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Resonance-Auorescence and absorption spectra of a two-level atom
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We examine the radiative properties of a two-level atom driven by a strong bichromatic field with fre-

quencies col =coo—5l and co~=~o+52, which can be asymmetrically placed about the atomic transition
frequency ~o and can have diferent Rabi frequencies Al and Q2. Applying the optical Bloch equations
for the bichromatic excitation, we derive an infinite set of equations of motion for the time evolution of
the atomic variables. The equations are solved numerically by matrix inversion and Laplace transforms.
Using the quantum regression theorem, we then solve for the steady-state total Auorescence intensity,
and the resonance-Auorescence and absorption spectra. The spectra are found to depend on the frequen-

cy difterence 25=5&+5~, the average detuning A=cuo —
2 {co&+m~), and the Rabi frequencies of the driv-

ing fields. For A l
=Q2 =0, the total Auorescent intensity displays a series of maxima for

6=+n5+ 0, /45, where the n are the odd integers. The intensity-dependent shift from the resonances
n5 is explained as an analog of the generalized Bloch-Siegert shift. The resonance-fluorescence spectrum
for AWO appears to contain more peaks than that for 6=0. This is due to the splitting of the central
peak and the even sidebands into doublets. The absorption spectrum of a weak-probe beam for 5=0
and equal Rabi frequencies consists of a symmetric series of dispersionlike sidebands separated from ~0
by integer multiples of 5, together with a central absorption peak at coo, whose amplitude oscillates with

A. For 6%0 and/or Qi&Q2, the odd sidebands remain dispersionlike, while the central peak and the
even sidebands split into absorption-emission doublets. A simple physical interpretation of the spectral
features is given in terms of the dressed-atom model.

PACS number(s): 32.80.—t 42.50.Hz

I. INTRODUCTIION

Resonance Auorescence, or the resonant interaction of
electromagnetic radiation with an atomic system, has re-
ceived considerable attention in recent years. When an
excited atom decays into the vacuum, the emitted radia-
tion has an isotropic distribution in space and its spec-
trum is a Lorentzian function of frequency with a
linewidth proportional to the Einstein spontaneous-decay
rate. The fluorescence spectrum can be altered in a fun-
damental way, however, by driving the atom with a
su%ciently strong resonant field. In fact, a three-peaked
fluorescence spectrum has been both predicted [1—4] and
observed [5] when the atom is driven by a strong inono-
chromatic resonant field. The sidebands, which are —,

' as

high as the central peak, are shifted from that peak by an
amount equal to the Rabi frequency A of the driving
field, and are wider than it by a factor of 1.5. For a
strong, nonresonant driving field the spectrum retains its
three-peaked structure, but is asymmetric in the transient
regime [6]. This asymmetry can persist into the steady
state if the driving field has a finite bandwidth [7]. The
effect on a weak probe beam of a strongly driven atom
has also been studied theoretically [8—10], and experi-
mentally observed by Wu et al. [11]. Here again a three-
peaked spectrum is obtained, reminiscent of the two-
level-system resonance-fluorescence spectrum. However,

when the driving-field frequency is equal to the atomic
frequency, the central component disappears and the
weak-probe absorption profile exhibits dispersionlike
features at +0,. For an off-resonant driving field, the ab-
sorption profile (spectrum) consists of one absorption and
one emission component at +0, indicating that, in one
sideband, stimulated emission outweighs absorption, so
that the probe beam is amplified at the expense of the
driving field. Many features of the Auorescence and ab-
sorption spectra can be conveniently explained in terms
of a "dressed-atom" description of the atom-field interac-
tion [4,12]. In the dressed-atom approach, eigenstates of
the atom-plus-driving-field system serve as the basis
states of the system. The components of the fluorescence
and absorption spectra are viewed as arising from transi-
tions between these dressed states.

Recently, an experiment was reported [13] and a
theory was developed [14-17] for the fluorescence spec-
trum of a two-level atom driven by a strong bichromatic
field. The spectrum differs in many important respects
from the characteristic three-peaked spectrum that is ob-
served for strong monochromatic excitation. Under bi-
chromatic excitation, the spectrum consists of a series of
peaks with a constant spacing 5, where 26 is the frequen-
cy difference between the two driving fields. The peak
separations are independent of the Rabi frequencies Q of
the driving fields, but the number of peaks in the spec-
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trum increases with increasing 0, and their amplitudes
oscillate. The peaks separated from coo by even multiples
of 5 (even sidebands) have different linewidths than those
separated from coo by odd multiples of 5 (odd sidebands).
These results have a simple interpretation in terms of the
dressed states of the system and the possible transitions
among them [15]. In the case of bichromatic excitation,
the energy spectrum of the uncoupled atom-field product
states consists of manifolds of states separated by integer
multiples of 5. Inclusion of the atom-field coupling leads
to the dressed states, which are superpositions of the un-
coupled product states. For any product state within a
manifold, the coupling to the states above and below it is
symmetric. Due to this symmetry, the energy separation
between neighboring dressed states is also 5. The mul-
tipeak spectrum can be interpreted as a result of transi-
tions between the dressed-state sublevels. Fluorescence
spectra that display some of the same features as those
described for bichromatic excitation have also been pre-
dicted for a two-level atom in an amplitude-modulated
field [18—24], and for a two-level atom in a continuous
pulse-train field [25].

