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In this paper, a general formalism for treating both steady-state and time-resolved second-harmonic
generation for molecular systems is presented. Here, only the steady-state case will be reported. The
adiabatic approximation is introduced. Four important cases, resonance-resonance, resonance-—off-
resonance, off-resonance-resonance, and off-resonance—off-resonance transitions, have been considered.
Finally, numerical calculations of rhodamine 6G are performed to demonstrate the applications of

theoretical results.

PACS number(s): 42.65.—k

I. INTRODUCTION

Since the pioneering work of Bloembergen on non-
linear optical susceptibilities [1], theoretical descriptions
including macroscopic as well as microscopic theories in
rarefied and dense media have been done [2,3]. Second-
order effects in molecules have been considered in the
Born-Oppenheimer approximation, and simple models as
different as the two-8-function potential [4] or the charge
transfer model [5] have been used to clarify the depen-
dence of the second-order hyperpolarizability on the
charge asymmetry in a molecular system.

Steady-state and time-resolved second-harmonic gen-
eration (SHG) has begun to be actively used experimen-
tally for studying molecular systems [6—13]. An under-
standing of the dynamics of molecules at surfaces or in-
terfaces is of great importance in the study of heterogene-
ous catalysis, corrosion, and biological processes. Con-
siderable progress has been made in determining static
properties, such as the orientation and bonding of mole-
cules that are chemisorbed to metal surfaces like, for ex-
ample, pyridine on silver [14]. A central interest lies in
investigating the dynamics of vibrationally or electroni-
cally excited polyatomic molecules at surfaces. Impor-
tant issues include the nature of the interactions between
an excited molecule and its ground-state neighbors, and
the coupling of electronic excited states of the adsorbate
to the vibrational modes (phonons) of the surface.

Recently, second-order nonlinear optical spectroscopy
has emerged as a unique probe of the dynamic and static
properties of molecules and surfaces. In a second-order
optical process, the molecule undergoes at least two in-
teractions with the applied fields. Examples are sum and
difference frequency generation, in which coherent elec-
tric fields with components at frequencies w; and w, are
applied to the sample, and a coherent signal with fre-
quency w;*w, is detected. A special case of sum genera-
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tion is SHG, in which w,=w,. Second-order processes
are forbidden in centrosymmetric media within the elec-
tric dipole approximation. Since inversion symmetry is
broken at an interface, SHG can only occur at or very
near to the surface, and thus provides a surface-specific
probe.

Interesting applications of this sensitivity have been
developed. As an example, the intensity of the SHG sig-
nal has been demonstrated to show a submonolayer sensi-
tivity to the degree of coverage of molecules adsorbed on
a surface. This technique has been applied in a variety of
contexts by Shen [7], including determination of adsorp-
tion isotherms, studies of spectral properties of adsorbed
dye molecules, and investigation of an orientational phase
transition in a monolayer of fatty acid at an air-water in-
terface [15].

SHG experiments are currently interpreted with phe-
nomenological models in which the absorbing molecules
do not interact with each other. A microscopic theory of
second-order spectroscopic processes in interacting mole-
cules at surfaces is lacking. We plan to develop a theory
which will permit the interpretation of nonlinear band
shapes in terms of interactions among the adsorbate mol-
ecules and the atoms or molecules that compose the sur-
face.

The purpose of this paper is to study the steady-state
and ultrafast time-resolved SHG of molecular systems by
using the generalized susceptibility approach developed
in a previous work [16]. The paper is organized as fol-
lows. In Sec. II, the general theory of SHG is presented.
Section III is devoted to the derivation of the expression
of the steady-state SHG. Then, adiabatic approximation
is introduced in Sec. IV to treat the SHG of molecular
systems. Several cases, like resonance-resonance,
resonance—off-resonance, off-resonance-resonance, and
off-resonance—resonance, are studied. Finally, in Sec. V,
we show an application to the particular case of rhodam-
ine 6G.
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IL. GENERAL THEORY AcP(t)=—— f dnf dr,L,(r)L,(1))0; . 2.7
Among the theoretical approaches to SHG by mole-
cules [2,3], the Liouvillan formalism is of particular in-  Notice that the polarization P(z), which is our basic
terest to describe the usual Liouville equation [17], which ~ quantity, is given by
t fi
akes the form P(1)=Tr[p(p]=Tr[G (o ()] 2.8)
dp(1) i i
_L:_““Lop(t)‘“_L1(I)P(f)_rp(’) . (2.1)  and can be expressed as
ot # #i
Here, L, and T are, respectively, the zero-order Liouville t>—2 2 wm nm (0O g (O (1—=8,,)
and the damping operator describing the dynamics of the
system. In addition, L ,(¢) denotes the Liouville operator +Gun im0 o (Opa, } (2.9)
for the interaction between the system and radiation
fields. If we define the transformation as
_ —li/ALy As usual, g denotes the dipole moment operator and the
plr)=e olt), (2.2)  free evolution is described by the Liouville operator
where the usual notation Ly=L,—i#AI" has been intro- G(H)= —(i/B)L gt
duced, then Eq. (2.1) becomes (=e . (2.10
3 _ If the set of molecules does not have permanent dipole
o(t) i C ]
Y - ";’{L (Do (2) 2.3) moment, the previous expression reduces to
with the notation 2 2‘, G nm (VAT (D) 2.11)
= (i /AL —(i /ALyt
L(1)=e o Li(t)e <. (2.4)  because to zero order there is no coherence preexisting in

