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We introduce a formal state of the radiation field which interpolates between the (pure) number (Fock)
state and the (nonpure) chaotic state. The correlation functions and the squeezing properties are stud-
ied. The study of two quantum optical systems (namely, the Jaynes-Cummings model and resonance
fluorescence for a single atom and many cooperative atoms) in such a state of the radiation field provides
more insight into the gradual behavior as one goes from the number state to the chaotic state. A scheme
for the production of such a state is sought to be realized in a model of multiphoton processes in a
finite-level atomic system. The quasiprobability Wigner distribution function for such a state is also ex-

amined.
PACS number(s): 42.50.Dv, 42.50.Ar, 42.50.Md

I. INTRODUCTION

The number (Fock) state |n ) of the radiation field is of
fundamental importance to the concept of the photon in
the quantum theory of radiation [1]. Any general pure
photon state of the quantized radiation field is expressed
as a linear combination of the basic states |{n} ). For ex-
ample, the single-mode coherent state |a) is a Poisson
distribution of the number states with a mean photon
number |a|? [2,3]. In fact, the states |n) and |a) are
widely used bases for representation of the radiation field.

For nonpure (mixed) states, an important example is
the chaotic radiation state. For the single-mode case, the
field density operator in the P representation is defined by
(2,3]

pun=[d’aP(a)|a)al, (1.1)
where P is the Gaussian function,
P(a)=(m|al|?,) texp(—|al*/|al?,), (1.1)

where |a|’, =7 is the mean photon number in the
relevant mode. For the special case of thermal (black-
body) field of frequency @

fio /g T

lal2,=(e nt, (1.2)

with K5 T its thermal energy.
In terms of the number states, f, is given by [2,3]

n
1 e n st
Pen= ln)(n|= [n)nl, (1.3)
Pa= 117 Z | 14m P
where p,=(#)"/(1+7)'™" is the Bose-Einstein

(geometric) distribution function.
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Recently, Stoler, Saleh, and Teich [4] have introduced
the (pure) binomial state of the radiation field which in-
terpolates between the number state |n) and the
coherent state |a). For a certain range of parameters an-
tibunching and squeezing properties of the binomial
states are exhibited. The possibility for physical realiza-
tion for this state was discussed by Dattoli, Gallardo, and
Torre [5]. Also, negative binomial states for the field (i.e.,
states with negative binomial distribution) have been
studied [6].

The purpose of the present work is to study the gradu-
al behavior of some quantum optical systems where the
state of the radiation field changes from the pure number
state |n ) to the (nonpure) chaotic state. This can be done
through the formal introduction of a field state that inter-
polates between the number and the chaotic states. We
call this intermediate state a generalized geometric state,
and it reduces to each with the proper limits.

The paper is planned as follows. In Sec. II we intro-
duce the generalized geometric state and discuss its prop-
erties (bunching; squeezing). In Sec. III we discuss two
specific examples of quantum systems, namely, the
Jaynes-Cummings model and resonance fluorescence. In
Sec. IV we calculate the quasiprobability functions for
such states. This is followed by a scheme for producing
such states in Sec. V. Some concluding remarks follow in
Sec. VI.

II. GENERALIZED GEOMETRIC STATE

A. Definition

We define the normalized generalized geometric state
as

3174 ©1993 The American Physical Society
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M
Y, M)=13 Y"?n),
n=0

2.1

where Y is a complex parameter and its phase is random
in general and the normalization constant is

1—-1Y]
Aol?=——7+, |Y|#1. (2.2)
Mol =t 1Y
The limiting cases of the definition in (2.1) follow.
(a) Chaotic state. For |Y|<1 (=n/(1+n)] and
M — oo, the density operator in this case is
Py = li Y, M)(Y,M
Pry= fim 1.0 M|
= lim [%]* 3 Y2y 2n ) (n'l (2.3)

n,n'=0

If Y=|Y|e*¥ and v is a random phase, then the average
over Y gives

(pY,¢)av:?; fo PY,:/;d'»b

— 1 i |Yi(n +n')/2__1_
1+r_ln,n'=0 2

% fzvei(n—n')'ﬁdlﬂn Y(n'l
0

'7)) [n)(n| . (2.4)

- ¢ )
n§0(1+r—z"“

This is identical with g, of (1.3) for the single-mode
chaotic state with mean photon number 7.

