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Symmetry relations in phase-sensitive magnetic-resonance spectroscopy
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We have found symmetry relations which are generally applicable to most signals of phase-sensitive
magnetic-resonance spectroscopy. One of them is a kind of reciprocal relation connecting the signals be-
fore and after magnetic-field reversal, and is based on a symmetry property of a system under an antiuni-
tary transformation: time reversal. The relation tells us that the phase of a signal is closely related to
the behavior of the signal when a static magnetic field is reversed. Another is a relation which originates
from a symmetry property under a unitary transformation. From this, we can obtain information on a
geometrical symmetry of a system. Some phenomena of phase-sensitive magnetic-sublevel spectroscopy
are exemplified. The usefulness of these relations is also discussed.

PACS number(s) 32.30.—r, 32.80.—t, 42.50.Md

I. INTR(ODUCTIGN

Many kinds of spectroscopic techniques have been de-
vised and used in order to investigate the magnetic reso-
nance in gases and solids [1—3]. The standard NMR and
electron-spin resonance (ESR) techniques are now widely
used in many fields of science. Also optical techniques
have been extensively used because of their high sensitivi-
ty. Population differences between magnetic sublevels
can be greatly enhanced from their thermal equilibrium
values by optical pumping [3], and an optical photon is
sensitively detectable.

Optical methods for a magnetic resonance detection
may be classified into two categories as follows.

One method is to detect a change of the sublevel popu-
lation associated with the magnetic resonance. The mag-
netic resonance is detected by the change of the intensity
or polarization of a transmitted or fluorescent light. Con-
ventional optical-rf double resonance [4], optical hole
burning [5], optically detected coherent transients [6],
photon-echo nuclear double resonance (PENDOR) [7],
and so on are involved.

Another method is to detect sublevel coherence. In
techniques such as quantum beats (QB) [8] [QB echo, QB
free induction decay, synchronized QB (echo) [10]), and
coherent Raman beat (CRB) [9], sublevel coherence is op-
tically created and detected, whereas the Raman hetero-
dyne technique [11,12] consists of an optical detection of
rf-induced sublevel coherence.

Rather generally adopted in the methods of the latter
category is phase-sensitive detection (PSD). It has pro-
vided us with additional information on sublevel reso-
nance. Not only can we know about the resonance fre-
quency but also about whether the signal we observe is
the in-phase or out-of-phase response to the excitation.
In this sense we call these phase-sensitive magnetic-
resonance spectroscopies (PSMRS). Of course the stan-
dard NMR spectroscopy often makes use of PSD tech-
nique as well. In some cases this phase-selectivity is quite

important [13].
In this paper we report on fundamental relations which

we have discovered for signals of PSMRS in general. One
of these is a kind of reciprocal relation connecting the
signals before and after magnetic-field reversal, and is
closely related to time-reversal symmetry [14]. Another
is a symmetry relation which is based on a symmetry
property of the system under a unitary transformation.
These relations have not been reported so far by others in
spite of the simple form and generality. They can be
powerful means for analyzing the signal of PSMRS which
often shows complicated behaviors just because of the ad-
ditional information on a phase of the signal.

In Sec. II we define a system and derive the relations.
Clear examples of the relations are given and discussed in
Sec. III. The utility of the relations is mentioned in Sec.
IV.

II. SYMMETRY RELATIC)N

In this section we define a system which is treated in
this paper and derive the symmetry relations.

We consider the Hamiltonian H(a) which depends on
a set of parameters a (a &, az, . . . , a~). iM is an integer.
The eigenvalues Ek(a) and eigenvectors jPk(a) ) also de-
pend parametrically on a;

H(a) ~y„(a) & =E„(a)~y„(a) ) (k =1,2, . . . , X) .

