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Double-resonance spectroscopy by a transversely nonuniform pump beam
in a three-level molecular system
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We present a theoretical analysis of the influence of the collimation of a strong pump beam on a
small-signal-gain line shape in a three-level A-type molecular system in the regime of high pump intensi-

ty when saturation and Stark (Autler-Townes) splitting of the levels of the pumping transition take place.
The cases of homogeneous and Doppler-broadened pumping transitions have been considered. A
significant oA'set, an asymmetric deformation, and a narrowing of the gain line, i.e., a spectrum focusing,
have been obtained and explained as a result of the nonlinear (dispersion) and the active (gain) wave

guiding of the small signal in the field of the strong pump beam.

PACS number(s): 42.65.—k

I. INTRQDUCTIQN

Focusing or collimation of the pumping laser beam is
usually used in schemes of nonlinear resonance spectros-
copy when small-signal amplification is performed. The
nonuniform intensity profile of the pump beam induces a
nonuniform transverse distribution for the gain and for
the nonlinear refractive index of the medium. Propaga-
tion of an electromagnetic wave in the case of a trans-
verse quadratic gain or (and) dispersion variation has
been analyzed in [1—4]. The bell-like square hyperbolic
secant function for the transverse intensity distribution of
the pump beam has been applied in [5] where the process
of the simulated Raman scattering (SRS) has been investi-
gated. As was shown later, this transverse intensity dis-
tribution corresponds to the spatial soliton in a no~linear
medium [6—8]. A number of authors have dealt with
pump-beam focusing [9—11]. The SRS of a spatially
nonuniform pump beam has been investigated by taking
into account the depletion of the pump beam in [12] and
by including Stokes —anti-Stokes interaction in [13].

The wave-guiding properties of the system induced by
the transverse variation of the gain and the nonlinear re-
fractive index due to the transverse variation of the inten-
sity of the strong pump beam depend on the frequency of
the small signal and spatial parameters, and the intensity
and frequency of the pump beam. Therefore, one expects
a change of the gain line shape of a small signal with
respect to the case when a plane transversely homogene-
ous pump wave has been applied. An offset to the higher
Stokes frequencies and a deformation of the Raman gain
line were obtained earlier for homogeneously broadened
quantum transitions in [4,5,14]. Neither the saturation of
the material system or the Stark splitting of the levels of
the transitions had been taken into account.

The present paper addresses an important practical
problem of the small-signal-gain line-shape investigation
in a three-level vibrational-rotational molecular system in
the field of a strong collimated pump beam when the sat-
uration and dynamic Stark (Autler-Townes) splitting of

the levels of the pumping transition play an important
role. Molecular three-level A-type systems with both
homogeneously and Doppler-broadened pumping transi-
tions are considered.

For infrared —far-infrared double-resonance spectro-
scopic [15] or Dicke superradiance [16] investigations,
pumping by a laser working in the infrared is usually
used. The pumping light induces a vibrational-rotational
transition when the amplification takes place at the tran-
sition between rotational levels of the vibrationally excit-
ed manifold. Thus, the wavelengths of the pump and the
amplified radiation may differ to a considerable extent.
This causes different diffraction properties for the pump
and the amplified signal beam. In this situation, it is pos-
sible to neglect the diffraction of the pump beam. along
the length of the gain medium when the diffraction of the
amplified signal must be taken into account. The other
possibility of neglecting the diffraction of the strong
pump beam consists in the assumption that the pump
beam represents a spatial soliton [6—8], which propagates
without changing its intensity profile. We show that the
small-signal-gain line shape obtained for the transversely
nonuniform collimated pump beam in the A-type three-
level molecular system, taking into account the transition
saturation and the dynamic Stark (Autler-Townes) effect
on the pump transition, can significantly differ from that
for a plane uniform pump wave. An offset, deformation,
and significant narrowing (referred to here as the effect of
spectrum focusing of the signal) of the gain line shape, as
well as the appearance of an absorption region in it, have
been obtained and analyzed. These properties have been
interpreted as a result of the inAuence of an active
waveguide induced by the pump beam in the nonlinear
gain medium with saturation and Stark splitting of the
levels of the pump transition. The nonlinear wave guid-
ing occurs only for some frequency regions of the signal
and is absent for the other ones where only leaky modes
can exist and where the absorption of the signal instead
of the amplification takes place as a result of the
diffraction losses. These frequency regions are deter-
mined by the transverse distribution of the pump intensi-
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ty, pump and signal frequencies, and the gain coeScient
of the medium. When an offset of the gain-line center to
the higher Stokes frequencies has been obtained in the
case of SRS in media with homogeneously broadened un-
saturated transitions with no Stark. splitting of the levels
[4,5, 14], the possibility of an offset in both directions, i.e.,
to the higher signal frequencies and to the lower ones as
well, has been shown in the present paper. Note that
some previous results of the investigation of the spectrum
focusing effect are briefly presented in our paper [17].