Most previous studies involving bichrornatic excitation
have dealt with the case of equal Rabi frequencies and coo

in resonance with the average frequency of the driving
fields, i.e., the detuning b, between coo and (coi+coz)/2
was zero. In the experimental study [13] the fiuorescence
spectrum shows marked asymmetry and apparently con-
tains more peaks, when b, &0. No explanation has been
offered so far for the appearance of the large number of
peaks. Moreover, recent studies of the generalized
Bloch-Siegert shifts [21] and Doppleron cooling [26] in a
fully modulated field show an important role of the de-
tuning 6 at values corresponding to subharmonic and
Doppleron resonances.

It is our purpose in this paper to study resonance
Auorescence from a two-level atom driven by an off-
resonance bichromatic field and the probe-beam absorp-
tion spectrum under resonant as well as nonresonant bi-
chromatic excitation. %'e work with the optical Bloch
equations. W'e find that the steady-state intensity spec-
trum exhibits maxima at 6=+n5+ 0 /45, where the n
are the odd integers. The intensity-dependent term in
these frequencies is the analog of the generalized Bloch-
Siegert shift [21]. We also find that for b,&0 the fiuores-
cence spectrum contains more peaks due to splitt:ing of
the central peak and the even sidebands into doublets.
The main result of this work is the probe-beam absorp-
tion spectrum of a two-level atom driven by a strong bi-
chromatic field. It is shown that the probe absorption
spectrum depends on the frequency difference 25, detun-
ing 6, and the Rabi frequencies A& and 02 of the two
driving fields, and differs from that for monochromatic
excitation. When 6=0 and A, =Q2 =Q, the spectrum
shows a symmetric series of dispersionlike sidebands
separated by the constant spacing 5, surrounding a cen-
tral absorption peak whose amplitude oscillates with 0,
reflecting an oscillation in the average atomic inversion
[19—23,27]. For 5%0 and Ai =02 the spectrum contains
a series of dispersionlike odd sidebands, together with
absorption-emission doublets centered at coo and at the

even sideband frequencies. Similar spectral features are
found for 6=0 and unequal Rabi frequencies.

This paper is organized as follows. The optical Bloch
equations for a two-level atom in a bichromatic field are
developed in Sec. II. The steady-state solutions of these
equations and the intensity (power) spectrum are dis-
cussed in Sec. III. In Sec. IV we study the effect of 6 on
the fluorescence spectrum. The absorption spectrum of a
weak-probe beam is calculated in Sec. V. Finally, the
dressed-atom picture of the spectral features is presented
in Sec. VI.

II. OPTICAL BLOCH EQUATIONS

Consider a two-level atom with excited and ground
states denoted, respectively, by ~e ) and ~g ) and separat-
ed by frequency coo. The atom may be described as a
spin- —,

' system, characterized by the standard spin angular
momentum operators S—+(t) and S'(t) satisfying the com-
mutation relations

(2, .1)

The bichromatic driving field is

E(t)= [Eiexp( —ice &t)+ E2exp( —
ico2t) ]+c.c. , (2.2)

where co& =~o—
5& and co2=~0+5z are the frequencies of

the bichromatic field, and E, 2 are its amplitudes. %'e as-
sume that the frequencies co& and ~2 are not symmetrical-
ly placed about coo (see Fig. 1), and are separated by
25 =5, +52. Since 5,%52 there is a net detuning
A=coo —co, between the atomic frequency and the aver-
age frequency co, =(co, +co2)/2 of the driving fields.
Denoting the Rabi frequencies of the driving fields by

0& =2@.E&/R, Qz=2p Ei/A', (2.3)

where p is the atomic transition electric dipole moment,
we write the optical Bloch equations, in a frame rotating
with the average frequency m, and in the rotating-wave
approximation, in the form

X= AX+v,
dt

(2.4)

where A is the 3 X 3 matrix

52
I e&

I g&

FIG. 1. Two-level atom driven by two coherent fields of fre-
quencies co& =coo —

6& and co2=coo+6&.
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and X is a column vector with complex components

x,(t)=(~ (t)).

X,(t) = (S'(t) ) .

The components of the column vector v are given by

v = ——'I 5l 2 3, 1

(2.6)

(2.7)

(z, + -,
' r+ i a)x(,!)(z)

=X',"(0)+Q[aX"+"(z)+X" "(z)],
(z, +-,' r —i a)x,("(z)

=X("(0)+@[X"+"(z)+ax" "(z)], (2.10)

(,+r)x'"(z) =x'"(o)—I

——'n[x", +"(z)+x" "(z)]2

t /a[x(l ) (z) +X(l + i ) (z) ]

Here A=A„a=02/Q„VL is a phase angle, assumed to
be equal for the two driving fields, and I is the Einstein
3 coe%cient for spontaneous emission.

DiFerent numerical and analytical methods [14—17]
have been used to solve Eq. (24). Here we propose a
method, similar to a Floquet technique, which transforms
the system of Eqs. (2.4) with time-dependent coefficients
into a system consisting of an infinite number of equa-
tions with time-independent coeKcients. This latter sys-
tem is solved numerically by matrix inversion. To do this
we decompose the components X, (t) into slowly varying
amplitudes that oscillate at the modulation frequency 6
and its harmonics. This decomposition is given by the re-
lation

x.(t)= y x'"(t)e'"

a X'"(z)+b,X" '(z)+d, X"+ '(z)=g (2.11)

where

2 1 1(+r)+n + 1+ 1+
Pl —i Ql —i Pl+ i Ql+ i

b =d z= —'Qe
1 1 —2

1 1

Q!—i
(2.12)

x('-"(o) x"+"(o)+
~1+1

g, =x',"(o)— f„,'n—I

where z1 =z+il5, with z the complex Laplace transform
variable, and X,' )(0) the initial values of the components
x'"(t).