the molecular system, and the initial density matrix is di-

agonal. Of course, for the second-harmonic generation,

we are concerned with the second-order contribution of
. _ . . (2) .

Ao(t)=a(t)—0,=— i f’d'rL Yo (7) (2.5) the polarization P'“(¢), which can be expressed by

D=3 G um (VAT () - (2.12)

A formal solution to Eq. (2.3) can be easily deduced. It
can be written as

where o; denotes the o(z) value at ¢t =¢;. As long as the
radiation-matter interaction is weak enough, the solution
can be expanded perturbatively. The first-order term For the sake of convenience, the quantity Ao‘2) (¢) can be
AcV(1), and second-order term Ac®(1) are obtained written as

straightforwardly. They take the forms

4
D(z) -:_._f drL,(1)o (2.6) Ao (2)(I)_2 AO’E»Z,,),,,(I) s (2.13)

and where the various contributions take the form

Lo
lw

1 T i) T —iw,., (T,=T,)
Aa(lerm(t)z—?Z ft.thl f,,ldTZQI " ann’(Tl)e wm T Vn’m(TZ) mm(ti) 4

—iw, (1,—7,)
o 22 S dﬂf drye Y e T (1)p )
"y ) (2.14)
—lw, AT, T
Ao (1 > 2 [ drlf drye W, (r)e Y () t)
' i) (T, —T,)
Ao (1) zf dﬁf drye' Ty, (re T Y () (2
[
In the previous expression, we took advantage of the fact ~ ground electronic configuration g
that the system is initially in a stable distribution of states _1 —E,, /KT, _ —E,, /KT
of the ground electronic configuration, so that plt:) z ?’ ¢ lgv)(gvl, z= ?’ ¢ )
G(t—t;)p(t;)=p(t;) . (2.15) (2.16)

The initial density matrix p(¢;) will be described by a In these previous expressions, the radiation-matter in-
stable Boltzmann distribution of vibrational states of the teraction can be expressed as
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V(t)=—p-[E(w)e ““+E*(w)e'“14(1), (2.17)

where A (t) denotes the laser-pulse shape function. It is
convenient to use 4 (¢) given by

A(ny=e 1T 2.18)

Here, T=2y ! represents the pulse duration and t,
denotes the probing time.

The expression for P(y) given in this section, can be
applied to both steady-state and ultrafast time-resolved
SHG. For the latter case, both population and coherence
make contributions to SHG. In addition, if the pulses
overlap, various chronological ordering must be con-

A0-1 Ezzpmm Il'nn E(aw)][ll'nm

sidered for time-resolved SHG, while they give a trivial
dependence in the steady-state regime. In appendix A, a
different approach for deriving P‘?)(¢) is presented.

III. STEADY-STATE CASE

When the experiment is performed in the stationary re-
gime, the amplitude of the electric field is constant and
the relation (2.17) takes the form

Vin=—p- 3 Elawe ", E(—w)=E*(w). (3.1

a=1=1

In this case, the various express1ons of Aoﬁz,,)m(t) can be
evaluated easily. For instance, Ao{%),, (¢) becomes

Oy —a0)T) 0, —Bw)T,

(Ba))]fl_ldfl ft. 1d7’2ei(w""’_ " e , (3.2)

where we have substituted Eq. (3.1) into Eq. (2.14). Performing the time integration, we get

Aa’lnm(t zzzzpmm t )[”nn (aw)][”’n’m'

(o —aw—pPBo)t

1 e nm

o
(o

E(Bw)]

nm -aw—Bw)t‘.

’

L i
(o, —Bw)t; e

,
Dym n

@ — a0 — P

’ ) ’
O aw)t_et(wnm ®p —aw)t;

—e

(3.3)

’

’
Dy — Op'yy — OO

When the initial condition, lim, _, _, is introduced and if 7 is large enough to reach the steady-state regime, the expres-

sions of the various contributions are greatly simplified. The previous quantities result in the form

.
Similarly, we obtain for the other contributions
AoS), (1)=—— Z 2 2pn ) o B [:m f;:,a))()j,[i—mai(f;;] )’
ro?) (51— *2 E anw 1)) @m —a0 BN [::nm—fsii((u ;]E,,#—nai(—ﬁ; :)]) ’ (3.5)
B0l 0= 5 33 3 e ([::f '"_]Z,fﬁ]f,,”_af ?Zc)ol '

In the second-harmonic-generation experiment, the phase-matching conditions are satisfied, and consequently the
wave-vector dependence can be ignored from the electric field. Then, only the terms @ =/==1 contribute to the pro-

cess.