The paper is organized as follows: In Sec. II we formu-
late the Bloch equations for the density-matrix elements
of the A-type three-level molecular system and the wave
equation for the amplitude of the small signal in the par-
axial approximation. In Sec. III we solve these equations
for the case of homogeneously broadened quantum tran-
sitions when collimation of the pump beam with Cxauss-
ian transverse intensity distribution has been applied.
The case of Doppler-broadened pumping and homogene-
ously broadened signal transitions is discussed in Sec. IV.
Finally, the results obtained in this paper are summarized
in Sec. V, and possible applications of the spectrum
focusing effect are considered.

II. THE MATHEMATICAL FORMALISM

We begin with the Bloch equations for the density-
matrix elements p „of the three-level molecular system
(Fig. 1) and with the wave equation in the paraxial ap-
proximation for the slowly varying complex amplitude
As of the Stokes wave (the amplitude A of the strong
pump wave is assumed as a given function of space and
time coordinates) [18]:

p „+p „IT „=(i/A)[p, H]

p„„+(p„,—p„„)/T„„=(i/h )[p,H]„„
(m, n =1,2, 3), (1)

B l+ „~i ~s = ifs(E„—E2,, I ~, (x,y ) I ) ~s
z 2

Here the Hamiltonian is taken to be H =Ho dE(t, r), —
with d being the projection of the operator of the dipole
moment on the direction of polarization of the total elec-
tric field E( t, r ):

E(t,z)= —,
'

I A exp[i(co t —k z)]

+ A, exp[i (co, t —k,z)]+c.c. ]

p, 3= 2 exp[i(co~t —k z)]

p32=B exp[ i(co, t —
ksz )—]

p, 2= C expIi [(co —co, )t —(k~ —k, )z] }

(2)

After substituting (2) into Eq. (1) and taking into account
that

H „=hen 6 „d„E(t,r) (m—, n =1,2, 3)

(where 5 „ is the Kronecker's 6, d „ is the matrix ele-
ment of the dipole moment operator for the transition be-
tween levels m and n and d„„=0),we obtain the follow-
ing set of equations for the amplitudes 2, B, and C of the
off-diagonal density-matrix elements and for the popula-
tion differences p, 3 and p 32 defined as p, 3 =p» —

p33,
P33 PZ2:

B—+—+is~ 2 = — (d, 3p, 33 +d23CAs),
Bt T

B 1 . i+— i E, B=— (d3, CA„' —d32p32 As ),
Bt T

the pump and Stokes waves for the sake of simplicity.
p „and p„„are off-diagonal and diagonal density-matrix
elements. The latter ones represent populations of the
corresponding levels. T, and T„, are relaxation times
which for the sake of simplicity we shall take as equals:
T, = T„„=T. z is the longitudinal propagation coordi-
nate. co is the pump frequency quasiresonant with the
transition between levels 1 and 3, and co, is the signal fre-
quency quasiresonant with the transition between levels 3
and 2; k and kz are the wave numbers of the pump and
the Stokes component, respectively. In Eq. (1), hi is the
transverse Laplace operator: A~ =B~/Bx ~ +B /By,
where x and y are transverse coordinates cp cop co3 $

and c, =co, —F32 are detunings from one-photon reso-
nances for the pump (E ) and the signal (E, ) waves. co3&

and co3z are the transitions frequencies (Fig. 1):

2&co
fs (x,y, E„c)= . X( d ) exp [

—i ( co, t —ksz )],
C

where N is the number of molecules in the unit volume,
(d ) is the quantum mechanically averaged value of the
dipole momentum operator. This function will be calcu-
lated after solution of Eqs. (1) for the density-matrix ele-
ments. The solution of these equations for the off-
diagonal density-matrix elements is represented in the
form

Linear polarization in the same direction is assumed for —+—+is C= (d BA —d AA*),B 1 . l

T (3)

0
B P13 P13
B,P~3 + [2(d, 3 Aq A *—d3i A *A )

2h

+(d32B* As —d23BAs)],

FIG. 1 . Energy-level diagram for the three-level molecular
system under consideration.