(b) The number state. For |Y|— « and M finite, Eq.
(2.1) reduces to the number state |M ).

(c) The vacuum state |0). This is either obtained by
taking the limit | ¥|— 0 or equivalently by taking M =0.

-
gP0)=1—= YO 1+M| VM H ! — (M +1)|¥|M] 2

X[2—M(M+D| Y™ ' +2M?*—1)| YIM—M(

2 for chaotic state
— (1—1/M) for the number state |M )

For the special case of M =1, gm(O):O, an expected re-
sult since the state |Y,1) does not contain in its expan-
sion the photon number state |2). Figures 1(a) and 1(b)
show the behavior of g‘?(0) against |Y|<1. For M =2
[Fig. 1()], 0.69<g?(0)<1.94. 1In the range
0< Y] <0.36, there is a partial coherent property
[g®(0)>1]. For 0.36 <|Y| <0.9 the antibunching effect
[g®(0)< 1] is clear—but it is less compared with the
photon number state [g*(0)=1 for the state [2)]. For
higher values of M =10, the chaotic behavior is exhibited
[g®(0)=2] for | Y| <0.3 [Fig. 1(b)]. In fact as M — 100,
g'¥(0)=2 for the whole range of 0 < | Y| <0.95.

The ratio of the variance function of the photon num-
ber (AR)? to the mean photon number (the Fano factor)

3175

B. Properties

The mean value for the mth moment of the photon
number operator in the generalized geometric state is
given by

M
(R™)=R|* 3 n™Y|" . (2.5)

n=0

In particular, for m =1,2 we have
M
(A)=|1o|* 3 nlY|"
n=0

=|yl(1— |y '(1—|y|M+H~!

X[1—(M+1)| Y|M+M|y|M 1] 2.6)

and
M

(A2)=r]> 3 n?lY "

n=0
=(1—-[yh2(1—|yM+H~!
X[YI(1+]Y)—(M + 1) y|M+!
+@M*+2M — DY 22 Y™ 3]

(2.7)
Note that from (2.6) and (2.7) we have in the chaotic-state
limit (# ) —7# and {#2)—7 (27 +1), and in the number-
state |M ) limit {7 ) —M, and {(#?) —>M?>.
The normalized second-order correlation function is
defined by
o La'a?) _ (a)y—(n)
g (0)= T - »
(a'a)? (7)?
where @ and a' are the annihilation and creation field
operators with algebra [a,aT]= 1.
Thus, the use of (2.6) and (2.7) gives

M_1)‘y’M+1]

(2.8)
I
is defined as
2 2y _ 2
F:(Afz‘) _(n )—{#) ) (2.9)
() (A)
(For a number state, F=0.)
In the special case of M =1,
| Yl 1
F=1— = <1, 2.10
1+1Yl  1+]Y] 2.10
the generalized geometric distribution shows sub-
Poissonian behavior [Fig. 2(a)]. For M =2 [Fig. 2(b)] the
sub-Poissonian behavior is shown in the range

0.37<]Y] <0.9. The cases of M =10,100 [Figs. 2(c) and
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2)
g( [{0)}

134

1yi

FIG. 1. The normalized second-order correlation function
g'2(0) against | Y| (< 1) (a) for M =2 and (b) for M = 10.

2(d)] indicate the chaotic character of the state (F > 1).

Now to examine the squeezing property of the general-
ized geometric state, we define the two quadrature com-
ponents for the field (namely, the position and momen-
tum operators)

j’\'=%(a+aT),
(2.11)

Thus the variances (AX)?=(X?)—(X )2 and (AP)? are
expressed as
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(AXP=1{a*+a™)+(A)+1—1(a+a")?,

S . ; (2.12)

(APy=—1(a’+a?)+(A)+1+1{a—a")?.

From the definition (2.1), we get
(a*)=(Y,M|a*Y,M)

:|)\'0‘22 Yn/2y*n'/2‘/n(n —1)8

n,n'

n',n—2

M _—
=Rl (Y*) "' 3 |YI"™V'n(n —1)
n=2
T2>* .