From the previous results, the polarization is straightforwardly obtained. If we consider the formal development val-

id in the steady-state regime

P 2)(t)___P(2)(2w)e —2ta)t+P(2)(

—2w)e?iot

and again, introduce the previous partition

4
PP(+20)= 3 PP(+20)
j=1

the various contributions to the polarization are given by

(3.6)

(3.7)
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[I‘nn’.E(_—tw)][“n’m'E(iw)]
P(z) +20)= — ‘)
(+20)= gzzpmm< o
[“nn'.E(i—w)][[ln'm'E(iw)]
P (+20)= o e
2o %%f?‘p"”( omn = o F )@y, F 200)
(3.8)
1 (Bpm E(to) | [pp, E(Lo)]
PP (+20)=—— it
3 (+20 hzgg‘?‘p"”( b (0, F oo, F20)
Y ,e
P(Z)(+2w [F’nm E(_w)][[,t,,,, E(ia))]

7 EEEPnn 791

(0, F oo, F20)

From these expressions, it is quite easy to deduce the corresponding second-order nonlinear optical susceptibilities.

They correspond to the third-order rank tensors described by

4
YP(£20)= 3 xP(+20),

3.9)
j=1
where
1 F’mn®”’nn’®l‘n'm
P L20)=— (t;) ,
2 22 X P ) )
F’mn®l"nn' ®“n'm
X5 (+2w)——* P s ’
?%nzpnn (@ n’m+w)(wnm+2w)
Y Y (3.10)
(2) _ mn n'm nn'
Xy (F20)=—— — — ,
%%nzpnn (0 nn’+w)(mnm+2w)
I"'mn®.u‘n’m®”’nn’
(+20))'__ _ , )
X 722 2P G F o ¥ 20)

and ® denotes the tensorial product. In the next sec-
tions, these quantities will be evaluated explicitly by using
the adiabatic approximation on a particular molecular
system.
IV. ADIABATIC APPROXIMATION
IN THE STEADY-STATE REGIME

Using the adiabatic approximation, we have to consid-
er the three vibronic manifolds depicted on Fig. 1. From
the structure of the denominator of the nonlinear suscep-
tibility, and depending on whether the transition frequen-

J

”’gv e 'O Mery o1y ® ety gu

P(20)=
Xree —2w)

1
»22 2P
ﬁz v v v & (w;'v' gv——w)(we”v” 8v ’

cies of the system are resonant or not with « and 2w, we
are faced with the four following cases which are termed
resonance-resonance, resonance-—off-resonance,  off-
resonance—resonance, and finally off-resonance-off-
resonance cases, respectively.

A. Resonance-resonance case

This case is represented in Fig.

X

1(a). Here, only
2w) needs to be considered. It corresponds to

4.1)

where P,, denotes the Boltzmann distribution, (g,e’,e’) represent the three electronic configurations involved in the
second-harmonic generation, and (v,v’,v"’) denote their corresponding vibrational states. For allowed transitions, the

Condon approximation can be used and Eq. (4.1) becomes

2)(260

(®gu {®e"u” ) < ®e"v"[®e'v' ) <®e’u’|®gu

)

Koy 33,5 P

if the third-rank tensor K, ipg

’ ’
(@ g — N Dy gy

is given by

) (4.2)

—2w)
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1
Ke”e'g = Th?y'ge”®y'e”e'®”e'g (4.3)

and (®g,, |®,,~) denotes the vibrational overlap integral. In the following, it will be of interest to introduce the in-
tegral representation

—(@hyr gy —®)
= [Pare T 4.4)
@pryr av — 0
where the upper limit, p =+ o, must be chosen such that the primitive of exp[ —(w;, 5, —®)¢] vanishes at this point.
Moreover, the same representation is introduced for the second factor of the denominator. It should be noted that
X{¥(20) represents the dominant contribution. Equation (4.2) can be written as

(@, — )t —(1/®)Hy(e")t, —(1/R)H (e")t; (1/B)H ,(g)t,+1,)
e''g 2{e v 20 v lo v 175 )g ,

(2) _ o '(w;, —w)t © — (e
xS (2w)-1<,_,.,e,gfo dtje s ‘fo dt,e 4.5)

—e {e”v”} A
— g
ho ho
2hw
2ho {e'v'}
{e’v’} )
—
ho
ho
 J
—_— Tt {gVv}
—_—t— {gVv} \ v
(@) (b)
{e”v,’}
_ﬁr_' A
ho ho
2how 2ho
4\ A
ho ho
— {gv} v — gV} '

(c) (d)

FIG. 1. Energy-level schemes for (a) resonance-resonance SHG; (b) resonance-off-resonance SHG; (c) off-resonance—resonance
SHG:; (d) off-resonance-off-resonance SHG.
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assuming that the electronic dephasing gives the main contribution to the dephasing constants. Here, { ) ¢ means that
the thermal average over the ground electronic manifold should be taken. Also, H(j) stands for the vibrational Ham-
iltonian in the j electronic configuration.