B p3z p32
BtP32 +

T [(d3, 3 Ap* —d, 3 A *A )
2h

+2(d32B As dqqB A~ ) ] . —
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In the derivation of Eqs. (3), we ignore nonresonant
terms and terms oscillating faster than co or co, (the
rotating-wave approximation). d „=d„* and single-
photon transitions are assumed to be forbidden between
levels 1 and 2: d, 2=0. p» and p32 are the equilibrium
population differences in the absence of the laser fields.
The detuning from the two-photon resonance c, is as fol-
lows:

C —
COp Co~ C02]

—Ep Eq

Here we consider the steady-state solution of Eqs. (3)
by making the population differences p» and p32 as well
as the amplitudes 3, 8, and C time independent, i.e., set-
ting the time derivatives in (3) equal to zero. The case of
a small signal and a strong pump wave is under con-
sideration in the present paper and the inhuence of the
small signai on the parameters of the material system has
been ignored.

III. AMPLIFICATION OF A SMALL SIGNAL
BY A COLLIMATED PUMP BEAM

IN AN HOMOGENEOUSLY BROADENED MEDIUM

In this section small-signal gain is investigated in the
field of a pump beam with spatial parameters, namely,
transverse intensity distribution and the diameter of the
beam may be assumed as the constants along the gain
medium. The regime of high pump intensity when satu-
ration and Stark splitting of the levels of the pump transi-
tion play an important role is under consideration.

Solution of the general system of Eqs. (3) for the
steady-state case of homogeneously broadened molecular
transitions gives the following expressions for the func-
tion f, (x,y, E,E, ) and population differences p» and p32
(see also [18—20]):

f, =f, +if2,
f, R(=Q, x, —Qz), f2=R(Q, +Q~xg),

b, V

z2(z, +4V) ' c

Z 'jZ2
Q, =1+ [a, (x +2Vx, /z~)

2(a, +b, )

b, (2V/z2 ——1)],
Z ]Z2

Qz= [b, (x +2Vx, /z2)+a, (2V/zz —1)],
2(a/+b/)

ai =zi [x,(z2 V) —xpz2]i bi =zi( V+z2),

T',
2h

1+x'
$ + 2+4+

0 2V
P32P13

~ + 2+4@

with IO being the peak intensity and a the radius of the
pump beam, r z =x +y . We use the Taylor power-series
expansion of the function f, (ri) about the beam center at
rq =0.

$2f
f, (ri, s„s )=f, (r i=O, „Es)+— ri .

Brg r~=0
(6)

By substituting expression (6) into the last equation of (1)
and assuming azimuthal symmetry, we represent the
solution of the equation obtained in the factorized form

As(ri z) y(x z)q(y z) (7)

with

P(x,z) =P(x ) exp[g, z], f(y, z) =f(y ) exp[g z] .

Then we obtain the following equation for the function
P(x ):

a2
+(E, bx ) P—(x)=0,

BX
(8)

where

E„=—2ik, q +A,

with A, a free parameter.
For the function t/i(x ) we have an equation similar to

Eq. (8) with the following change of notations: E„«+E~,
g, «g, and A,,«A, , where

A,„+A, =2k,f, (ri =O, c.„s~ ) .

As follows from Eq. (7), the complex gain of the signal
wave is equal to G, =g„+g~.

Equation (8) formally coincides with the Schrodinger's
equation for the wave function of a particle in an external
field (see, for example, [21])with the complex potential of
the same dependence on the transverse coordinate (ri) as
for the function f, (ri) [see Eq. (6)] which is proportional
to the complex refractive index for the small signal in the
plane-wave limit. The solutions of Eq. (8) are the Hermit
polynomials H„(x ), and we have for the function N(x, z ):

P(x,z)=exp[ &bx /2] g—c„H„(xb',g„'"')
n=0

Xexp(g„'"'z ),
where c„are constants determined by the boundary con-
ditions. The same expression (with x «y and g «g ) is
valid for the g(y, z). From the condition that the value
of the H„(x ) is limited when x —+ oo we obtain the follow-

where x, =c,T and x =e T are the normalized detun-
ings for the signal and pump waves and it has been as-
sumed that the molecules are in the ground state initially.

We assume Gaussian transverse distribution for the
pump intensity:

~
A

~
( ri ) =ID exp[ r i /—a ],
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ing expressions for the gz and py"'..