On ehminating X',"(z) and X2"(z), we transform Eq.
(2.10) into the system of equations

On substituting (2.8) into (2.4), we find the slowly varying
amplitudes X,"(t) to obey the system of equations

d
dt

r(!)(t) = —(-'r+ i a+ ill)x'"(t)

x,"-"(o)——'Q
2

Q

ax"+ "(o)
+

Ql+i

+A[ax"+"(t)+X" "(t)],

x'"(t)= —(-'r —i a+ !is)x(!)(t)

p, =(z+i 15+ ,' r+i b, )—,

Ql =(z+il o+ ,'1 i b, ) . —— (2.13)

+A[X"+"(t)+aX" "(t)], (2.9)

We construct an infinite-dimensional column vector Y by
putting together the amplitudes X3"(z) in the order

d„x',"(t)= ,'rs„—(r+tis)—x',"(t)

——'Qa[x" "(t)+X"+"(t)]
'0[x"+"(t)+—x—" "(t)] .

x',"(z)
x',"(z)

x'-"(z)
(2.14)

We solve Eq. (2.9) by Laplace transform methods, which
lead to the following system of algebraic equations for the
transforms X,' '(z):

Equation (2.11) can then be written as

KY=P, (2.15)
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where K is an infinite-dimensional matrix composed of
the coefficients aI, bI, and d), E,'+'(r, t) = Eo+'(r, t)

2
~o [r X(r Xp, )]

d& 0 a& 0 bi

0dp 0 ap bo

d
&

0 a
&

0 b

(2.16)

and P is an infinite-dimensional vector composed of the
parameters gI,

xS r
C

(3.2)

where Ez~ '(r, t) denotes the positive-frequency part of the
free field, and the second term describes the retarded field
due to the atomic dipole. Since the field is assumed to be
unexcited initially outside the incident laser beams, the
free field operator does not contribute to the normally or-
dered correlation function (3.1), and we obtain

1(,i)=r (")(s' i ——" s-
~

"—)—,
C

i
C

(3.3)

P= go (2.17)

Equation (2.15) is our final formula expressing the optical
Bloch equations for a two-level atom in a bichromatic
field. This expression can be used to obtain the atomic
dynamics to any desired accuracy simply by matrix inver-
sion. To invert the matrix K we have to truncate the di-
mension of the vector Y at a large number N of terms.
For given parameters 0, 6, and 6, we choose the number
% necessary to achieve the same accuracy (to nine digits)
for XP'(z), when we increase or reduce N by one. In the
following sections, Eq. (2.15) will be used to study the res-
onance fluorescence and absorption of a two-level atom
driven by a strong bichromatic field.

where u (r)=(3/8')sin 8, with 8 the angle between the
observation direction r and the atomic transition dipole
moment p.

When integrated over all solid angles dQ„, Eq. (3.3)
yields the total radiation intensity I(t) given in photons
per second as

r(i)=r(s i- —s- i- —
)

.+ r r
C c

(3.4)

I (t)=—"+r y x'" t ——" e'""-""
2 I C

(3.5)

In the steady state (t~ ~ ), only the zero-order (l=0)
component contributes to I(t), and Eq. (3.5) reduces to

Using the commutation relations (2.1) and the decompo-
sition (2.8) we express the total radiation (fiuorescence)
intensity I(t) in terms of the slowly varying amplitudes
X'"(t) as

III. STEADY-STATE INTENSITY SPECTRUM r
) =—+rx',", (3.6)

A somewhat trivial application of Eq. (2.15) is the cal-
culation of the steady-state total fluorescent light intensi-
ty as a function of the detuning A. This quantity is
known as the intensity or power broadening spectrum,
and was extensively studied for two- and three-level
atoms under monochromatic excitation [3,28,29].

The fluorescent light intensity is proportional to the
normally ordered first-order correlation function of the
scattered electric field

2

I(r, t)= (E,' '(r, t) E,'+'(r, t)),
27Tcop

(3.1)

where the angular brackets denote the quantum-
mechanical expectation value over the initial state of the
entire system, and we have introduced the factor
(r c/2vrcoo) so that I(r, t)d A„dt is the probability of
finding a photon within the solid angle element d Q„
around the direction r in the time interval dt at the time
t In Eq. (3.1),. E,'+'(r, t) stands for the positive-frequency
part of the electric field operator at a point r=rr in the
far-field zone of the atomic system (r ))A. ) outside the in-
cident laser beams, and is given by the well-known ex-
pression [30]

where X3 ' = lim X3 '(t).
g~ oo

The steady-state values of the zero-order component
X'i '(t) are found from Eq. (2.9), by setting the left-hand
side of this equation equal to zero. This is equivalent to
setting z =0 in Eq. (2.11) while replacing the parameters
(2.12) by

2 2

a =(il5+r)+ —'0 + + +
+I —1 Ql —1 +1+1 Qi+1

1
bl —dl-2 —2nD PI —1

1

Qr —i
(3.7)

where now

P& = (i l5+ —,
' I +i b, ),

Q, =(ilfi+ ,'I id, ) .—— (3.8)