=(a (2.13)

Hence,

M
(a?+a)=2]1|2 Y| "2cos(¢) S Vn(n —D|Y|",
n=2

(2.13")
where
Y=|Yle' (¢=2¢) .
Also, we can show that
t | L
(a+a')=2|Ay|*| Y|~ ?cos 5 S valYl",
n=1
(2.14)
Mo
(a—a')y=2i|Ay|?|¥|~%sin —?‘ S VnlYl".
n=1
The numerical results for the variance expressions,
S, =2(AX)*—1,
(2.15)

S,=2(AP)*—1,

where S , <0 signify squeezing, are presented in Figs.
3(a)-3(c). Inthe case M =1 [Fig. 3(a)], the component S,
shows squeezing for ¢=0 up to |Y]=0.98, but for
¢=1/4 a lesser squeezing occurs for shorter range of | Y|

0.99
05300—0."
FIG. 2. The Fano factor (A7 )?/{# ) against

|¥] (<1) (a) for M =1, (b) M =2, (c) M=10,
108 198 and (d) M =100.
& 8 (d)

£ M=100
0.n L 1 " n
00 O 02 03 o« 05 05 07 08 09 e O oz o o o5 or o) % o5

Iyl iyl
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FIG. 3. (a) The variance S; =2(AX)?>—1 against | Y] ( < 1) for
M =1 and different phases ¢ =0 ( ), ¢=m/4 (-——-) and

o=m/2 (....... ). (b) The variance S, =2(AP)*—1 for M =10.
(c) The same as (b) for M =50.

(namely, 0<|Y] <0.7). There is no squeezing at all for
¢=m/2. In conformity with the case M =1, the com-
ponent S, does not exhibit squeezing for the same values
of ¢. For M =10, S, shows some squeezing for
¢=0,7/4 [Fig. 3(b)]. The same is true for the case
M =50, but the magnitude of squeezing is less [Fig. 3(c)].
In both cases of M =10 and 50 there is no squeezing in
S, as expected.

Note that for |Y|>>1, both S , are positive for all ¢,
hence there is no squeezing. This is consistent with the
fact that as | Y| — oo the generalized geometric state tends
to a Fock (number) state which does not exhibit squeez-
ingin S ,.

III. EXAMPLES
OF QUANTUM OPTICAL SYSTEMS

In order to understand the behavior of some quantum
systems, where the state of the radiation field changes
from the number to the chaotic state, we express the den-

sity operator for the generalized geometric state either in
terms of the number states |z ) or the coherent state |a ).
So,

Py =Y, M){Y,M|

=|2ol? 2 Y"2Yy* ' 2 ) n'| . 3.1a)

n,n'=0
If Y=|Yle*? and then we average over the phase 1, we
get

1 27
277, pYMdlp

=|>»o|22 |Y"|n ) {n] . (3.1b)
n=0

Hence, for an operator 6, the expectation value in the

| Y, M ) state is given by

M

=[%* 3 |YI™(n|O|n) . 3.2)
n=0

Also, we may express the density operator |n ) {n| for the

number state in terms of that for the (single-mode)

coherent state |a ) (a| by the formula [7,8]

|n>(n|=fd;_a é n!

o (mD(n —m)! da™da*™

Na){al . (3.3)

aZm

X8(a)d(a™
Hence from (3.1b) and (3.3) we get

(O)yu= 17»0422 m"f»—a a)dla*)

x " n!

Zo (m)*(n —m)!
aZm(O\)a
da™da*™ ’

(alOla) is the expectation value in the

(3.4)

where (0),=
la) state.

Note that form (3.2) is valid for a phase-averaged form
of the states | ¥, M ). It will hold as well for any phase
if the operator O connects only the diagonal elements. In
general for a non-phase-averaged state we have

o~ M ’ Py
Oy =12 3 Y"2Y*"/2(n'[0|n) . (3.2)
n,n'=0
Also Eq. (3.4) is valid for phase- -averaged state |Y,M)
and it holds for any phase v if only (0 ) is a function of
la|?. Otherwise, (3.3) and (3.4) are generalized to

|n'>(n|=7r71fd2aP(a,a*)la><a| , (3.3")
where
z Vi tnl(— )" "
* ) —
(@,a™)= 2 oln —m)mi(n'—n+m))
am an '—n+m
—8(a)d(a*)

aa*m da™ —n+m a (a

and
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M n
(OYyu=I2ol> 3 Y"2x*"/2 [ 77 1d%a 8(a)b(a*) 3, o
m=0

n,n'=0

We now examine the effect of the gradual change of the
radiation field state from number to chaotic states in two
fundamental quantum optical models.