X is an integer. We restrict ourselves to the nondegen-
erate case:

E„(a)(E(a) 1f k(l (k, l = 1,2, . . . , X)
We set that this Hamiltonian is to be transformed by
some unitary or antiunitary transformation T into H (b),

TH(a) T ' =H(b), (1)

where b is another set of parameters b, , b2, . . . , b~.
Then we can obtain the following results:

(2)
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IP (b) &=TIP ( )&

I3

ln-~

apart from an arbitrary phase factor [14].
Before going to the next case, let us consider a special

case. T is an antiunitary transformation K: time reversal,
and a is an externally applied static magnetic field H. In
this case we have the following relation:

Cls d2 ~3

~ 0

dn

ICH(H)K '=H( —H) . (4)

That is, b= —H. This can be derived from the fact
that any system has to retain time-reversal symmetry
when we include a source of the magnetic field [15].
Then we obtain in this case

Ek( —H) =Ek(H)

lA

FIG. 1. Schematic diagram of a particular n-photon process
to create the coherence between levels

l
A ) and B ). Each

one-photon process is here assumed to be a resonant one to the
particular transition. dz is the transition operator responsible
for the

l
k —1 )~

l
k ) transition.

ly (
—H)&=Kly„(H)& . (6)

Now we consider the mechanism of the PSMRS. It
can be divided into two stages. The first is the creation of
the magnetic-sublevel coherence. Various kinds of pro-
cesses are considered [16]. In principle any degree of
multiphoton process can be considered for a multilevel

system. The process is described by a density operator of
the system. We consider the sublevels

l
A & and lB & and

set that the coherence between them is created by an n-
photon process (see Fig. 1). We now start with the fol-
lowing nth-order perturbation solution for the density
matrix element [17]:

n
n —1

p*„g~"'(t)= — f dt, f dt, . f dt„(A l[. . . [[p'(0),H,*(t„)],H (it„,)], . . . , Hi (t, )]lB& (7)

where p~i)'(t) is the nth-order density matrix element and H*, (t) is the interaction Hamiltonian (an asterisk denotes
that the quantity is in the interaction picture). [ ]„is a statistical average to incorporate relaxation effects. If we set
that A, B„B2,. . . , B„are an arbitrary set of operators, we have the following relation [18]:

1

[[A»ll»2], , B ]= y (
—B ) "(—B„ i) " '. . ( —B ) 'A(B ) '(B )

' . (B )

Nl, N2). . . ) N =0

1 ng( B, ) '.A g—(B )

N~, N2' ' ' ' 'Nn 0 I =n m=1

Substituting p*(0) and H i (tk ) for A and Bk (k = 1,2, . . . , n) in the above, we obtain from Eq. (7) the following expres-
sion:

N), N2, . . . , N =0

n
1 n

f'dt, f '«, f "
'«„&, Al Q [

—H*(t, )] '.p*(0). g [H", (t )] lB&
av

(9)

This is somewhat different from that in Ref. [19].
Here we express explicitly H i (t) as

n n

Hi (t)= X Iik*(t)= X {
k=1 k=1

= g ( —d„* e„)Ak(t)= g [ —dk Ak(t)],
k=1 k=1

where A k ( t ) represents the electromagnetic field, and
d&* =exp(iHot /)it')dk exp( —

iHot /A') the corresponding
transition operator. We shall treat only the cases where

l
A &~l I &~l2&~ . . ~ ln —I &~lB & .

h h h* h
1 2 3 n —I n

(10)

We shall derive, in the following, symmetry relations for
this n-photon process.

dk is an electric or magnetic dipole operator and the po-
larization of the electromagnetic field ( Ak ), expressed by
a unit vector ek, is a linear polarization. And we treat a
particular n-photon process where each one-photon pro-
cess involved is resonant or near resonant to a particular
transition as follows (see Fig. 1):
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Then the transition matrix element for the
I
k —1 )~I@) transition can be written as follows:

« —liH*, «)lk &=« —llh,*«)lk)
=(k —ll d„*—A„(t)lk &

=« —ll —d lk &A„"(t),

where Ak (t)= Ak(t)exp[i(Ek, E—k)t/h']. After simple
but long calculations we can obtain the formula

lit ( fl )
( t )

—
t flp ( ll ) f ( tl )

( t )

where

) (gg=&Ald, ll&&lfd~l2& &n —lid. l»,
f'"'(t)= f dt, f dt, f" dt„g'"'(t, ,t„.. . , t„)

Ai (t )A2(t ) Ak(t )

XPkt, (0)A), +) (tq ) Ak+2(tq ) . A„*(tq ) .