The zero-order component X~ ' can easily be computed
by solving the system of equations (2.15) with the param-
eters (3.7).
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Figure 2 shows the steady-state fluorescence intensity
as a function of the detuning 6 for a bichromatic excita-
tion with ca=1, 5=5I, and different values of Q. For a
weak driving field the intensity spectrum consists of two
distinct peaks centered at the frequencies co, =coo+6. As
the driving-field intensity increases these two peaks shift
towards smaller 6 and simultaneously become power
broadened; in addition, there appear new peaks near
b, =+15I . Increasing the driving-field intensity still
more, these peaks also shift towards smaller 5, and there
appear an additional two peaks at larger A. These graphs
show that the intensity spectrum consists of many peaks
located near 6=+n5, where n is an odd integer, and that
these peaks move towards smaller 6 as 0 increases. To
explain this, we will approximately solve the set of equa-
tions (2.11) in terms of continued fractions. With the pa-
rameters (3.7), for 1=0 and in the lowest approximation,
we ignore the coupling of X3 ' to X3 ' and X3 ' and find

from Eq. (2.11) that

O

X'"= —-'r, I +-,'n'
3 2

r
—,'I +(b —5)

r
—,'I +(b, +5)

(3.9)

Near the resonance 6=5 only the first Lorentzian con-
tributes to the spectrum, and the intensity Iss is

=1 I Q
4 [,'r'+,'n'+(a —5)']

(3.10)

Similarly, near the resonance 6= —6 only the second
Lorentzian in (3.9) contributes, and we find

0,I„=-'r
[—'I + —,'0 +(b.+5) ]

(3.11)

Thus, in the lowest approximation, which corresponds to
a weak driving field, the intensity spectrum consists of
two peaks located at 6=+6, with power broadened
widths.

In the next approximation we include the coupling of
X3 ' to X3 ' and X' ' and we find

~ s
O

&o
X',"= ——a—0 I

2 a —2
0

—1

b2

a2
(3.12)

~ ~

G

O

~ ~

Near the resonances b, =+5 (5 ))I ), this reduces to

0 1 —,'Q
X',"=——.1—

[—' I'+ —'0'+ (b, +5+f1'/45)']

(3.13)

O

CO

Thus the spectrum contains two Lorentzians with fre-
quencies shifted from +5 by the amount 0 /45. From
expression (3.12), we see that it also contains additional
resonances at b =+35, because the parameters az and
a z contain terms (b, +35). It is not difficult to show
from Eq. (2.11) that in successively higher approxima-
tions X3 ' contains resonant terms at (b, +n5), where
n=1, 3, 5, . . . . It may be added here that the power-
dependent shifts of the resonances at 6=+n5 are the
analog of the optical Bloch-Siegert shift which occurs in
the case of a monochromatic field interacting with a
two-level atom without the rotating-wave approximation
[31,32]. This level shift, named the generalized Bloch-
Siegert shift, has also been studied for a fully amplitude-
modulated field interacting with a two-level atom
[21,33—36]. A fully amplitude-modulated field is the
complete equivalent of a bichromatic field.

IV. RESONANCE-FLUORESCENCE SPECTRUM

0 -20
k

20 The steady-state resonance-fluorescence spectrum is
given by the Fourier transform of the two-time correla-
tion function of the scattered electric field

FIG. 2. The steady-state intensity spectrum as a function of
the detuning 6 for bichromatic excitation with a = 1, 5=5I,
and difFerent Rabi frequencies: (a} Q =2I, (b) Q =5I, (c)
A=12I .

S(co)=ReI dre' 'lim (E' '(r, t) E'+'(r, t+w)) .
0 t —+ oo

(4.1)
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G(r) = lim (S+(t)S (t+r) ), (4.3)

and we have replaced the retarded time t —r!cby t as the
correlation function is calculated in the steady state.

Introducing the Laplace transform, we express the
fluorescence spectrum in the form

S(co)= I u(r)ReG (z) ~. (4.4)

where v=(co —co, )/I, and G(z) denotes the Laplace
transform of the atomic correlation function G (r). In or-
der to compute the fluorescence spectrum we have to
compute the Laplace transform of the atomic correlation
function G(r). From the quantum regression theorem
[37], it is well known that for r& 0 the two-time average
(S+(t)S (t+ )r) satisfies the same equation of motion
as the one-time average (S (r)). It is not difficult to
show that the optical Bloch equations (2.4) for the two-
time averages lead to equations of the same form as
(2.11), but with coefficients g! given by

Since the electric field operator E'+'(r, t) far from the
atomic system is simply proportional to the atomic
operator S (t —r lc), we have from Eqs. (4.1) and (3.2)

S(co)=I u(r)Re f d~e' 'G(r), (4.2)
0

where

corporates (4.8), provides the explicit expression for the
Auorescence spectrum of a two-level atom in a bi-
chromatic field. In Fig. 3 the spectrum is shown for
a = 1, 5=5I, Q= 8I, and different values of A. For
6=0 the spectrum shows the well-known structure, ex-
perimentally observed by Mossberg and co-workers [13],
consisting of a central peak at v=0, and a series of peaks
with a constant spacing 5. As the detuning 6 comes into
play, the central peak and the peaks separated from co, by
even multiples of 5 (even sidebands) start to split into
doublets. For larger 6(h» l ), this splitting is larger
than the widths of the lines and the components of the
doublets are very well resolved. As a result, the spectrum
consists of more peaks than that for 6=0. The ampli-
tudes of the peaks at positive v are substantially larger
than those at negative v. It may be noticed that the posi-
tions of the peaks separated from ~, by odd multiples of
5 (odd sidebands) are independent of b, . Agarwal et al.
[17] have noted that the fluorescence spectrum shows
marked asymmetry and apparently contains more peaks,
when b,&0. Beyond this comment, previous authors
have said nothing about the appearance of the larger
number of peaks. We explain these features in terms of

O

—-'n
2

aX" "(t) X"+"(r)1 + 1

~~+i
(4.5)

