamical systems or expanding Hilbert
spaces as in the case of the thermofield formalism [25].

Properties of the generalized geometric state
~ Y,M)

have been discussed. For M=2, the state shows sub-
Poissonian statistics for a part of the range,
0.37 &

~ Y~ &0.9. Chaotic behavior starts to appear as we
increase M and persists for almost the whole range of

~
Y~ &1 and M=100. Squeezing effects are shown for

some value of M and for
~

Y~ & 1. It is found that as M in-

creases the maximum amount of squeezing increases.
Also the dependence on the phase angle (b is shown ex-
plicitly. However, for

~
Y~ )) 1 squeezing is lost in confor-

mity with the fact that as
~ Y~ ~ ac the Fock state results.

Two quantum systems have been considered for the in-
teraction with a field in the state

~
Y,M ). The atomic in-

version in the JC model shows irregular oscillations. The
results for M = 10 and

~ Y~ & 1 are in good agreement with
earlier results for chaotic fields [10]. Almost simple Rabi
oscillations are shown for

~
Y~ )& I in accordance with

number-state behavior. On the other hand, a single-atom
resonance fluorescence shows slow approach to the
steady-state value as

~
Y~ increases in the range

~ Y~ & 1

and M increases from 2 to 20. Also the thermodynamic
limit has been discussed and similar conclusions have
been drawn, but with lesser values of saturation.

Also, we have shown that the quasiprobability func-
tion, the P function of fields in such a state, is singular.
The Wigner and the Q functions were also examined.

A production scheme for the generalized geometric
state is presented. It depends on nonlinear interactions
with an extended JC model [19]. The atomic state is
prepared initially in an atomic coherent state, while the
field is in the vacuum state. After a short time with the
nonlinear interaction the atom is detected in its ground
state. The resulting state of the field with suitable choice
of the coupling constants is the generalized geometric
state. For example, the state

~ Y,M =2) can be produced
using three-level atomic systems in which both one- and
two-photon transition processes occur.

*Present address: Dept. of Mathematics, Faculty of Sci-
ence, Kuwait University, P.O. 8ox 5969, S'afat 13060,
Kuwait.
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