Here g' means that the summation is restricted to the
cases p;Wq, and we have assumed that the initial density
operator )o*(0) has only diagonal matrix elements. We
can therefore obtain

p(~s) ( t)= ( A
I
exp( iH() t—/h )p*' "'( t)exp( +iH() t /h ) I

8 )

written in the form

I,(t) =c( Re[iso'")exp(ico~zt)] . (13)

Here a is a real number, and o-'~' is a product of the tran-
sition matrix elements relevant to the creation and detec-
tion of the sublevel-coherence:

=i "p'„"tif '"'(t)exp(iso„tit), (12) ~")=p(~s) &B ld„+(ln+» & n+ lid. +2I A &

where co„t)=(Es E„)/A' is an a—ngular frequency of the
sublevel resonance. Because of Eq. (2) the absolute value
and even the sign of cozen are definitely determined. We
must note that f '"'(t) is in general a complex quantity be-
cause of the phase factors in Ak (t). But we here treat the
case that these phase factors cancel out and f'"'(t) is a
real constant. This is because we are to observe a phase-
sensitive signal using the electromagnetic fields whose rel-
ative phase relations are definitely fixed.

The next is the detection stage of the sublevel coher-
ence. This is done by a coherent Raman process. An ex-
citation of the system where sublevel coherence exists re-
sults in the creation of a Raman light which is coherently
related to the excitation (see Fig. 2). The density opera-
tor for the coherent Raman process can be calculated in
the similar way, and is described in detail in Refs. [11,20].

We generally expect, therefore, that the signals can be

= ~ (k —lid„lk), (14)

where Dk is 1 if dk is a magnetic dipole operator and 0 if
dk is an electric dipole operator.

For the kth transition matrix element we obtain

where p=n+2 and I0) = Ip ) =
I
A ) and In ) =IB).

This quantity depends on the static magnetic field. It is,
in general, a complex number and determines the phase
of the signal, as is readily known from Eq. (13).

Now we shall derive symmetry relations of the signal,
or of the quantity o' ' using the above relations.

First we derive a symmetry relation which is related to
the antiunitary transformation: time reversal. The trans-
formation property of dk with respect to time reversal is
[14]

Kd(, K '=( —1) "dk,

d n+i Cl o+Z

FIG. 2. Schematic diagram of a coherent Raman process to
detect the coherence between levels I A ) and IB). The transi-
tion between levels IB ) and

I
n + 1 ) is here assumed to be reso-

nant.

& k —1 ldk lk &( —H) =
& k —1( —H) ldk Ik( —H) &

= [(k —1(H)IIt ']d [I~ Ik(H) &]

= [(k 1(H)l(IC d K)lk(H) ) ]*

from Eq. (6) and antilinearity of IC [14]. And finally from
Eq. (15) we obtain

(k —lid„lk )( —H) =( —1) "[(k—1(H)ld„lk(H) ) ]*

=( —1) "[(k—1 idk ik )(H)]* . (16)

Therefore from the definition of o'~) [Eq. (14)] we obtain
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the relation

Dk
cr'"'( —H) =( —1)"=' [o'~'(H)]* .

UdkU '=( —1) "di, , (18)

This is one of the main results of this paper. This is a
kind of reciprocal relation in that it connects the signals
before and after the magnetic-field reversal. For the pro-
cess where gg oDi, is odd, for example, the signal
changes its sign for magnetic-field reversal if o'~' is real,
and does not change its sign if o'~' is purely imaginary.
That is, it tells us that the phase of the PSMRS signal is
closely related to the change of the signal with magnetic-
field reversal. For Raman heterodyne signals (RHS) in
Pr +:LaF3 a restricted form of this relation was obtained
by using the explicit expressions of the wave functions,
and has been called a general symmetry law [20]. But we
have here derived the relation from a more general point
of view: time-reversal symmetry, regardless of the de-
tailed character of the system.

It can be said, from the viewpoint of the time-reversal
symmetry, that in the absence of a magnetic field the
Kramer's theorem [14] holds, and in the presence of a
magnetic field the reciprocal relation [Eq. (17)] holds for
the signal of PSMRS.

Next we shall derive a symmetry relation for o'~'
which is originated from a symmetry property of the sys-
tem under a unitary transformation U. We assume that
the transformation property of dk with respect to U can
be written in the form

where o.[+~ represents the product of the transition ma-
trix elements for the electromagnetic field with the o.+
polarization.