CV

O

where X,'"(t) are the initial values of the correlations, and
are given in terms of the single-time expectation values
by

X(!!( r )
1 (S+

( r ) )e ilst—

X'"(r)= (S'(t)+ ')e-
2

(4.6)

Since the steady state only the zero-order component of
X,(t+~)=(S+(t)$ (t+r)) contributes to the spec-
trum, we can easily compute the spectrum by having
recourse to the definition (4.4) and Eqs. (2.11)—(2.13) and
(4.5). The Laplace transform XP!(z) of the component
Xii '(t+r) has a contribution from the pole at z =0 [see
Eq. (4.5)]. This refiects the presence of the coherent
scattering peaks in the (complete) spectrum S(co). The
incoherent spectrum S;„(co)can be calculated by sub-
tracting out the coherent peaks in the usual way:

O

P4

g o
M
CL
M
LLJ
C3
IK
4J
Q O
M
4J
O

CV

O

0

—20

(b)

(c)

20

S;„(co)=Iu(r)ReU' '( iv), —

where U! '(z) is the zero-order component of

U(z) =X, (z)——lim zX, (z) .
1

Z z~0+

(4.7)

(4.8)

O

AO
O

To obtain the amplitude X', '(z) we require X3 "(z) and
X!3"(z). We find X3"(z) by numerical solution of Eq.
(2.15) with coefficients ai, bi, and d! given in Eq. (2.12),
and g! given in Eq. (4.5).

The incoherent fiuorescence spectrum (4.7), which in-

—20
k

20

FIG. 3. The

fluorescence

spectrum as a function of
v=(co —co, }/I for &x=1, 5=5I, Q=8I, and detunings (a)
6=0, (b} 6=2I, (c) 6=41.
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the dressed-atom model of the system, which will be dis-
cussed in Sec. VI.

It is interesting to note that the incoherent fluorescence
spectrum also shows the larger number of peaks when
b, =0 and a%1 (unequal Rabi frequencies). This is shown
in Fig. 4, where we plot the spectrum for 5=0, 5=5I,
0=81, and different values of a. For a&1, as for AWO,
the central peak and the even sidebands split into dou-
blets, whereas the frequencies of the odd sidebands are in-
dependent of a. These features are also explained in Sec.
VI.

V. PROBE-BEAM ABSORPTION SPECTRUM

Consider a two-level atom driven by a bichromatic
field and simultaneously illuminated by a tunable probe
field of frequency co and amplitude E, which is assumed
to be suSciently weak that it does not appreciably per-
turb the atomic evolution. According to the linear-
response theory [8,38], the steady-state absorption spec-
trum of the probe beam is given in terms of the Fourier
transform of the average value of the two-time commuta-

O ~

O

tor of the atomic operators as

W(co~)= WORe I dec ' D(r), (5.1)

where

Wo =2' I u (r )
~ p E„~/fi,

D(r)= lim ([S (t+7),S+-(t)]),
(5.2)

(5.3)

W(co~ ) = WOReD (z) ~, (5.4)

where i)=(co~ —~, )/I, and D(z) is the Laplace trans-
form of the commutator D(~). From the quantum re-
gression theorem, we know that the commutator D (r)
satisfies the same equation of motion as (S (r)). For
the two-time commutator D(r) the optical Bloch equa-
tions (2.4) lead to the same equation as (2.11), but with
coefticients g& given by

and the commutator is calculated in the absence of the
probe beam, but with the driving field present.

Note that the absorption spectrum calculated here
differs from that discussed by Nayak and Agarwal [23,39]
and others [22,40]. They discussed the absorption of a
probe beam of arbitrary intensity by a two-level atom
pumped by a strong monochromatic field. In our model
the atom is pumped by a bichromatic field and probed by
a weak beam.

Using Laplace transforms, we rewrite the absorption
spectrum (5.1) in the form

O

O

g =x'"(t) ,'n——
where

~x"-"(t) x"+"(t)
I'~+ I

(5.5)

O

O
(b)

X'"(t)=(S (t))e

XI"(t) = —2(s (t) &e-"" .
(5.6)
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FIG. 4. The fluorescence spectrum as a function of
v=(co —co, )/1" for 5=0, 6=5I, 0=81", and different u: (a)
u= 1, {b)a=0.75, {c)a=1.7.

The spectrum can be plotted using Eq. (5.4), which in
terms of the components X,'" takes the following form:

W(co~ ) = WoRexI '(z), (5.7)

To obtain the amplitude XP'(z) we require XP"(z),
which we find by numerical solution of the system of
equations (2.15) with coefficients a&, b&, and d& given in
Eq. (2.12) and g& given in Eq. (5.5).

We first consider the absorption spectrum for a reso-
nant bichromatic field (6=0) and equal Rabi frequencies
(a=1). Figure 5 shows the absorption spectrum for
6=0, a=1, 5=5I, and diferent values of Q. In this
case the spectrum consists of a symmetric series of
dispersionlike sidebands located at co =coo+n5, where
n=1, 2, . . . , and, depending on 0, there can appear a
large absorption peak at the central frequency coo. The
separations of the sidebands are independent of 0,, but
their number increases with Q. These features can be ex-
plained quantitatively in terms of the dressed states of the
system and the possible transitions among them. It has
been shown [15] that the dressed states group into mani-
folds in which successive states are separated in energy by
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X, (t) = U(t)+ V(t),

X,(t) = U(t) V(t)—,

X,(t)=D(t) .