The SHG is most efficient for the resonance-resonance case. Let us first consider the particular case in which the po-
tential surfaces of the electronic configurations e’ and e'’ are identical. In this case, Eq. (4.2) reduces to

<® v ]®e"v' > < ®e'v'|® v )
X 20)=K gy 3,3 Py —— :

b
(w;’v' gu —w)(w;”v’ gu —2w)

(4.6)

where ®,.,,=0,,,.. Notice that the total vibrational wave functions can be developed as a product of the wave func-
tions of the various individual vibrational modes, so that

O =TT Xz, (1)

, 4.7)
®€'u': H Xe’v‘.'( Qi ) .
With the previous assumption of negligible vibrational dephasing, we get the expression
® —Ajwp,t ) — 8,0,
X(IZ)(zw)zKe”e’gfo dtle e 1f0 dtze 2 gZI_iI G[(t]ytz) s (48)
where the definitions
Ao, =w,,—il,,~o,
e'g e'g g 4.9)
By T Wong —iT yug =20
and
S O 1
G,-(tl,tz)=2ngui|<Xgu,-|XerU;>|zexp - v,~+5 w;— v,«+5 ; ](t1+12)] , (4.10)
v v !

have been introduced. Here, fiw,,, and fiw,., represent the electronic energy gaps. The function G,(z,,t,) has been
evaluated in connection with radiationless transitions and resonance Raman scattering [18—-20]. For the case of dis-
placed oscillators, ; =w;, and we have

Gilty,ty)= S, {ooth 2% —cseh 2 cosh | 2% + 4.1
(t,ty)=exp i jeoth—-r —esch—rcosh | = -7 ot +1t,) (4.11)
if S; stands for the quantity
a),-(di'—dl- )2
Si=————— . (4.12)

! 27
Here, d; and d; are the displacements of the normal mode coordinate with frequency w; in the electronic configurations
e’ and g, respectively. Then, the expression of x{?/(2w) is readily established. It takes the form

P —Awlt P —Awl. t
X(12)(2a)):Ke"e‘gf0 dtje “19ee 1f0 dtye "2

% 5, feotn 22 B2 cosh |22 —oy(1,+ 4.13)
exp 21, ; jcot Sk Cseh S peosh | = —o; 1 +1,) ' .
For the case in which only one mode has S;70, Eq. (4.13) becomes
— mi _ n;
(2) - —sudmy &2 (§m) '[S;(1+m;)]
XiQw)=K, e néomzzo iy
1
x . (4.14)

[@pg+(n;—m;)o; —il,; —@][@y +(n;—m;)o; =il ., —20]

Therefore, at T =0, the expression of the second-order susceptibility reduces to
n

S; had i 1
2
n; =0

X (20)=K oy ge (4.15)

n! [@pg+ 1,0, —iT p =0 ][0, +1;0;—iT g —20]
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Next, we come to the more general case. Here, the potential surfaces are different. Then, we have

) —A .t P — Ayt

XWMF&Wﬂmﬁ ‘“ﬁmﬁz “Hmmhh (4.16)

where
. @ —A 0 +1/2) =Rl +1/2) =L (0] +1/2)
H,(t,,t,)=2sinh —27(~'T >3 Se e e <ng,»|Xe"»,"’>(Xe“u,.”IXe'u;Mxe'ui’i)(gv,-> , (4.17)
U’- U'.' Uill

and

ﬁw ’ ’ n !
N=—r—wt, 1), A=, A=, . (4.18)

' kT
Using the Mehler formula [18], H,(¢,,¢,) can be evaluated as shown in Appendix B. The result is given by

1/2 "2
_ b7
€Xp 4ail/ __cin ’

3

H(t,t,)=M —
a;a;a;

(4.19)

#w;
ﬁ3 72 Slnhm

M= .
1/ 873 sinhA} sinhA!’

The quantities a;, a/, a;’, b{’, and ¢;" are defined in Appendix B. In fact, the same type of calculation can be applied to
third-harmonic generation [21-23].

B. Resonance -off-resonance case

(2)(

In this case, both y{?'(20) and ¥{*'(2w) have significant contributions to SHG. The third term X3 (2w) can be rewrit-

ten as

1 ”’mvm e'v’®""gv mum®ll‘e'u’ gu
¥2(20) _h_ 2 22 ’ , , (4.20)

(we’v’gu —a)( T @y mu,, 12w)

where now we are summing over all the electronic configurations above the first one. In the adiabatic approximation,
we find

{04, 0,,)|?