Example 1. The Jaynes-Cummings model. The
Jaynes-Cummings (JC) model [9] describes the interac-
tion of a single two-level atom with a single mode of the
radiation field inside a lossless cavity (idealized high-Q
cavity). The JC Hamiltonian in the rotating wave ap-

proximation and at exact resonance is given by (units of
#i=1)

H=wa'a+wS,+gla's_+S,a),

where a,aJr are the field annihilation and creation opera-
tors, the atom is described by the spin-4 Pauli operators
S4 ., and g is the coupling constant.

For the radiation field initially in number state |n ) and
the atom starting in its excited state, the exact solution
for the mean atomic inversion is given by [9]

(S,(1)),=Lcos(2gtV'n +1) .

(3.5)

(3.6)

Then from (3.2) the mean (S, )y, in the generalized
geometric state is given by

M= lyl=05
050 (a)
0254
A 0004
-
N
w
Vo o
-050 . y ! - v
0.00 2000 40,00 6000 8000 10000
z
M=10,1y1=05 (b)
0504
025
A 0004
.
N
wn
Vo oos]
050 ; . r 1 -
000 2000 4000 6000 8000 10000
z

FIG. 4. The atomic inversion {S,(2))y (in the JC model)
against normalized time 7=2gt for fixed |¥|=0.5 and (a) for
M =1 and (b) M =10.
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V’T, _—\n'—n m n'—n+m ~
nn(,) o"_ 9 — (0),. 34
—m)ml(n’'—n +m) 3ag*™ o "ntm
[
M _
(S, () y =13 P,(|Y])cos(2gtV'n +1) , 3.7)
n=0
where
_ 1—|v|
P,(1Y)=|Y|" T:Wl— (3.8)

The expression (3.7) does not depend on the phase ¢ of
the parameter Y.

Note that (3.8) is actually valid for an atom initially in
its ground or excited state, (SZ(O) )= i%. For other ini-
tial conditions the solution (3.8) would have an additional
term dependent on (S;(0)) which is not zero for such a
case, so terms for (n'#n) in (3.2') will then contribute.

The numerical results for {(S,(#))y ,, against the nor-
malized time 7=2gt are presented in Figs. (4-6). For
|Y| <1, namely, |Y]|=0.5, {S,(¢))y, exhibits more ir-
regular behavior as M increases. The results for
| Y| =0.95 are shown in Figs. 5(a) and 5(b). Note that the
case for the chaotic-state field is actually realized for
values of M >10; so for |Y|=nr/(1+r)=0.5, Ai=1, and
for | Y] =0.95, =19. Figures 4(b) and 5(b) represent the

M=1,]y| =0.95
—=lyize®s (a)
0504
025
A l\
r o000
N
(%]
\
-025+
-050 T Y T —r
0.00 2000 4000 60.00 80.00 100.00
T
oso] (b)
M=10,ly1=095

0254

e

-0254

<sz(t)>

-0.50

T T T T
0.00 2000 40.00 60.00 80.00 10000

4

FIG. 5. Same as Fig. 4 but with | Y]=0.95.



48 VARIATION FROM NUMBER- TO CHAOTIC-STATE FIELDS: ... 3179

M=1.1yl=10
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0254
/,} 000
-
N
wn
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z
M=10.lyl=10 (b)
usoj
025
A
= 000
N
wn
\Y
-025-
-050 - . . r
0.00 2(300 4000 60.00 8000 100.00
z

FIG. 6. Same as Fig. 4 but with | Y|=10.

cases of relatively weak and strong chaotic fields, respec-
tively, which is in good agreement with the results of Ref.
[10].

For higher |Y|>1, (S,)y, tends to show simple (or
regular) oscillations [Figs. 6(a) and 6(b)], as one would ex-
pect analytically [Egs. (3.6), (3.7)] since in this case
|Y,M ) — number state |[M ) as | Y| — .