()g„'"'= i— +i(2n+1)&b /(2k, ),
S

g' '= i— +(2m+1)&b /(2k, ) .
S

(10)

So we have for the signal complex gain,

G G (m)+g(n)

if, (ri—=O, E„E )+ &b (m+n+ I)
k,

(m, n=0, 1,2, . . . ) .

When b~O, we have from (11) the plane-wave limit
G,' ' for the signal gain G „

G.„(b 0)-G,"w'= —iy;(r, =0 ..., ) .

As follows from the analysis of expression (11), the re-
lation Re[GOO])) Re[G „] (m, n =1,2, . . . ) takes place
and the real gain G of a small signal may be described by
only the gain of the mode with m =n =0:

G—= Re[GOO] .

ishes towards the periphery. In the opposite case, when

Re[b ] (0, there is no wave guiding at all and additional
diffractive loss takes place because of a nonlinear defocus-
ing of the signal beam.

In the spectral region where Im[b(x, )])0, the gain of
the medium reaches its maximum value at the center of
the beam and an active wave guiding (gain focusing) takes
place. In the opposite case, of Im[b(x, )] (0, we have
gain defocusing for the signa1 wave.

The gain focusing (Im[b(x, )])0) takes place for the
all-frequency region of the signal at moderate values of
the pump (0( V(0.5), as can be seen in Figs. 2(b) and
3(b). At the same time a nonlinear wave guiding takes
place in the region where Re[b(x, )])0 and additional
diffraction losses occur at Re[b(x, ) ] (0.

The mutual action of these gain and nonlinear
waveguides leads to the asymmetry of the signal gain line
and to the appearance of an absorption in the spectral re-
gion for the sufficiently large (according to the absolute
values) negative x, . The increase of the pump intensity
( V) 0.5 and for the values of the other parameters ap-
plied in Figs. 2 —5'j leads to the Stark splitting of the levels

The dependence of the gain G on the normalized signal
frequency detuning x, is presented in Figs. 2(a) —5(a) for
various values of the pump normalized [see Eq. (4)] inten-
sity V in the center of the beam (ri =0) when an exact
resonance for the pump wave takes place: x =0.

To explain the offset, asymmetric deformation, and
narrowing of the signa1 gain line represented in Figs.
2(a) —5(a), the functions of the real and the imaginary
parts of the parameter b (Re[b] and Im[b]) versus x, are
shown in Figs. 2(b) —5(b) at the same parameter values as
in Figs. 2(a) —5(a), respectively.

The important role that the parameter b plays will be
obvious from the following consideration: As follows
from Eqs. (1) and (6), the pump-induced complex refrac-
tive index n (ri) of the medium is given by

r
w l

I

I
I

~O 6-- 1

I
I

l

(a)

~\

I ~t a
I

(bl

n(ri)= [f,(ri =0) bri/(2k, )]/k, . — (12)

This would be a complex refractive index for the signal
wave if no diffraction of the signal beam took place, i.e.,
when one could neglect the term 1/(2k ), hi A&~0 in the
left-hand side of the equation for As in (1). As is well

known, the real part of the (rn)diescribes a transverse
distribution of the refractive index for the signal wave,
when the imaginary one corresponds to the gain. So ex-
pression (12) describes an effective nonlinear waveguide
with a gain (absorption) induced for the signal wave in
the nonlinear medium by the strong pump beam. The pa-
rameter Re[b ] is proportional to the square of the inverse
value of the effective radius of this nonlinear waveguide.
At the same time, as follows from Eq. (9), Re[b'~ ] is
equal to the square of the inverse radius of the amplified
signal beam. The wave guiding in the meaning of the to-
tal internal reAection is considered to take place when
Re[b(x, )])0. In this case the refractive index from (12)
has its maximum in the center of the beam and dimin-

r
~g

I

300b "-i
\

/
I \

I
2000--I

/
/

/

I 1000--/
r

xs

FICx. 2. (a) Dependence of the small signal gain on the signal
normalized frequency detuning x, in the case of a homogene-
ously broadened pump transition when an exact resonance for
the pump wave takes place: x~ =0. The values of the parame-
ters are as follows. V=0.25, a =0. 1 cm, ho=5 cm ', k, =20~
cm '. The dashed curve corresponds to the plane-wave pump
limit. (b) Dependences of the real (solid line) and imaginary
(dashed line) parts of the parameter b on the frequency detuning
x, at the same parameter values as in 2(a).
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—Re[b]'~ I/&2 (13)

takes on its minimum value. Note that Im[b'~ ] ~0 be-
cause of the presence of the diffraction losses. As foHows
from (13), this minimum value has been achieved when
the function (Im[b ] ) takes on its minimum value as well.
The larger the pump intensity, the smaller the minimum
value min{ (Im[b ]) ] and the larger the maximum value
maxI G ] of the gain (see Figs. 2 and 3 ).