(5.8)

5. It is clear that the possible transition frequencies are
mo+n 6, where n =0, 1,2, . . . . Due to the symmetric pop-
-ulation about I=0 of the dressed states, no net absorp-
tion or amplification of the probe field is predicted to zero
order in 1/0, as is typical of simple dressed-atom calcu-
lations [4]. Thus any absorption or emission features
occur in the spectrum as higher-order corrections in
I/O. It is well known [8—10] that the first-order correc-
tions in I /0 produce dispersionlike features, which ex-
plains why we observe here a symmetric series of disper-
sionlike sidebands. However, the model does not explain
the presence of the central absorption peak at co =coo,
whose amplitude oscillates with the Rabi frequency. This
unexpected result can be understood by referring to the
Bloch equations (2.4). It is useful to rewrite Eq. (2.4),
separating X, (t) and Xz(t) mto two parts T.o simplify
the notation, we define

d
dt

U(t)= 'I—U-(t)+AD(t)(e "'+e'"), (5.9)

D(t)= ID—(t) QU—(t)(e '"+e'") .
dt

It is evident from Eq. (5.9) that the component V(t) is in-
dependent of the driving field and is decoupled from the
remaining components. Its equation has the simple solu-
tion

V(t) = V(0)e (5.10)

where V(0) is the initial value of V (t)
Using the quantum regression theorem and the

definition (5.7), we write the absorption spectrum as

= —
—,'(S')' '

2
+2ReU' '(z)~,

For 6=0 and a= 1 the homogeneous part of Eq. (2.4)
then becomes

d V(t) = —-'I V(t),
dt 2

CV0o

o

Oloo
I

o
(b)

(5.1 1)

where (S'}' ' and U' '(z) are the zero-order components
of the slowly varying amplitudes (S')'" and U' '(z), re-
spectively. It is seen from Eq. (5.11) that the central peak
of the absorption spectrum is distinct from the remaining
contributions, which depend on the bichromatic driving
field. The amplitude of the central peak depends on the
zero-order component of the population inversion (S').
Figure 6 illustrates the dependence of the population in-
version (S') on 0 for monochromatic excitation (5=0),
and for bichromatic excitation with 6=5I . Under
monochromatic excitation (S') steadily increases toward
the saturation value (S') =0. When the atom is driven
by the bichromatic field we find, in agreement with previ-
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o o
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oo
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oo
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FIG. 5. The absorption spectrum of a weak-probe beam as a
function of g=(co~ —co, )/I for 6=0, a = 1, 5=5I, and
difFerent Rabi frequencies: (a) Q=6I, (b) Q=10I, (c) A=141 .

FIG. 6. The steady-state population inversion
(S')ss=(S')' ' as a function of the Rabi frequency for bi-
chromatic excitation with 5=5I (solid line) and for mono-
chromatic excitation (dashed line).
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ous results [19—23,27], that the population inversion os-
cillates as a function of the Rabi frequency. For Q=6I,
(S') =0 and there is no central peak in the spectrum (see
Fig. 5). For 0= 10I, (S') = —0. 1 and we observe a pro-
nounced absorption peak at g=O. A further increase to
0=14I leads to (S') =0 again, accompanied by the
disappearance of the central peak.

It should be noted that the central peak of the absorp-
tion spectrum can be separated from the remaining con-
tributions only when A& =02 and the detuning 6 is zero.
For this case, one component of the Bloch vector, V(t), is
decoupled from the remaining components, which de-
pend on the driving field. When Q, WQ2 and/or b,AO all
components of the Bloch vector are coupled to the driv-
ing field, and the spectrum is more complicated. An il-
lustration of this eAect is given in Fig. 7 where we plot
the absorption spectrum for a=1, 5=5I, Q=8I, and
difFerent values of A. It is evident from Fig. 7 that the
spectrum is altered drastically by changing the detuning

For b,&0 the central peak and even sidebands split
into doublets which contain one absorption and one emis-
sion peak, while the odd sidebands are not sensitive to 6

and remain dispersive. As 6 increases, the splitting in-
creases, as do also the amplitudes of the doublets. Thus
for b,AO there are regions of frequencies near co~ =co,
and m =co, +2n 5, where the probe beam is strongly
amplified instead of being absorbed by the atomr In Fig.
8 we plot the spectrum for 6=0, 5=5I, Q, (02,
0, , & 02, and compare it with that obtained for Q, =02.
The spectrum is similar to that for 5%0 and shows ab-
sorption and emission peaks near the frequencies
co& =co,+2n5, where n =0, 1,2, . . . . The odd sidebands
are not sensitive to Q; and remain dispersive independent
of the ratio a=A@/II, . It is interesting to note that for
Q&&02 the spectrum is similar to that for A&(Q2, ex-
cept that the absorption components have become emis-
sion components and vice versa. In the next section we
give a simple dressed-atom explanation of these features.

VI. THE DRESSED-ATOM MODEL

In Secs. IV and V we calculated and presented graphi-
cally the fluorescence and absorption spectra of a two-
level atom under a strong bichromatic excitation. We
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FIG. 7. The absorption spectrum of a weak-probe beam as a
function of g=(~~ —co, )/I for a=1, 6=5I, Q=SI, and de-
tunings (a) 6=0, (b) 5=2I, (c) 6=4I".