X 2o0) ZEZKmeg & (@ gp =)@ —20) @20
and
=33 3 Ky L — (4.22)
i A (@yry gy —ON @y +20)

Here, the Placzek approximation [24], has been used. Because the second factor in the denominator is nonresonant, the
vibrational  structure as well as the imaginary part are irrelevant. Notice  that K,

:h_zy'gm ®I"me’®”'e’g and krlne’g :ﬁgzﬂme’®”gm S, g

From an inspection of Eqgs. (4.21) and (4.22), we can see that the imaginary parts of both x{*(20) and y{*(20) will
approximately give the bandshape function of ordinary one-photon absorption spectra. We shall rewrite these equa-
tions as

YPQ2w)=K,(0)a(o) , .
4.23
Y220)=K;(0)a(w) ,
where
1 {O,,|0,, )
P D O (4.24)
v e'v'gy

and



3144 S. H. LIN, R. G. ALDEN, A. A. VILLAEYS, AND V. PFLUMIO

K .
Ki(o)=73, =
n Ome 20
K(w)= Kr’ne’g
3@ _77% ©pe 20

By using the method described in Sec. IV A, the quantity a(w) can be easily evaluated and takes the form
1 P —Ao, t
=—|"dte T IIGi(D),
alw) . f , dte i (1)

where

vi—i—%

v,»'-f-% ®;— ;

Again, in the particular case of displaced oscillators, w; =w;, and we have

Gi(t)zzngvi|<Xgu’.|Xeru_'>|zexp 1—

G;(t)= S h——0 h——-cosh :
i(t)=exp ; Jcot 2k csc 2k cos 2 w;t
so that
(@) -——lfpd —Aw, t—3 S th—— —csch—— h g
alw o t exp 1@erglt : ; |co 2k csc 2chos 2k [oF

For the single-mode case, Eq. (4.29) reduces to
)"

T8(147,)]"

min oy +(n;—m;)o;,—o—il,,]

—s,(1427,) i z (S;7;

ni:0 m; =0

a(a))=ie
ke

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

The case of distorted oscillators could also be considered. It just requires the evaluation of the corresponding function

G,(1).

C. Off-resonance—resonance case

In the present case, only the term y!?(2w) makes a significant contribution to SHG. Again, using the adiabatic and

Placzek approximations, it takes the following form:
Ky e O ey nun®ll'nu’l gv
(o

1
X(IZ)(Z(O):FE E ngv

’
o —a))(a)e,,v,, gu—2a))

ng

For allowed transitions, the previous equation becomes
2

(0410,

’

~ 0N @gryrg, —20)

X(12)(2w):2 2 2 ngKe”ng
v n v (o

ng
=Ki(o)a,(®),
where now
1 |<®gv|®e”u”>|2
a0)=—3 3 Py,
™ v’ & e”v"gu—zw
and
K. .
Kij(o)=r3 —<%
n Ong— @

Again, the quantity a,(w) can be evaluated similarly. Therefore, for the off-resonance—resonance case we obtain

wlo)=—z [Fdre TG

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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where
G(t)_EE |<ngi'Xe"uf')IzexP[_ [ [v"-f-l ]a)"— [v1+%]w"}t| (4.36)
Il U 1
For displaced operators, we have
G.(1) 57 leoth 220 _ csen T2 osh | 4.37)
(t)= —— — —;t , .
(t)=-exp co KT csc 2chos kT ®

where now S; denotes the coupling constant between the electronic configurations e’

mode. It follows that

a(w)= —71? fopdt exp

2kT

The final integrated expressions of a,(®) can be obtained
straightforwardly, as done in the previous case, from the
comparison of relations (4.29) and (4.38).

D. Off-resonance —off-resonance case

In this case, all four contributions to the second-order
susceptibility contribute. Notice that if the Placzek ap-
proximation is introduced as previously done, we get

Higm ® B ® g
g —ON@ e —20)

¥ 20)=— P

Itnm®[tmg®#gn
(wng +o)o,, —20) ’

<2><2w>——22

n

(4.39)
ll'mn@p‘gm@”'ng

g —ON@y, +20)

X5(20) =—15 2 2 (0,

HEmg ®Lnm ®I"'gn

(2)
(20)= fizzz(w ) @y +20)

These terms represent the electronic contributions to
SHG. In the previous Equation (4.39), because we are al-
ways far from resonance, the temperature effects have
been ignored.