III. EXKMPLII ICATION

A. Two-level NMR signal

We first consider NMR of a two-level system (
~
1) and

~2) ) [1]. This may be the simplest case for PSMRS. For
simplicity we shall treat the case of just resonance and no
relaxation in a pulse NMR. %"e consider the situations
depicted in Figs. 3(a) and 3(b). The signal is proportional
to a time derivative of a particular component of the
magnetic moment.

The signal in a single-coil configuration [Fig. 3(a)] is
expressed as

I,(t)=a (d, ) =a (( 1~d, ~2)p~, +c.c. ) .
d
dt dt

0. is a real number. After an application of a ~/2 pulse
p&2 takes a value of

( 1 Id„12)
2I & lid„ 12) I

This corresponds to the case of full coherence (U com-
ponent of the Bloch vector (u, u, w) =1. [See Eq. (A10) in
Ref. [20].] Therefore we obtain the expression:

where Dk takes a value of 1 or 0 depending on the nature
of d&. Then in a similar way we can obtain another im-
portant result of this paper:

I, (t) =a'Re[i o ~scexp(icoHt)],

where coH =(Ez Ei )/fi and —a' is a real number, and

(23)

Dk

'(b) =( —1)"=' o' '(a) (19)

using Eqs. (6) and (18).
It must be noted that whenever a signal is obtained in-

cluding the quantity o'~' in its expression, with or
without the use of the coherent Raman process, the sig-
nal should have symmetry properties resulting from the
symmetry relations of o'~' [2l].

The restriction on polarizations of the electromagnetic
fields is needed for the requirement that Eq. (15) must
hold. In cases of arbitrary polarizations we are able to
find symmetry relations between the signals with diA'erent
polarizations. We shall treat circular polarizations, for
example, and set that

excitation
and detection

zuH
sk

d( ) —d „e( ) (20)

red,'+'X '=( 1) "d„'+' . -—
Therefore we obtain, instead of Eq. (17), the relation

(21)

where e' +—' is a unit vector representing the o+ polariza-
tion, respectively. Then we have, instead of Eq. (15), the
following transformation property of d&

+—' with respect to
time reversal:

excitation
detection

FIG. 3. Geometrical configuration of a phase-sensitive detec-
tion of NMR for a two-level system. (a) is a single-coil
configuration and (b) the cross-coil one. It should be noted that
the axes x, y, and z are fixed in the laboratory frame, not in the
rotating frame.
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o,"c=
& 1

l d„ l
2 & & 2 d„ l

1 &
=

l & 1
l d„2 & l' real . (24)

In a cross-coil configuration [Fig. 3(b)], we obtain the
following result in a similar way:

I, (t) =a (d» ) =a'Re[i cr'&&exp(icoHt)],
d
dt

where

occ= ( lid„l2) (2ld» l
1 ) pure imaginary .

(25)

(26)

And now we know that the reciprocal relation [Eq.
(17)] in these NMR two-level cases takes the form

o' '( —H ) = [o' '(H) ]* (27)

because a magnetic dipole transition is responsible both
for the creation and detection of the two-level coherence:
Di =D2=1. Therefore from Eqs. (24) and (26) we obtain
the following results:

sc( H) =asc(H) (28)

(29)

8. RHS of nuclear quadrupole resonance

We next consider RHS of nuclear quadrupole reso-
nance in the presence of a static magnetic field in
Pr +:LaF3 [11,20]. Since the Raman heterodyne tech-
nique is a detection of sublevel coherence created by one-
rf-photon process via a two-photon coherent Raman
scattering process, RHS should be expressed as a special
case of Eq. (13) in the form

I,(t)=a Re[i o' 'exp(ico~st)] . (30)

Now we know that the reciprocal relation [Eq. (17)] of
RHS takes the form

cr"'( —H)= —[o' '(H)]* (31)

because a magnetic dipole transition is responsible for the
creation of sublevel coherence and two electric dipole
transitions for the detection: D

&

= 1, D2 =D3 =0.

That is to say that the signal in the cross coil
configuration changes its sign under magnetic-field rever-
sal, and that in the single coil does not.

We can also derive Eqs. (28) and (29) from the con-
sideration of a unitary transformation property of the
system. If we make the transformation U of m. rotation
about the x axis, then the direction of the static magnetic
field is reversed (a=H, b= —H), and

Udx U ' = +d„ thus Dk =0

Udy U dy thus Dk = 1

And now we know that the symmetry relation [Eq. (19)]
gives the same results as Eqs. (28) and (29).