This is true in the region of the moderate values of the

of the pump transition and to the appearance of a region
of the gain defocusing (Im[b(x, )] (0) in the central re-
gion of the gain line [see Fig. 4(b), where the value V= 1].
The same arguments used above can be applied to explain
the peculiarities of the function of the gain versus x, in
Figs. 4(a) and 5(a) by considering the frequency behavior
of the functions Re[ b (x, ) ] and Im[b (x, ) ] depicted in
Figs. 4(b) and 5(b).

For the real gain G =Re[Goo], we have the following
expression from Eq. (11):

G =G,' ' —Im[b' ]/k

The term proportional to the Im[b'~ ] in this expres-
sion describes the decrease of the gain because of the
diffraction losses. The gain G(x, ) reaches its maximum
value at the signal frequency x, =x,'*' at which the func-
tion

Im[b'~ (x, )]= I [(Re[b]) +(Im[b]) ]'

pump intensity where no Stark splitting of the levels of
the pump transition takes place. For sufficiently large
values of the pump intensity, Im[b(x, ) ] becomes negative
in some region of the x, . In this region of detuning x„
we have a gain defocusing instead of a gain focusing, and
the amplification of the signal in the center of the pump
beam is smaller than in the periphery. The reason for
such a behavior is an appearance of a nonlinear detuning
from the resonance of the pump and signal waves due to
the Stark splitting of the levels of the pump transition
and the saturation of the gain as well. In this situation
the minimum value of the function I Im[b(x, )]] is equal
to zero. This minimum value has been achieved at the
signal frequency x, =x,'*'( V) [see Figs. 4(b) and 5(b)]. In
this case, in accordance with Eqs. (13) and (11),
Im[b' (x,'*')]=0, and the signal gain G takes on its
maximum value which in the case under consideration
and in the limits of the approximation applied [see Eq.
(g)] coincides with the gain in the plane-wave limit. It
should be noted that there are two values of x, (x,'*' and
x,"') at which the function Im[b(x, )] takes on the zero
value. Only at the one of them denoted by the x,'*'
(x,'*'(0) in Figs. 4 and 5 does Re[b(x,'*')])0, and non-
linear focusing takes place which leads to the enhance-
ment of the signal gain. At the second one (x, =x,"'),
Re[b(x,"')](0, and the nonlinear defocusing of the sig-
nal wave causes decrease of the gain. At the frequency
x,'*' the pump-induced active waveguide changes its
character from gain focusing at x, (x,' ' to gain defocus-
ing at x,'*')x, (x,"' [see Eq. (12) and Figs. 4(b) and
5(b)]. The asymmetry of the nonlinear wave guiding and

rr
w

1

xs

4 X,

Acth], Irnfb]

3000--

'I

g
g

g

\

(bj
Re[b], Im[b]

FIG. 3. (a),(b) The same as in Figs. 2(a) and 2(b), respectively,
with V=0.5.

-4000--

FIG. 4. (a),(b) The same as in Figs. 2 (a) and 2(b), respective-
ly, with V=1.



DOUBLE-RESONANCE SPECTROSCOPY BY A TRANSVERSELY. . . 3135

the gain focusing of the signal wave in its frequency
domain lead to an asymmetric deformation, a shifting,
and a narrowing of the gain line shape. This narrowing
may be significant at sufBciently high values of the pump
intensity. In analogy with the effects of gain or nonlinear
(dispersion) focusing (see, for example, [2—4]), the effect
obtained in this paper may be termed signal spectrum
focusing. To demonstrate this effect, we show in Fig. 5(a)
the signal gain line at su%ciently high pump intensity.

Note that the function Re[b(x, )] takes on its max-
imum value and the diameter of the nonlinear waveguide
reaches its minimum value at the signal frequency which
is equal to the x,'*'. The numerical estimations show that
at x, =x,'*' in Figs. 4 and 5, the diameter of the amplified
signal is much smaller than that of the pump beam.