From this section, we can see that SHG depends on the
triple product of electronic transition moments
HBge® oo ® .. Therefore, for a randomly oriented sys-
tem the SHG vanishes, and for an oriented or partially
oriented system with an inversion center of internal sym-
metry, the SHG also vanishes. This characteristic of
SHG has been used for studying the so-called “cold melt-
ing” of solids induced by nanosecond, picosecond, and
femtosecond laser pulses [8,25]. In addition, from the
theoretical treatments presented in this paper for SHG of
molecular systems, to design a molecular system with a
large SHG signal, we observe that it is important to
prepare a molecular system with not only large electronic
transition moments but also proper energy levels so that
resonance transitions can be involved in SHG.

fiw
—Aywgngt — S {coth——— —csch

and g for the ith vibrational

fiw;
2kT

cosh (4.38)

il

V. DISCUSSION

To show the application of the theoretical results
presented in the previous sections, we note that Heinz
et al. [6] have recently obtained the spectra of the
So— S, electronic transition of rhodamine dyes adsorbed
at monolayer coverages on a fused silica substrate by res-
onance SHG. The results are presented in Figs. 2 and 3.
This corresponds to our off-resonance—-resonance case.

If the incoming light has polarization e, then the in-
tensity of the forward or reflected harmonic light of po-
larization e, is given by [1,3]

_ 27%°
o3

I,,= sec’@l? ey, ¥\ P (2w):e e,|? , (5.1)

where @ denotes the incidence angle. From Eq. (4.32), we

o Rhodamine 6G
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FIG. 2. Normalized SH intensity for p-polarized excitation
of monolayer samples rhodamine 6G on fused silica as a func-
tion of the SH wavelength in the region of the S-S, transition.
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S, . 28500 cm-1 have
(20)=y?(20)=K]}
ho X 0] Xl (0] l(w)az(a)) ) (5.2)
S 18900 cm™1!
. where
) o
1 H;C,NH 2 *NHC,Hj
2
H;C CHjy _ 1 | < ®gv ‘®e”v” ) \
a(w)=— P - (5.3
he z 02C-H; g ™ ; % g Dy gy —20—il &v )
S, Y
x’ Rhodamine 6G

FIG. 3. Energy-level diagram for rhodamine 6G adsorbed on
fused silica, with the energies of the electronic configurations
deduced from the fit between the experimental results of Heinz
et al. and our theory. The structure of the dyes and the molecu-

lar axes referred to in the text are indicated.
Re[ay(w)]= lz S P, Wy gy :2@ i K o,
T (@, o —2w)+T . v
1 e’ gu
Im{a,(0)]=—=3 3 P, (®
2 2 8v
T (@ gy . —2w)°+T o, o

Notice that from the real and imaginary parts, we have

a(w)=Re[ay(w)]+iIm[ay(w)], (5.4)
where
[
(5.5)
1O, )

That is, Im[a,(®)] denotes the band-shape function of absorption spectra with frequency 2w, while Re[a,(w)]
represents the corresponding dispersion band-shape function.

For comparison with the SHG of rhodamine in Fig. 2, we show the absorption spectra of rhodamine 6G in alcohol in
Fig. 4. We can see that Fig. 2 and 4 are quite similar. We shall rigorously analyze the relation between the SHG spec-

tra and the absorption spectra. Notice that in the Condon approximation,

L,a|Re[ay(0) ]+ |Im[ay(0)]|* .

(5.6)

To analyze the results given in Figs. 2 and 4, we need the real and imaginary parts of a,(w) obtained in the off-

resonance—resonance case. Here, a,(®) is given by

Csfi4amy 2 (S;a) ™S/ (1+7,)]"
az(co)=—l~e §/(1+27,) 2 2 it [ i i ] : ’ (5.7)
T n=0my=0 mn @y, +(n;—m;)o; —20—il g ]
and we get, respectively,
_ iy = = (SIS (1+m)]" Wprg +(n;—m;)o; — 20
Re[a2(a))]=ie §;/(1+27;) 2 2 it [ ; : i ] e''g i i /D : .
w n,=0m;=0 mgn;: [we"g+(ni_mi )wi_zw] +Fe”g
(5.8)
and
sty = 2 (SE) S (1+7a)]" T,
Imlayw)]=—Le 57 5 5 [; , < e (5.9)
m n=0m, =0 m;in;: [@png +(n;—m;)o; =20 "+ T,

where S;,®;, and T',., could be determined from Fig. 4.
In fact, it will be more convenient to fit the experimental
data of the SHG signal by using the expression of the
SHG intensity deduced from our model, and given by Eq.
(5.1). Then, the values of the constants S;,w;, I',.,, and
@, for the adsorbed rhodamine 6G are easily deter-

[

mined. There are given in the caption of Fig. 5. The
value of the dephasing constant I',,, as well as the one of
®,,, have been introduced in the numerical simulations.
They have very little influence because of the non-
resonant character of the first electronic transition.
Therefore, the value of w,, has been taken from the ab-
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FIG. 4. Absorption spectrum of rhodamine 6G in alcohol.