FICx. 8. The absorption spectrum for bichromatic excitation
with 6=0, 6 =51", and unequal Rabi frequencies: (a)
Q, =Q =81, (b) Q, =6I and 0 =8I, (c) Q, =SI and 0, =61.
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H=HO+ V,
where

2

Ho=fico, S'+fib, S'+A g co;a; a,

(6.1)

(6.2)

is the noninteracting atom-plus-field Hamiltonian, and

have shown that for off-resonance and/or unequal Rabi
frequencies of a driving bichromatic field the spectra ex-
hibit novel and interesting features. Here, we give an ex-
planation of these features in terms of the dressed-atom
model of the system, by referring to the energy levels of
the dressed states. This model provides a better intuitive
understanding of a number of the results of Secs. IV and
V than do the complicated and involved formal solutions.

The Hamiltonian for the atom in the bichromatic field
is given by

2

V= —,'fi —gQ, (S+e ' +S e ' )
j=l

(6.3)

is the interaction (in the rotating-wave approximation).
In Eqs. (6.1)—(6.3) we have assumed unequal Rabi fre-

quencies for the two driving fields, co, =coo —5, and
coz=coo+5z with 5,%5&. The eigenstates of the Hamil-
tonian (6.2) can be written as ~un &nz ), where u =g (e) in-
dicates the atomic ground state g ) (excited state

~
e ) ),

and n, and n. z represent the photon occupation numbers
of the field modes at frequencies co, and co&, respectively.
These product states group into manifolds, each corre-
sponding to a particular value of n, +nz —=N. We use the
product states ~un, ni ) as basis states and set the zero of
energy at that of ~g, n„ni), iii[¹o, +(nz n—, )h]. The
matrix which represents iii (Ho+ V) in the manifold
X+ 1 is the infinite tridiagonal matrix

(25+ b, ) —,'Q~

(6.4)

The matrix U can be written as a sum of three matrices

U=M+P+R,

where

—,'Q 25 —,'0

(6.5)

R =
—,'Q(a —1)

0 1

1 0 0
0 0 1

1 0 0
0 0 1

1 0

(6.8)

—,'Q 5 —,'0

-'n —5 -'n
2 2

(6.6)

Since the matrices P and R vanish, respectively, for 6=0
and a =1, we can treat P and R as small perturbations of
M when b,%0 and a&1. It has been shown [15,17] that
the matrix M has the eigenvalues

—,
' 0 —25 —,

' 0 A, =m5, m =0,+1,+2, . . . ,

and corresponding eigenvectors

(6.9)

~m ( ~m ~m~m Xm ~m )

and

0 1 0
0 0 0

0 1 0
0 0 0

0 1 0

(6.7)

(6.10)

where

X„=J„(—Q/5), (6.11)

and J„(x) is the Bessel function of order n.
We first consider the case of asymmetric detuning

(6%0) and equal Rabi frequencies (a= 1). Using pertur-
bation theory, we find the first-order correction to the ei-
genvalue A, =m5 to be
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g(1) ~m p~m

=+X„P„,X, =b. g J, ( —0/5) .
71S

(6.12)

Equation (6.12) can be rewritten in two different forms,
depending on whether m is even or odd. If m is an even
integer, then s-m is even and the summation in Eq. (6.12)
yields the result

A, ',"=
—,'b, [l+Jo( —2Q/5)] . (6.13)

For m odd, s-m is odd and the summation yields the re-
sult

(6.14)

Equations (6.9) and (6.12)—(6.14) are then combined to
yield the result

A, =m 5+ —,
' 6+ (

—1) u,
where

(6.15)

u =
—,'b.JO( —20, /5) . (6.16)

Similarly, to first order the dressed-state energies in mani-
fold N —1 turn out to be

A, =m5+ —,'b, —( —1) u . (6.17)

The energy levels of the dressed atom are shown in Fig.
9 for 6=0 and 6)0. For 5)0, in the upper manifold
the coupling is stronger between the pairs of levels
~en, nz) and gn, n~+I) (immediately above) than be-
tween ~en i nz ) and ~gn i + In& ) (immediately below).
Thus there results a net repulsion between the more
strongly coupled pairs, as indicated in Fig. 9. For 6=0,
the coupling and repulsion are equal in both directions,
resulting in unshifted energies. In the lower manifold,
X —1, the coupling for b, WO produces a reversed pattern

of doublet shifts, as illustrated in Fig. 9. It is then easy to
see that transitions between the manifolds result in the
central peak's and even sidebands' being split into two
components (for b,AO), while the frequencies of the odd
sidebands are unaQ'ected.

In order to determine the intensities of the spectral
lines and the absorptive and/or dispersive behavior of the
components of the absorption spectrum we need the pop-
ulations of the dressed states. For 6=0, and to zero or-
der in I /0, all dressed states in each manifold are equal-
ly populated [15,17]. For b, )0 the odd states (2m +1)
in the upper manifold are shifted (upwards) from their
unperturbed ( b, =0) values by the amount —,

' b, —u,
whereas the even states are shifted by —,'6+ u, as shown in

Fig. 9; furthermore, the odd states are more populated
than the even (this is indicated in Fig. 9 by the circles).
In the absorption spectrum, unequal population of the
dressed states leads to a positive or negative absorption.
For 6)0, the absorption spectrum thus consists of emis-
sion (amplification) components at co =co, +2n 5 —2u,
where n =0, 1,2, . . . , and absorption components at
co =co, +2n5+2u. The odd sidebands remain disper-
sionlike, as these result from transitions between states
having the same populations to zero order in I /A.

%'hen the driving fields have unequal Rabi frequencies
(a&1) and are symmetrically placed about coo (b, =O) we
find the first-order correction to the eigenvalue X=m 6 to
be

Xm+8 Xm

=Q(a —1)g J~„

(6.18)

2

0

h, &0

Equation (6.18) can be rewritten in two different forms.
If m is an even (odd) integer, then 2n —m is even (odd),
and 2n —m —1 odd (even). In both cases, using the sym-
metry properties of the Bessel functions and Eq. (21) of
Ref. [15],we obtain

2 W

2U m — 2gS S

k=m5+( —1) w,
where

w =
—,'A(a —l)Ji(20/5) .