IV. MOLECULAR SYSTEM
WITH DOPPLER-BROADENED

PUMP TRANSITION

In order to consider the influence of Doppler broaden-
ing on the gain line shape of the small signal, let us
denote by v the velocity component of molecules along
the propagation direction of the pump and signal waves.
In a coordinate system in which the ensemble of mole-
cules is at rest due to the Doppler effect, we must replace
the frequencies of the waves ~ and co, by

(d )D = I ( d( u)) W(v)dv . (14)

Here we assume that only the pump transition is
Doppler broadened. So let the Doppler effect of the FIR
signal frequency co, be negligible compared to the
pressure-broadened linewidth. Thus, the following condi-
tions have been assumed:

y=2/T)&k, v7- and y (&k v& .

Therefore, in the velocity integration in (14) we may
neglect the k, v velocity dependence by putting 0, =co„
but 0 =co —k v. After integration, we obtain the fol-
lowing expression for the function f, [see Eq. (4)] for the
case of a Doppler-broadened pump and homogeneously
broadened signal transitions:

co —+0 —cc) k v, co —+0 —k v

Let W'(v) be the velocity distribution of molecules:

IV(u )=, exp[ —(u/u~)2],
1

7T Vy-

where uz- is the thermal velocity uz =(2kT/M)', with
M being the mass of the active molecule.

In order to calculate the induced polarization (d )D„of
the medium in the case of a Doppler-broadened transi-
tion, one has to average the function ( d (u ) ) over the ve-
locity distribution W(u ):

/
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15
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FIG. 5. (a),(b) The same as in Figs. 2(a) and 2(b), respectively,
with V=100.

Assuming that the pump intensity is of Gaussian trans-
verse distribution (5), and after substituting the expres-
sion (15) for the function f, (rz, x„xz) into Eq. (11), we
obtain the complex gain for the small signal. The real
part of it is the signal 'gain for the case of a three-level
molecular system with Doppler-broadened pump transi-
tion. In Fig. 6 the signal gain versus signal frequency de-
tUning x, is depicted for various values of the pump peak
intensity when an exact resonance for the pump wave
(x„=O) takes place. As can be seen from Fig. 6, an offset
of the signal gain line (solid curves) with a region of ab-
sorption takes place in the case of a transversely nonuni-
form pump beam. For comparison, the functions of the
corresponding gain versus x, are presented in Fig. 6 for
the plane wave limit. As one can see, the increase of the
pump intensity leads to a broadening of the gain line. It
is interesting to note that the gain-line maximum has
been shifted to the region of larger signal frequencies in
the case of relatively small pump intensities. The in-
crease of the pump intensity leads to the shift into the op-
posite direction, i.e., to the region of smaller signal fre-
quencies.



3136 G. P. DJOTYAN AND J. S. BAKOS 48

~g

~e~

st~

W 'I ~
~a

~a
W

FIG. 6. Dependence of the small signal gain on the signal fre-
quency detuning x, in a molecular system with a Doppler-
broadened pump transition for some values of the normalized
pump intensity V: 1.0—V=0.2, 2.0—V=0.3, 3.0—V=0.5,
4.0—V=1, 5.0—V=5, 6.0—V=10, and 7.0—V=50 with the
following parameters applied: do=10 cm ', k, =20m cm
a =0. 1 cm. The dashed curves correspond to the plane-wave
pump limit.

V. CONCLUSION

To summarize, the results obtained by investigating a
small-signal-gain line in a three-level vibrational-
rotational A-type molecular system are presented. The
saturation and dynamic Stark effects on the pump transi-

tion have been taken into account. The cases of homo-
geneous and Doppler-broadened pump transitions have
been considered, when homogeneous broadening for the
signal transition in both cases has been assumed. A
significant offset, asymmetric deformation, and narrow-
ing of the gain line, termed signal spectrum focusing, as
well as thy appearance of an absorption region in the gain
line, have been obtained. An offset of the gain-line max-
imum to the lower signal frequencies has been obtained in
the case of a homogeneously broadened pump transition.
An offset in both directions, i.e., to the higher signal fre-
quencies and to the lower ones, depending on the pump-
beam peak intensity, has been obtained for the gain line
in the case of an inhomogeneously broadened pump tran-
sition. These peculiarities have been explained as a result
of the inliuence of active (gain) and nonlinear (dispersion)
waveguides induced by the strong transversely nonuni-
form pump beam in the molecular system when the satu-
ration and dynamic Stark effects of the pump transition
have been taken into account.

The results of the present analysis should be taken into
account when spectroscopic, Dicke's superradiance in-
vestigations, or signal arnplification are performed in a
gain medium, e.g., gaseous far-infrared or Raman laser,
and, in particular, when a pump beam as a spatial soli-
tary wave has been applied. An important application of
the effect of spectrum focusing is narrow-band filtering
with amplification.
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