sorption spectrum of the isolated molecule, and corre-
sponds to 18900 cm ~!. Of course, the fit cannot describe
the increase of the absorbance as well as the two experi-
mental points in the range 290-310 nm. This is because
this resonant variation involves electronic levels which
are not accounted for in our description. But, concerning
this part of the frequency range, first, there is no way to
get precise information about the nature of these higher
excited states, and second, we are here in the non-
resonant-resonant case, which implies that 20 must be
near resonant with the frequency transition between S,
and the ground electronic configuration. Finally, it can
be mentioned that this enhancement has been discussed

NORMALIZED INTENSITY ( arb. units )

300 320 340 360
WAVELENGTH (nm)

FIG. 5. Comparison of theoretical and experimental SHG.
The parameters used to model the SHG data are given by
@grg=28500 cm™!, §/=0.23, I',»,=650 cm~!, and w;=1130

—1
cm™ .
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by Heinz et al. [6] as resulting from the resonant process
when o is nearly degenerate with the frequency transition
E 51'E8' However, our numerical simulations clearly

show that this process cannot justify alone the strong in-
crease observed in Fig. 5.

The frequency shift obtained between the transition
frequencies for the adsorbed and the isolated molecule is
a signature of the binding energy of the molecule with the
surface.

VI. CONCLUSION

In the present work, we have developed a general mi-
croscopic theory of second-order optical processes, with a
particular emphasis on second-harmonic generation in
the steady-state regime. Four different typical cases,
which can be encountered in experimental situations,
have been explicitly evaluated. They are classified ac-
cording to the magnitude of the off-resonance parameters
characteristic of the one- and two-photon processes tak-
ing place in SHG. Simple relations of the second-order
susceptibility with the band-shape function of the absorp-
tion spectra as well as with the dispersion band-shape
function have been established. In the particular case of
rhodamines, these functions have been used to calculate
the second-harmonic-generation spectra.

In the future, it will be of the interest to model the
second-harmonic generation of molecular systems ad-
sorbed on surfaces, in the pulsed case. Such a theoretical
description could give detailed information on the recent
experiments done by Prybyla, Tom, and Aumillek
[26,27], which have applied SHG to study the laser-
induced desorption of CO from the Cu(III) surface. Both
steady-state and time-resolved SHG techniques have been
used in their investigations. An important feature in
these investigations is that they have succeeded in using
the femtosecond time-resolved SHG to probe the desorp-
tion mechanism induced by femtosecond laser pulses.
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APPENDIX A

In this Appendix, we provide a different derivation of
the polarization for the second harmonic generation.
Notice that

B — — Liipn—Lar,(pin),

where A denotes the perturbation parameter. With the
development

p([):p(O)(t)"i'kp(”(t)"f')\.zpu)(t)‘f' e

(A1)

(A2)

the various contributions to the perturbational expansion



3148 S. H. LIN, R. G. ALDEN, A. A. VILLAEYS, AND V. PFLUMIO 48

will result from the equations p“)(t)= L :/ﬁ)Lotf drL,(no, (A7)
(0) ;
0 (t) _ i, (0
o1 ﬁLop (1) ’ (A3) and
(1) —(i /B! - -
B {0} at(’) ==L “(t)——L (0p %), (A4) P(z’(t)=—#e WP [ar Ey(r) [ dm L (o,
(2) ; )
i’Pat—(”=—éL;,p‘”(z)—é—Ll(wp(”(t) . (A5) =e M pGYy) (A8)
The second-order polarization is given by
- (2)
Solutions of Eqgs. (A3)—(A5) yield ()= 2 Ep o (D (A9)
p‘°)(t)=e—WmLE’“_t’)p(t,»)=e ~(i/BL o, ’ (A6) where
J
3pin () i
Tz—'lwmnpmn(t %2 mm(t)pmn t)——pmm( )Vm’n(t)] > (A10)
m
ap'l) (1)
ma—:——za)m,,pmn(t)-f- V,,,,,(t)[p“” (t)—pQ A1) . (A11)
If as usual the system is initially thermalized, the zero-order populations are independent of time and we have
p(rg')m’(t)zpm'm’(ti )’ P(noll t)zpn’n’(ti) ’ (A12)
so that
Pita(D) " [ ATV, " 1omm ()= Pura(1;)] (A13)
and

pmn(t) ﬁ “mn Ede mm’ T)e Fmm’ f dTl m'n 7-l)e O 1[pmm( :) pnn( l)]

“Vinn(T)e f ATV e ™ o (4= Pt )]] (A14)
Using the following expression
V(t)=—p-[Elw)e “'+E(—w)e'], (A15)
valid for the steady-state case, we obtain in the rotating-wave approximation

[”’mm ][I‘m’n'E(w)] o 20ty [I"’mm"E( —w)][“m'n.E(—w)} p2iot
(@ryn ~-co)(cum,, 20) (@ TN, +20)

Poan ()= ﬁz}‘.