Example 2. Resonance Fluorescence. The phenom-
enon of resonance fluorescence essentially concerns a
two-level atomic system radiatively decaying and coupled
to an external radiation field in free space (for example,
the atoms can be prepared as an atomic beam). Although
exact time-dependent results are available for the single-
atom model and both in the case of a single-mode
coherent state field [11,12] and in the case of a single-
mode number- (Fock) state field [8], we shall be con-
cerned here with the steady-state regime (¢ — 0 ). In par-
ticular, we examine the two cases of the N=1 atom and
the thermodynamic limit in the cooperative many-atom
system in which N — 0.

A. Single atom

The mean atomic inversion for a single two-level atom
system in the case of the external field is described as a
single-mode number state is given in the steady state by
(8,13]

!
T (3.9)

=—(b )”L,ﬁ“"“”(— b7?),

(s, =-1 3 1
(3.9")

where b*=2%"%¢?/(8*+1y?) ; g is the coupling con-
stant, ¥ is the A4 coefficient, 6 is the frequency detuning
between that of the external field and of the atom, and
L!?(x) is the generalized Laguerre polynomial (see, e.g.,
[14]). In the generalized geometric state, we then have

M
(S,(0))yp=3 P, (|Y)(S,()),

n=0

(3.10)

and P, (|Y]) is given by (3.8).

The formula (3.10) for a single atom is plotted in Fig. 7
where for increasing M =2 to 20, {S,()) reaches its
steady value at slower rate as | Y| increases in the interval
0<|Yl<1.

In the limit M — o and for | Y|=#/(1+7) <1 the for-
mula (3.10) gives

_0485
(a)
05 k=
-048
(b)
c
.o
4
[}
>
£
L
£
o
-+
< m—am— - b
_05
-046
(C)
.05 e

00 02 03 04 05 06
1yl

07 08 09

FIG. 7. Atomic inversion {S,( )}y, (full line) for N=1
atom (with b2=1072, Eq. (3.10), against | Y| (0=|¥| <1) (a) for
M=2, (b) M=10, and (c) M =20. The dashed line represents
the scaled atomic inversion with X2>=10"2, Eq. (3.15), in the
limit N — .
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. © (h‘)"n! n (___bZ)m
Ml_{nw( z(°°)>Y,M 2n§0(1+ﬁ)1+nm2=0(n —m)!
(3.11)
_ e ]
1+7 |, =g | 1+7

XL (=b7?)
(3.11")
1 exp{b?[A/(1+7)]}
(1+#7) 1+b*m/(1+7)
(3.12)

where the formula (3.12) is valid for 27 /(1+7) <1 (see
Ref. [14]).

The formula (3.11) is an alternative form of the derived
result [using the p representation form, Eq. (1.1)] for the
single-mode chaotic-state field [13,15,16]

~ —

(8,(0))y=—1(b%) [exp(b?7) 1E,((b%7)" "),
(3.13)

where E(x)= ffe “Ydv /v is the exponential integral.

B. The thermodynamic limit (N — o)

In the case of N cooperative atomic resonance fluores-
cence and in the limit N — e [with (yN) kept fixed, so
¥ —0], the scaled atomic inversion at exact resonance in
the number-state field is proved to be [8]

(S,(0)),
N

lim

‘N — o0

— .y2
=—1C,(4X?)

" mi(—X"2)",

(3.14)

where X?=yN /(2% %g?) and C, are the Poisson-
Charlier polynomials. Thus in the generalized geometric
state

<Sz(°o)>Y,M
N

lim
Now

M
=—13 P,(|YC,(L;X%) .
n=0

(3.15)

The case of the chaotic-state field is then obtained by let-
ting |Y|=r/(14+7), M — oo

(s l
hm —_— | =

N-— o

N

(3.16)

The scaled atomic inversion in the limit N— o, Eq.
(3.15), is shown also in Fig. 7 where the same conclusion
applies as in the single-atom case, but with lesser satura-
tion value.

