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Time ordering of two-step processes in energetic ion-atom collisions: Basic formalism
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The semiclassical approximation is applied in second order to describe time ordering of two-step pro-
cesses in energetic ion-atom collisions. Emphasis is given to the conditions for interferences between
first- and second-order terms. In systems with two active electrons, time ordering gives rise to a pair of
associated paths involving a second-order process and its time-inverted process. Combining these paths
within the independent-particle frozen orbital model, time ordering is lost. It is shown that the loss of
time ordering modifies the second-order amplitude so that its ability to interfere with the first-order am-
plitude is essentially reduced. Time ordering and the capability for interference is regained, as one path
is blocked by means of the Pauli exclusion principle. The time-ordering formalism is prepared for
papers dealing with collision experiments of single excitation [Stolterfoht et a/. , following paper, Phys.
Rev. A 48, 2986 (1993)]and double excitation [Stolterfoht et al. (unpublished)].

PACS number(s): 34.50.Fa

I. INTRODUCTION

Time ordering is a well-known phenomenon in time-
dependent perturbation theory, which describes a mul-
tistep processes by means of higher-order terms of the
Dyson series [1,2]. The time ordering of a multistep pro-
cess is provided by the time-ordering operator whose ac-
tion is responsible for the occurrence of a certain step be-
fore the next one can take place. Multistep processes are
important in ion-atom collisions where electronic excita-
tion proceeds via appropriate intermediate states. A con-
venient tool, describing energetic ion-atom collisions, is
the semiclassical approximation (SCA) [3,4], which is
based on time-dependent perturbation theory. Therefore,
multistep processes in ion-atom collisions are expected to
be well represented by higher-order terms of the SCA.
Nevertheless, the theoretical work, treating higher-order
terms of the SCA, is rather limited in the field of ion-
atom collisions.

Conceptually, it is useful to distinguish two categories
of time-ordering phenomena. First, in a one-electron sys-
tem or in a multielectron system with one active electron,
time ordering is essential. For instance, the hydrogen
atom in the ground state cannot undergo the transition
2s —+2@ before the transition 1s ~2s has occurred.
Second, in a multielectron system with two active elec-
trons, time-ordering effects are less important as the
independent-particle model (IPM) is valid. In fact, time
ordering is expected to be lost, as the interplay between
the electrons is completely disregarded. Then, the action
of one electron may take place before or after the action
of the other electron. However, it should be kept in mind
that the loss of time ordering occurs only under restric-
tive conditions. The action of one electron may be
influenced by the other electron due to dynamic screening
and correlation effects. Hence it is expected that time-
ordering effects are probing in detail the electron-electron
interaction.

The dynamics of the electron-electron interaction has

recently received particular attention in the field of atom-
ic collisions [5—7]. The major part of the electron-
electron interaction can be treated as a mean field which
is incorporated in the IPM [1]. This mean field is associ-
ated with one-body operators and hence it may be con-
sidered as the monoelectronic aspect of the electron-
electron interaction. The residual part, not incorporated
in the IPM, is responsible for phenomena of electron
correlation. Since this part is represented by two-body
operators, it is referred to as dielectronic interaction [8].
It should be noted that, in ion-atom collisions, the con-
cept of electron correlation is still a matter of controversy
[5—7], as the borderline between the monoelectronic and
dielectronic aspects of the electron-electron interaction is
not easy to draw.

Recently, McGuire and Straton [9] have studied for
the first time the relationship between electron-
correlation and time-ordering phenomena. They have
shown that electron correlation and/or time ordering are
necessary conditions for interferences between first- and
second-order processes. Also, using different arguments
based on time reversal, Briggs and Macek [10] have
shown that interferences between first- and second-order
terms cance1 in rather general cases. In the past few
years, particular interest have been focused on interfer-
ence effects between first- and second-order mechanisms
in the process of double ionization of He [5]. In this case
interferences between the two-step process TS1 involving
one nucleus-electron interaction followed by an electron-
electron interaction and the two-step process TS2 involv-
ing two nucleus-electron interactions has been studied in
detail [11,12]. Similar interference effects have been con-
sidered in the process of double excitation [13] and they
have been searched for experimentally [14,15]. However,
for double excitation, the interference term could not
conclusively be verified. Hence it appears that more de-
tailed information is needed about the process of double
excitation. In particular, phenomena of time ordering is
felt to deserve further consideration in ion-atom col-
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lisions. It should be noted that the two step processes
TS1 and TS 2 provide illuminating examples for time or-
dering. In TS1, time ordering is dominant, whereas time
ordering is less relevant for TS2.