][pnn i pm'm'(ti)]

[p’m’n -E( —w)][“mm"E( -

[ m'n' w)][”mm'.E(a))] 9 ]
-1 : e THur g : N[ (1) =y 1)]
(@ — N Wy, —20) (@ TN @), +20)
(A16)
Therefore, we get for the expression of the second-order polarization
@(1)=P?(2w)e "H' +PP(—2w)e” ", (A17)
where
1 [I"mm E((o)][”mn ‘E(0)]
D2w)=— an (8= P (2;)
7222 2 <wm,.—w>< :,.n—zw) P {4) P (1]
[ ’n' ][ mm" ]
o b £ o (1) = P (1)) (Al8)

(w;,,m oo, —20)
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and
I“mm"E( _w)]["‘m'n -E( _w)]
(w0, T 0N @), +20)

1 [
P(2)(—2a))=—ﬁ—2222ﬂnm [pnn(ti)—pm’m'(ti)]

[mn B{— ) ][l E(— )]

+ mm (8 =P (81| - (A19)
(@ T O N @}, +20) o P !

The theoretical approach presented in this Appendix is given for convenience and is commonly described in textbooks
[1-3].

APPENDIX B

To evaluate H,(t,,t,), we use the Mehler formula to obtain

B; = A = A; — i
- T ( Qi + Qi )ztanhT +( Qi - Q; )ZCOthT +( Q,'“ + Qi )ztanh—z——

Hi(t;,0,)=M [* dQ, [” aQ; [ d;exp

’

Zi
2

— ;l —_ = }\,: —, = A,’
+(Q"—0Q/ )%oth7 +(Q;+Q; )ztanh7 +(0; —Q; )*coth ]
(B1)

where Q/=Q;+d/ and Q;'=Q,+d;’,d{ and d;’ being the normal coordinate displacements. Also, we have to bear in
mind that here A;, A}, and A’ are depending on ¢, and ¢,. To carry out the integration with respect to Q;, we write Eq.
(B1) as

Hi(tl,t2)=Mf_°°wdQ,» fjwdéi fjwda exp[ —a;Q7—b;0;—¢;]

172 2
T 0 = Lo = i
=m|T . ‘ —c B2
M Iai f_wdQ, f_mdQ, exp | —¢; 2a, | (B2)
where
== B2 4coth 2 1+ franh 2 +coth
a; = 2 tan 2 co > tan > cot )
Bi e
:7[cothki+cothki 1, (B3)
R 2 45 tanh - — coth - | 424! tanh o
b,~—7 Q; jtan e cot > Q; 1tan 5 —coth— ;' tanh—
=p; t—Q__icschki—éicschk;’+d,-"tanh—é— , (B4)
and
B; | =2 A A; — "2 A, Y= "2 ; ~ =, ;
= 0; tanh—2—+coth—2— +{0Q;+2d;"} tanhT+Q,- coth—2—+{Q,-+Qi+2di} tanh-2—+{Q,-—Q,~} coth—z—
8 (B5)
|5 > = ~ ; X
=3 [Q,- {cothA; +cothA}} + O {cothA} +cothA!} —20;0;cschA; +20; (d,»” tanh—E— +d; tanh—z— ]
= A . Ay 5 A
+20Q,d; tanh—2—+2d,- tanh—z— +2d/ tanh—z— . (B6)

Similarly, we have
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172
_ ™ ®© by ® = 12 A ’
H(t,,1,)=M l;—] [ 7 a0 [ 7 d0; exp[—a/07—b/0i—c]]

1/
)
=M

’

a;a;

11

2
f _w d-é-i exp

b?
- C,»’ + - ’
4a;

l

where the additional constants have been introduced

i
a;=—

cothA; +cothA; —

b/ =p; l—él {cschk}-i—

and

Bi | =2
! > Q; {cothA;+cothA;—

" ’

+2d/"? tanhTi +2d;? tanh— —

2

It follows that

’172

H(t),t,)=M

a;a;

172
exp

3
=M

—c/'+
’ ”n

a;a;a

i“i%

where the following notations,

csch?A}

cothA; +cothA}’
cschA;cschA}’

cothA; +cothA}

csch?);
cothA; +cothA;}

"2
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b

’

"

d/"* tanh>—

cothA; +cothA}
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i
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"

i

2
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- %
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cothA,; +cothA}
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cschA}
1+

cothA; +cothA} ]

2

B;
a/’ = —24 cothA; +cothA; —

Y d,»"cschk,-tanh~2L
b;'=p; d,ftanh«zi +

cothA; +cothA}’

n B_,2 {cschk’+ cschA;cschA)’
2 ' i

cothA; +cothA}

i

cothA; +cothA}
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{cothA; +cothA} } —

'

Al
d{ tanh—2L +d/’ tanh
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2
0

4a/ 2

have been introduced for convenience.

A &
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"
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2

2
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