As M — oo [case of chaotic-state field, Eq. (3.16) for

Atomic inversion
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00
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FIG. 8. The scaled atomic inversion in the limit N— o in
the chaotic-state field, Eq. (3.16), against | Y] ( <1).
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!
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-05 ] i
0 3 6 9 2 15

(1y1 _1.03)

FIG. 9. Same as Fig. (7) but against |Y|(>1) (a) for M =2,

(b) M =35, and (c) M =15.
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-0642}
043}
044}
-045} -
-046} <
-047} e

Atomic inversion

048} -
ot /S

-050 -
0 10 20

FIG. 10. Atomic inversions Egs. (3.9), (3.14) for N=1,
cases in the number field state |n ) against the photon number ».
The full line is for N =1, the dashed line is for N = c0.

N — 0] is shown in Fig. 8 where the behavior is in con-
formity with the results obtained for finite N =10
cooperative atoms [15]: the reach to the value of
limy_, . ({S,(0))/N)~0 is very slow and requires
larger values of Y=n/(n+1) (~0.9). Now, for com-
parison with the Fock state field, the behavior of the
atomic inversion for the single atom (N =1) and in the
limit N — o0, Egs. (3.10), (3.15), respectively, are shown
in Fig. 9 for |Y|>1: As |Y|>>1 the atomic inversion
values for different M are as follows:

M Eq. (3.10) Eq. (3.15)
2 —0.491 —0.495
5 —0.476 —0.485

15 —0.436 —0.469

These values are in excellent agreement with the formulas
(3.9) and (3.14) for the atomic inversions in the Fock field
state representation for N =1, « cases, respectively (Fig.
10).

IV. QUASIPROBABILITY DISTRIBUTION FUNCTION

From the earlier work by Wigner [17] and Cahill and
Glauber [18] it is well known that the quasiprobability
functions are important for the statistical description of a
microscopic system and provide insight into the nonclas-
sical features of radiation fields. Therefore we shall turn
our attention in this section to the quasiprobability phase
space distributions to examine the state given by Eq.
(2.1). There are three types of quasiprobability distribu-
tion, P representation, W (Wigner), and Q functions. To
find these functions we have to calculate the characteris-
tic function C,(§).

C,(§)=Tr[pexp(a exp(—¢*a)], @.1)
where g is the density matrix of the state (2.1),
p=1Y,M)(Y,M]|. (4.2)

From Eq. (2.1), (4.1), and (4.2) after averaging over the
phase ¥ we have

3181
M
C(O)=1h* 3 IYI"L,(ISI%) 4.3)
n=0
where L,(Z) is the Laguerre polynomial defined as
—)Zn!
2= - 4.4)
2 r')2 (n—r)

Note that, in the limit where M — «, |Y]| <1 (chaotic
state) the characteristic function (4.3) takes the form

- !g‘ l]—}!"Yl

C,(8)=exp (4.5)

Having obtained the characteristic function, we are
therefore in position to calculate the P representation, W
(Wigner), and Q functions.

The P representation affords a convenient way of
evaluating the ensemble averages of normally ordered
operators and is given by

P(a) ——f _d’Cexplab* —a*{)C, () - 4.6)
If we insert Eq. (4.3) into Eq. (4.6) we find P is highly
singular. This is due to the nonclassical character of the

state (2.1). Note that by inserting Eq. (4.5) into Eq. (4.6)
one finds the familiar Gaussian form,
2 —
Pla)=——exp |- 19| y=—T_ 1w
mT°n n 1+7m

Similarly we can calculate the Wigner function W from
the equation

W(a) ___f d2§C (£)elat* —ta* (4.8)
where C,,({) is the characteristic function given by
C,(5)=1Al? §O|Y|"L,,(lg|2)e—1/2'€'2 : 4.9)
From Eqgs. (4.8) and (4.9) we have
W(a)——molzz —)|Y|"L, (4]a|*)e el (4.10)
n=0
In the chaotic state where M — 0, | Y] <1 we get
[W(e)ly= 1+ 1) lexpl—(A+ 1) "lal?) . @11)

Figures (11-13) show the Wigner function W(a) as a
function of a=Re(a)+i Im(a) for different values of M
and |Y]. From (4.10) it is clear that W(a) is a symmetric
function in both Re(a) and Im(a). For |Y|=0.1, W(a) is
insensitive to M and its Gaussian-like form has its peak at
Re(a)=Im(a)=0 (Fig. 11). As a increases (Figs. 12 and
13) and for M =1,2, W(a) exhibits a hole, at the top. As
M increases, a peak value of W(a) emerges at its center
and eventually W(a) behaves as a Gaussian similar to
that of the chaotic state. In all cases W(a) is positive for
Y] <1.