(6.19)

(6.20)

Similarly, to first order the dressed-state energies in
manifold X —1 turn out to be

A. =m5+( —1) +'w . (6.21)

FIG. 9. Eigenstates of the dressed atom for 5=0 and b & 0.

The energy levels of the dressed atom are shown in Fig.
10 for a=1, e & 1, and a) 1. For o. & 1, 6,)Qz, in the
upper manifold, the coupling is stronger between the
pairs of levels ~en, nz) and ~gn, + in&) (immediately
below) than between ~en, nz) and ~gn, nz+1) (immedi-
ately above). Thus there results a net repulsion between
the more strongly coupled pairs, as indicated in Fig. 10.
For Az) A&, the coupling is stronger between the pairs
~en&nz) and the levels immediately above, ~gn in~+1);
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very high field intensities, whereas the predictions of the
optical Bloch equations are correct for all intensities.

0-'

(dp 0 —2

FIG. 10. Eigenstates of the dressed atom for 0& =02,
A&) Q2, and Q& (F2.

the resulting net repulsion is pictured in Fig. 10. For
a=1, the coupling and repulsion is equal in both direc-
tions, resulting in unshifted energies. In the lower mani-
fold, the coupling for a ( 1 and a & 1 produces a reversed
pattern of doublet shifts. As a result transitions between
the manifolds lead to the central peak's and even side-
bands' being split into two components (for a&1), while
the frequencies of the odd sidebands are unaffected.

The population of the dressed states can be found simi-
larly as for the case b,&0. For a= 1 the dressed states
are equally populated, while for a&1 the shifts of the
dressed states lead to unequal population. It is weH
known from the dressed-atom theory [12] that for driving
fields tuned below ~o there is more population in the
lower dressed state of each doublet than in the upper one
(indicated in Fig. 10 by the circles). Consequently, the
spectrum for e(1 consists of emission components at
co =coo+2n6 —2w, where n =0, 1,2, . . . , and absorption
components at co =coo-+2n6+2w. The odd sidebands
remain dispersionlike, as these result from transitions be-
tween states having the same populations to zero order in
(1 /Q). For a) 1 (Q2) Q, ) the reverse pattern occurs:
The spectrum consists of absorption components at
Q)p coo+2n 6 —2w, emission components at cop Q)0

+2n6+2ui, and dispersive features at co~ =coo+(2n
+ 1)5.

Numerical calculations of the absorption spectrum
presented here for Q, XQz and based on the Bloch equa-
tions agree with the physical dressed-atom predictions.
Similar agreement between these two models is found in
the calculations of the absorption spectrum under off-
resonance excitation (5%0). When b, =0 and Qi=Q2
one component of the Bloch vector is decoupled from the
field, and there is disagreement between the two models.
When all components of the Bloch vector are coupled to
the driving field the dressed-atom model provides a useful
physical picture, but is quantitatively correct. only for

VII. SUMMARY

In this paper we have determined the spectral behavior
of the fluorescent field radiated by a two-level atom
driven by a strong bichromatic field. We have presented
a solution for this system obtained by a numerical inver-
sion of an infinite matrix. The effects of detuning and of
unequal Rabi frequencies on the steady-state intensity,
Auorescence, and absorption spectra has been discussed
in detail. For a weak driving field with equal intensities
the power broadening spectrum shows two peaks located
at 5=+5. As the intensity of the driving field increases,
these peaks move towards smaller 6 and simultaneously
become power broadened. In addition, there appear new
peaks at frequencies 6=+36. For a strong driving field,
the spectrum exhibits resonances at 5=+n6+0 /45,
where n is an odd integer. This result predicts the
intensity-dependent shift, (Q /45), which is the general-
ized Bloch-Siegert shift extensively discussed for a two-
level atom in a fully modulated field [21,33—36]. The
fluorescence spectrum for the atom in an off-resonance
bichromatic field shows more peaks than for resonant ex-
citation. This interesting phenomenon is due to the split-
ting of the central peak and the even sidebands into dou-
blets, whose positions and intensities depend on both 6
and Q. The same behavior is found for a resonant bi-
chromatic field with unequal Rabi frequencies.

The absorption spectrum of a weak-probe beam for
6=0 and 0,=Q2 shows a symmetric series of dispersion-
like sidebands separated by the constant spacing 6, and
an absorption peak at the central frequency co =coo

whose amplitude oscillates with A. These features of the
absorption spectrum cannot be explained by the simple
dressed-atom model. Dressed-atom calculations (to zero
order in I /Q) predict equal population of the dressed
states, and therefore no absorption, amplification, or
dispersion of the probe field. The spectral features for
6=0 and Q&=A& require calculations which include
terms inversely proportional to the Rabi frequency. In
the off-resonance case b,&0 and/or Q, WQ2 a new feature
develops: the central peak and the even sidebands split
into absorption-emission doublets, whereas the odd side-
bands remain dispersionlike. In this case there are more
regions of frequency where the probe beam is amplified
instead of being absorbed by the atom. The spectral
features for 6%0 and/or Q, WQz are qualitatively ex-
plained by the dressed-atom model. The splitting of the
spectral lines is directly related to the shifted dressed-
atom frequencies, and the absorption-emission behavior
of the absorption spectrum is related to the unequal pop-
ulation of the dressed states.
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