In this work, the semiclassical approximation up to
second order is used to describe the principles of time-
ordered two-step processes. A two-step process is con-
sidered to proceed via a path involving a certain inter-
mediate state. For a system with two active electrons,
double excitati. on involves two associated paths whose
time ordering is opposite. Within the framework of the
independent-particle frozen-orbital model, it is formally
shown that the associated paths can be combined so that
the time ordering is lost. Furthermore, it is revealed that
the loss of time ordering is accompanied by the cancella-
tion of important parts of the corresponding transition
amplitudes [16]. The reduction of the transition ampli-
tudes is found to diminish strongly the interference be-
tween first- and second-order processes. Finally, condi-
tions are discussed to inhibit the loss of time ordering. It
is pointed out that the Pauli blocking mechanism [17,18]
can be used to avoid the cancellation of interference
effects. Experimental evidence for the present analysis
will be given in papers that are devoted to the study of
single excitation [19] and double excitation [20] in ener-
getic ion-atom collisions.

II. TIME ORDERING
IN THE SEMICLASSICAL APPROXIMATION

In the present analysis, the electronic process of excita-
tion is described using the semiclassical approximation
[3,4]. Emphasis is given to phenomena associated with
second-order terms. The SCA is based on the partition of
the electronic Hamiltonian H ( t )

=H'+ V ( r) where
H'=H(t~ ~ ) is the asymptotic (or atomic) Hamiltoni-
an and V(t) is the time-dependent perturbation relevant
during the scattering. The asymptotic states N'- of the
collision problem are obtained from the stationary
Schrodinger equation

where E' are the eigenenergies of the atomic Hamiltoni-
an H'. The amplitude for transitions from the initial to
the final state is given by [1,2]

(
g ())( ) g (~2)(

[ g ()) ))
(
g ( o 2)( (4)

where co '=E' —E' are transition energies obtained by
means of Eq. (1) and V are coupling matrix elements
obtained as

(6)

These coupling matrix elements have specific symmetries.
It is assumed that the initial, intermediate, and final
states have parity as a good quantum number and they
are located at one center as it is characteristic for the
process of excitation treated in this work. Then, the ma-
trix elements are even or odd with respect to time varia-
tion, depending on the change of parity and the magnetic
quantum number. The symmetries of the matrix ele-
ments are shown in Table I.

The second-order amplitude is obtained as an expan-
sion A '&' =gk A,&over individual second-order terms

I

A,y= f Vki(7 )e d rf V~k'(7 )e d7

fhe label k runs over the eigenfunction spectrum of H'.
It should be emphasized that the amplitude 3,& describes
a two-step process involving the time-ordered transitions,
i.e., i ~k is followed by k ~f. This time ordering is pro-
vided by the r dependence of the second integral (via the
upper integration limit). Hence the term A,I is also re-
ferred to as time-ordered amp/itude.

Interference effects are governed by the phases of the
matrix elements. To obtain information about these
phases it is useful to consider separately their real and
imaginary parts [16]. It is assumed that the initial and
final wave functions are real as is the case for bound
states involved in the case of an excitation process. From
the relation e'+=cosy+i sincp one obtains the real and

Also, it is assumed that the squared second-order ampli-
tude is sufficiently small so that it can be neglected. In
general, these conditions can be fulfilled in collision ex-
periments by means of high incident energies for which
the perturbation becomes small.

In the semiclassical approximation, the first-order am-
plitude is given by [1]

A'~) = i f— Vgr)e '~dr

exp —i V ~d~ (2)

where T is the time-ordering operator whose effects shall
be studied in this work. In an approximation, we consid-
er the SCA transition amplitude up to second order:

TABLE I. Even or odd symmetry of the matrix elements V,J-

produced by the interaction V. In parentheses are also given
the real or imaginary value of the corresponding transition am-
plitude 2';&'. The quantity AII denotes the change of parity and
AM denotes the change of magnetic quantum number in the
transition from the initial to the final state.