As for | Y] > 1 and for increasing M the presence of the
Laguerre polynomial terms in Eq. (4.10) is more effective
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FIG. 11. Wigner function W(a) for |¥|=0.1, M=1 (same
plot is obtained for M < 20).
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and hence W(a) becomes negative around its center (Fig.
14). In fact, Eq. (4.10) reduces to that for a number
(Fock) state |M ), namely, in the limit |Y|>>1 and for
fixed M,
2 _
[W(@)lpoe = (= MLy (4lale 2lal® | (4.12)
which tends to zero for |a| >>1.
Finally we calculate the Q function, which can be used

to express the ensemble averages of antinormally ordered
operators as a simple integral, that is

‘)\'O|2 o 2 M 2 4‘ ‘2+ * *
Qla)y=—"— 7 d% 3 |YI"L,(|£]2)e I8 Hat™ ~La™
T —® n=0
(4.13)
Evaluating the integral in Eq. (4.13) yields
‘)L |2 M 2n
Q(a)=——7(;— > IYl"%e_Mz (4.14)
n=0 N

or equivalently,

RSN
N FIG. 12. Same as Fig. 11 but for |¥|=0.5

Y and M =1,2,20, (a)-(c), respectively.
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Aol? (—yM
= | ;| '(‘A—l')’—’LA;M_I(Ia‘2|Y|)eXP(—,a|2)'

Qa)

(4.14")

when M tends to infinity and | Y| < |, we have the corre-
sponding formula of the Q function in the chaotic state,
[Q(a)]chzi(ﬁ+1)*1exp[—(ﬁ+1)*‘la[2]. (4.15)
With this we conclude this section and look for a produc-
tion scheme in the following section.

V. A PRODUCTION SCHEME

Generalizations to the JC model that include nonlinear
interactions (in boson and spin variables) have been pro-
posed recently [19]. An interaction Hamiltonian for one
of these generalizations that describes multiphoton pro-
cesses in finite-level atomic systems is of the form

. 2r gj . ¥ .
H,=3 -j—'{(aS+ Y+ats_)y, (5.1)
j=1J

(b)

y.

/
SRR
X\‘i&/é“i“"’

4

X
[
R

N/
/ )

where S;, S, and S_ are the inversion, raising, and
lowering operators which describe the atomic systems
having (2S5 +1) states. They satisfy the commutation re-
lations [S;,S.]==+S, and S; has the eigenvalues m
such that Sy|m )=m|m ) where —S <m <S. The field
operators a and at satisfy the commutation relation
[a,aT]= 1. The coupling constants g; couple the atomic
system to the field; finally r < S.

This Hamiltonian produces the JC model for r=%,
S'=1. When r=1 and § =12 it gives the model discussed
by Senitzky [20]. Several values for S were investigated
by Buck and Sukumar [21]. The case for general S and
r=1 is the well-known Dicke model and the Tavis-
Cummings model [22] of cooperative two-level atoms.
Taking r=1 and S =1, (5.1) describes a three-level atom
in interaction with a single mode in which transitions be-
tween neighboring levels are effected by single-photon
processes while the transition between the upper and
lower levels is effected through a two-photon process;
which is a special case of a Hamiltonian considered ear-
lier [23] for the three-level atom system.

The interaction model (5.1) then describes a (2r +1)-

\\

FIG. 13. Same as Fig. 12 but for | ¥]=0.8.
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FIG. 14. Same as Fig. 11 for |Y|=3, M=1,2 [(a),(b), respec-
tively].

level atom interacting with one mode of the radiation
field where one-photon transitions occur between neigh-
boring levels, two-photon transitions occur between levels
as indicated in Fig. 15 and so on where 2r-photon transi-
tions occur between the two extreme levels of the atom.
The model (5.1) can be used to describe some processes
such as multiphonon transitions in a two-level atomic
system, multiphonon lasers, and Raman and hyper-

) 2r gj . N T
|¢(:>>=|¢<0)>—ztz*~‘/1—,, m 3
: m=—S

j=1

28 m+S
Y .
m+S | (25| j

(M+1)-atomic T

states
J/ N N

3-photon

>

1-photon 2-photon M-photon

process process process process

FIG. 15. Diagram symbolizing multiphoton processes in
(M + 1)-atomic level system according to Hamiltonian (5.1).