These results can be inferred from a behavior of the
motion of the Bloch vector. This is because the situation
considered here is quite simple. We would not be able to
obtain an intuitive understanding in more complicated
systems.

This relation was exemplified in detail in Ref. [20] and
so we do not mention it further here.

We shall here discuss in detail the symmetry relation
[Eq. (19)] based on a unitary transformation property of
the system. We take the transformation operator U as ~
rotation about the C2 axis. We set again that the z axis is
parallel to the C2 axis as in Fig. 6 in Ref. [20]. Then the
transformation property of the system is

UH(H(6, y)) U ' =H(H(i'I, q+m ) ), (32)

(33)

Here D2 =D3 =0. The value of D
&

is determined from
the transformation property of rf transition operators as
follows:

Ud„U '= —d thus D] =1

Udy U = —d thus D1 =1

Ud, U '=+d, thus D& =0 .

We therefore obtain the following symmetry relations:

o' '(8, p+vr)=+o' '(8, q)) if H, llC2,
o' '(8, y+ m ) = —o' '(8, y) if H, lC2 .

These properties are, of course, originated from the C2
site symmetry of Pr + site. We note that the geometrical
interpretation in Ref. [20] is nothing but a result of the
symmetry relation of Eq. (19).

C. Synchronized QB signal of hm =2 coherence

We briefly discuss a recent experiment of a synchron-
ized QB spectroscopy using cesium vapor performed by
Mishina, Fukuda, and Hashi [10]. The energy level dia-
gram and the geometrical configuration are shown in
Figs. 22 and 23 of Ref. [10]. In that experiment the po-
larimeter was effectively used, so in this case the signal
expression becomes

I,(t)=a Re[Eo(E, e»)]
=a' Re[i 4o'4~exp(ioi„t) ], (34)

a(4'=
& lid, 13 & & 3ld, I» & 2ld. I» & 3ld» I » (35)

and a and a' is a real constant, and d =d e (e is a unit
vector expressing the polarization of the pumping light
and d is an electric dipole operator).

Now we know that the reciprocal relation [Eq. (19)] of
the synchronized QB spectroscopy is expressed as

cr' '( —H)=[o' '(H)]* . (36)

where 8 and y indicate the direction of the externally ap-
plied magnetic field. That is,

a=(8,qr), b=(8, q&+m) .

Now we know that the symmetry relation [Eq. (19)]
takes the form
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because all the transition operators are electric dipole al-
lowed (D& =Dz=D3=D&=0). We consider here the
cases where d =d or d =d for simplicity. In both
cases o' '(H ) becomes pure imaginary, and so from the
reciprocal relation [Eq. (36)] we obtain

That is to say that the signal must change its sign under
magnetic-field reversal. This sign reversal is actually ob-
served [10].

IV. UTILITY QF SYMMETRY RELATION

%'e here mention the utility of the above mentioned
symmetry relations [Eqs. (17) and (19)]. It is true that in
a simple case these relations can be readily known by a
simple consideration without any use of these symmetry
relations. In a complicated system often encountered in a
solid-state spectroscopy [2] (such as RHS in Pr +:LaF3
[11]),however, the symmetry properties are by no means
self-evident. Of course, if one can obtain the exact ex-
pression of the signal, it automatically incorporates these
relations. But we can rarely obtain the exact expression

even for simpler systems. For complicated systems these
symmetry relations become guiding principles for analyz-
ing the PSMRS signals.

As is readily known from the expression, these rela-
tions hold for a particular multiphoton process.
Diferent processes may lead to dift'erent symmetry rela-
tions in general. From the behavior of the signal, there-
fore, one can know what kind of process is actually re-
sponsible for the observed signal. Slight deviation of the
signal behavior from that expected for a particular pro-
cess suggests that the observed signal should have contri-
butions from some other processes.

The phase of a rf magnetic field at the sample position
is often dificult to know in cryogenic systems, for exam-
ple. The reciprocal relation can give this information be-
cause the signal phase is closely related to the behavior of
the signal with magnetic-field inversion.

Just as in the case of Pr:LaF3 the symmetry proper-
ties of the signals reflect the symmetry property of the
system (in that case, C2 site symmetry of the Pr + site).
Therefore one can obtain the information on the cir-
cumstance, or the site symmetry, of the ions and atoms
through their PSMRS signals.
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