A,g= A,g + 3 g

where 3,& and A,& are the first- and second-order terms(&) (2)

of the time-dependent perturbation theory expansion.
The truncation of the SCA series after the second term is
justified, if the second-order term is noticeable and the
third and higher-order terms are negligible. Hence the
present analysis implies the following conditions:

Transition

Monopole No

Dipole Yes

Quadrupole No

even
(imaginary)

odd
(real)
even

(imaginary)

even
(imaginary)

odd
(real)

even

{imaginary)
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imaginary part of the first-order transition amplitude:

Re( A If" ) = f Vf(r) sin(co~)dr (g)

Im( & jf) f Vkf(7 ) cos(cl)i fr)dr

X V;k v sin co;k7

f V/ f ( r ) sin ( cokf r )d r

x f' Vk(1 ) cos(CO;k T )d7

No simple rules exist for the complex properties of the
second-order transition amplitudes A,f. In this case it is
important to note that both a real and an imaginary part
contribute to the transition amplitude. A priori it is
difficult to predict whether the real or the imaginary part
dominates. However, we are primarily interested in fast
collisions. For high incident energies it follows that the
terms including the cosine function are expected to be
significantly larger than those including the sine function.
This is due to the fact that co fr « 1 and thus
sin(co,g) «1 for small collision times. Therefore, the
terms in Eqs. (10) and (11) containing sine functions are

Im( A If" ) = —f V,f(r) cos(co ~)d r .

It can readily be shown that either the expression (g) or
(9) cancels, depending on whether the coupling matrix
element Vf is even or odd, respectively. Therefore, due
to the symmetry of the matrix elements Vf (Table I), the
amplitude A',f" is either real or imaginary. The complex
properties of the first-order amplitudes are summarized
in Table I.

For the second-order terms, the real and imaginary
part is obtained as

Re(2,"f)= —f Vkf(r) cos(cokfr)dr

X f Vkf ( r' ) cos( gati;k
r' )d 7'

+ f Vk(r) sin(cokfr)dr

X f Vk (r') sin(co;k w' )dr'

generally small. Consequently, the first term in Eq. (10) is
most important, as it contains only cosine functions.
This term contributes to the real part Re(A f) of the
transition amplitude. Hence it follows for high velocities
that the second-order amplitude is essentially real regard-
less of whether the magnetic quantum number M =0 or 1

are excited.
As an example, we consider the excitation process in a

one-electron system. Figure 1(a) shows a two-step pro-
cess attributed to a second-order amplitude. It is recalled
that the second-order amplitude is essentially real in fast
collisions. Furthermore, at high energies, dipole transi-
tions are dominant in the first-order process, also shown
in Fig. 1(a). It follows from Table I that the related first-
order amplitude is real for AM =0. Therefore, for high
energies and AM =0, favorable conditions are created for
interference effects between first- and second-order ampli-
tudes in the one-electron system. On the other hand, in-
terference effects are small for hM = 1 since the first-
order amplitude is imaginary (Table I) whereas the
second-order amplitude remains essentially real. In the
following we shall focus on the AM =0 transition, which
is relevant for the 0 Auger method used experimentally
in Refs. [19] and [20]. In this case it is important to note
that significant interferences can be expected for the one-
electron system.

III. LOSS OF TIME ORDERING
WITHIN THE IPM

The conclusion of significant interferences in one-
electron systems does not necessarily hold for many-
electron systems. In fact, the situation changes complete-
ly since two active electrons participate in the process of
single excitation. When the electrons are treated within
the framework of the independent-particle model, the
transition probability for a two-electron transition is
given by the product of the related single-particle transi-
tion probabilities [9]. In the following it will be shown
that this product is based on a pair of time-ordered tran-
sitions involving significant cancellation of real or imagi-
nary parts in the related amplitudes. In particular, it is
shown that these cancellations results in a loss of the time
ordering in the corresponding transition amplitudes.