Raman processes (see references in [19]).
The operators S/. when applied to the state vector
|m ), for which r=3§, give

172
j _ | (S—mNS +m +)) )
J =
Silm (S—m —jMS+m) lm+j), (5.2a)
S — + NS + ' 172
Si |m)= (S=m +)HS +m)! m—j) . 5.90)

S —mI(S +m—j)

We assume that the system is evolving under the Hamil-
tonian (5.1) from the initial state

[9(0))=10) |0, @) , (5.3a)
where [0}, is the vacuum state for the field and
S 28 12 FmtSs
|19,®)=m:2_s m+S miM> , (5.3b)

with 7=tan(d/2)e’®, as the atomic coherent state. For a
short time ¢ (i.e., g;t <<1), the wave function of the sys-
tem becomes

|¢(z)>=|¢<o>>—n§ %{(a’fs_)f+(as+)f}1¢<o>> :

ji=1J’
(5.4)

Using the form (5.3) for |4(0)) and the relations (5.2) we
get

1/2
S+m||S—m—j

lm—j) . (5.5a)
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Suppose at time ¢ the atom is measured to be in its
ground state | —S ), then the state of the field is given by

2r J 28
[gr) =Aol0) —it 3 V/jlg,— ; (5.5b)

PACE AT EEcl PR AR

where }»0:(00319/.2)23. By taking the coupling constants
g;a(28 —j )V j1Y/’? and 2r =M [i.e., (M +1)-level atom]
the field state is then the | Y,M ) of Eq. (2.1).

VI. SUMMARY

Experiments to prepare pure number states of the field
have been recently discussed [24]. Interpolation between
the pure number state and the coherent state is done
through the binomial state [4]. The generalized
geometric state presented in this article bridges between
the pure number state and the chaotic state. A single-
mode chaotic distribution [Eq. (2.4)] is obtained through
averaging over a random phase. There is no need to in-
vent additional dynamical systems or expanding Hilbert
spaces as in the case of the thermofield formalism [25].

Properties of the generalized geometric state |Y,M )
have been discussed. For M =2, the state shows sub-
Poissonian statistics for a part of the range,
0.37< Y] <0.9. Chaotic behavior starts to appear as we
increase M and persists for almost the whole range of
|Y] <1 and M =100. Squeezing effects are shown for
some value of M and for | Y| <1. It is found that as M in-

3185

creases the maximum amount of squeezing increases.
Also the dependence on the phase angle ¢ is shown ex-
plicitly. However, for | Y| >>1 squeezing is lost in confor-
mity with the fact that as | Y| — o the Fock state results.

Two quantum systems have been considered for the in-
teraction with a field in the state |Y,M ). The atomic in-
version in the JC model shows irregular oscillations. The
results for M =10 and | Y| < 1 are in good agreement with
earlier results for chaotic fields [10]. Almost simple Rabi
oscillations are shown for |Y|>>1 in accordance with
number-state behavior. On the other hand, a single-atom
resonance fluorescence shows slow approach to the
steady-state value as |Y]| increases in the range |Y| <1
and M increases from 2 to 20. Also the thermodynamic
limit has been discussed and similar conclusions have
been drawn, but with lesser values of saturation.

Also, we have shown that the quasiprobability func-
tion, the P function of fields in such a state, is singular.
The Wigner and the Q functions were also examined.

A production scheme for the generalized geometric
state is presented. It depends on nonlinear interactions
with an extended JC model [19]. The atomic state is
prepared initially in an atomic coherent state, while the
field is in the vacuum state. After a short time with the
nonlinear interaction the atom is detected in its ground
state. The resulting state of the field with suitable choice
of the coupling constants is the generalized geometric
state. For example, the state |Y,M =2) can be produced
using three-level atomic systems in which both one- and
two-photon transition processes occur.

*Present address: Dept. of Mathematics, Faculty of Sci-
ence, Kuwait University, P.O. Box 5969, S’afat 13060,
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