The following analysis shall be performed in terms of

lf) =Ic)

b~c

I
k)= I b)

(b)
I f) = Ibd)

I
k)=

I ad)

a -+ d

Ik) =Ib)

a -+ b

(cj
I f) =

I cd)

I
k)=

I ad)

b~d
Ik)= I cb) FIG. 1. Associated paths leading from the

initial state ~i ) to the final state
~f ) via the in-

tertnediate states k ) and ~k ) for which the
order of the one-electron transitions is inter-
changed. In {a) a single-electron system is
treated. In (b) and (c), respectively, single exci-
tation and double excitation is exhibited for a
system of two active electrons.

Ii)=I ab)
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the diagram in Figs. 1(b) and 1(c), which refer to the pro-
cesses of single and double excitation, respectively. The
attention is focused on the diagram for double excitation
[Fig. 1(c)] which represents the more general case and
which exhibits all characteristic features of second-order
transitions. In fact, the diagram in Fig. 1(b) is obtained
from that in Fig. 1(c) by specifying the electron in orbital
y„ i.e., by setting c =b. Within the independent-particle
model, the initial, intermediate, and final states are ob-
tained as single configuration states. Hence, as shown in
Fig. 1(c), the initial and final state are given by

&0, =det(y„y~, . . . ), C ~
=det(q&„yd, . . . ) (12)

where the symbol det stands for the (normalized) Slater
determinant and y„yb, cpd, and yd are single-electron
orbitals associated with the active electrons in the initial
and final state. Figure 1(c) indicates that two intermediate
states are important where one electron did undergo a
transition and the other one did not:

4&I, =det(y„&pb, . . . ), 4& =det(y„gad, . . . ) . (13)

I

A &= —f Vk (r)e "~ dr f '
V&(r')e '" dr'if kf oo

(15)

In the following, we shall consider the sum of ampli-
tudes

Akk Ak+ Akif if if

This double-path amplitude has particular properties as
the electron orbitals are frozen, i.e., that they are not
influenced by changes of the mean field postulated within
the framework of the independent particle model. From
the "frozen" energies it follows that

ik kf ac ik kf bd

where cu„and cobd are the energy differences for the
single-electron orbitals involved. Moreover, from the
frozen wave functions it follows that

ik kf ~ac & ik ~kf ~bd (18)

where V„=(y,~u~y, ) and Vbd=(pd~u~pb ) are single-
electron matrix elements. The single-particle operator v
is the part of V which is relevant for the active electron.
As expected, within the frozen-orbital approach, the mul-
tielectron matrix elements reduce to single-electron ma-
trix elements.

Using the identities (17) and (18) and the well-known
rule for partial integration ff dx fg dy =f (ffg dy)dx
+ f (g ff dx)dy it follows for the double-path amplitude

The paths attributed to these intermediate states labeled
k and k will be referred to as associated paths [Fig. 1(b)].
The related time-ordered amplitudes are given by

A &= —f" Vk&(r)e
' "~'dr f V; (k'r)e

' '"'dr'

(14)

that
A i = —f Vd(r)e "drf V(r)e "dr .

(19)

abd = i f —Vbd(r)e ' dr
(20)

one obtains a product form for the sum of associated am-
plitudes

A kkA ~f
=a abd (21)

In fact, this product amplitude is expected within the
framework of the independent-particle model. Here, it is
shown that the essential feature of the independent-
particle approach involving frozen orbitals is the loss of
time ordering. Hence, if the double-path amplitude A,f
can be factored, it is also referred to as non-time-ordered
ampli tude.

The important point to be Inade here is that the time-
ordered amp/1tudes A f and A,f are generally complex,
whereas the non-time-ordered amplitude A,f is either
real or imaginary. This, in turn, follows from Eq. (21)
and the fact that the first-order amplitudes a„and abd
are either real or imaginary (Table I). When the non-
time-ordered amplitude is formed, significant interference
effects occur. The fact that the coherent sum
A fA f+ A

g
is r'eal or imaginary implies that either

the sum Im( A,I)+Im( A,&) or Re( A,&)+Re( A,&) is com-
pletely canceled.

These cancellations may affect the dominant part of
the transition amplitude. As noted before, in fast col-
lisions, the real parts Re( A,&) and Re( A,&) are most im-
portant. These real parts, however, are canceled if the re-
lated two-electron process involves, e.g. , a dipole and a
monopole transition as can readily be shown by means of
Eq. (21) and Table I. The cancellation of dominant parts
of the second-order amplitudes may strongly affect their
capability to interfere with the corresponding first-order
amplitude. In the process of single excitation [Fig. 1(b)]
involving a second-order monopole plus dipole transition,
the final state may also be reached by a first-order transi-
tion of dipole type which involves a real amplitude (Table
I). As a consequence the first-order amplitude cannot in-
terfere with the second-order amplitude due to the fact
that it is imaginary. This inability of interference is a
direct consequence of losing the time ordering in the
second-order amplitude.

It should be emphasized that the loss of time ordering
is achieved under rather restrictive conditions. This loss
is based on the validity of the independent-particle model
involving frozen orbitals (IPM-FO). Hence the observa-
tion of time-ordering effects may be an indication for the
breakdown of the IPM-FO due to orbital-relaxation
and/or electron-correlation effects. In addition, the Pauli

It is seen that the upper integration limit is extended to
infinity and thus the ~ dependence of the second integral
has vanished. Consequently, the time ordering is lost in
the transition amplitude. Accordingly, by introducing
the single-electron amplitudes

00 I Cd 7a„=—i V„(r)e "dr,
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exclusion principle may create time ordering. It is evi-
dent that the associated path becomes closed as the corre-
sponding intermediate state cannot be formed due to the
Pauli exclusion principle. In this case the cancellation of
amplitude pairs does not occur and the related second-
order amplitude remains time ordered. The closing of an
associated path is referred to as Pauli blocking [17,18].
As the Pauli blocking mechanism retains the time order-
ing, it may become responsible for an interference be-
tween first- and second-order processes.

More information about Pauli blocking will be given in
the following paper [19],which is devoted to experimen-
tal studies of time-ordering effects in ion-atom collisions
at high energies.

IV. CONCLUDING REMARKS

In this work, basic properties of time ordering in ion-
atom collisions are analyzed in second order. Time or-
dering of multistep processes is provided by the time-
ordering operator used in perturbation theory. Hence
the formal aspect of time ordering is well known. More-
over, a rich variety of time-ordering phenomena are ex-
pected to occur in ion-atom collisions. However, in the
field of ion-atom collisions, the theoretical work concern-
ing time-ordering effects is limited. This may partially be
due to the fact that a higher-order term of the time-
dependent perturbation theory are scarcely used in atom-
ic collisions. Indeed, experimentally, it is dificult to elicit
cases where the second-order term is significant without
having contributions from all the other higher-order
terms. In this case, a nonperturbative theory is favorable,
such as the coupled-channel method [3], which has exten-

sively been used in the past. It should be noted that time
ordering is incorporated in the coupled-channel method.
However, to observe specific low-order terms and their
possible interferences, particular effort is required.

An important case, attributed uniquely to second or-
der, refers to two active electrons which undergo, succes-
sively or simultaneously, first-order transitions. Howev-
er, in this case, time ordering is less relevant. In fact, un-

der restrictive conditions involving the independent-
particle frozen-orbital model, time ordering is completely
lost. At this point, the question may arise as to how in-
dependent the electrons in the independent-particle mod-
el are. This model does not neglect all interactions be-
tween the electrons. Rather it includes effects of an elec-
tronic mean field [1]. For instance, within the
independent-particle model it is evident for two-electron
transitions that the removal of the second electron im-

plies a binding energy which is increased due to the re-
moval of the first one; see, e.g. , [21]. These changes in en-

ergy are due to mean-field (or screening) efFects which
may create time ordering in the two-step processes. Fur-
thermore, apart from mean-field effects, the Pauli ex-
clusion principle and electron correlation phenomena in-
duce time-ordering. Hence it is expected that the
verification of time-ordering phenomena contributes to a
better understanding of the independent-particle model
and electron correlation.
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