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Electric-field efFects on H photodetachxnent with excitation of H(n = 2)
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A theory of the photodetachment of hydrogen negative ions in an external static electric field
with the production of hydrogen in excited states is developed. We use a combination of the frame-
transformation theory and the Green s-function method. The cross section in nonzero fields is
expressed in terms of the photodetachment matrix elements for zero field. The latter are calculated
using the adiabatic hyperspherical representation. For energies close to the threshold we use a
smooth extrapolation of the zero-field photodetachment matrix elements down to threshold taking
care to enforce the proper threshold behavior of cross sections for nonzero fields. The ripples in
the total cross section due to interference efFects are not noticeable for incident photons linearly
polarized along the static field direction, but are relatively well pronounced for the case of circularly
polarized photons propagating along the static field. On the other hand, all partial cross sections
corresponding to photodetached electrons having magnetic quantum number m'=0 (with respect to
a quantization axis parallel to the static electric field) show significant ripple structure regardless
of the light polarization. The partial cross section for detachment with excitation of the n=2, m=1
Stark substate by circularly polarized photons exhibits a particularly distinct ripple structure. All
cross sections in the region of the shape resonance increase with increasing electric field in accordance
with experimental observations. This eKect is stronger in the case of linear polarization. We also
predict a fairly stable value for the width of the P shape resonance as a function of the electric-
field strength over the range from 0.4 to 1 MV/cm. For electric-field strengths below 0.4 MV/cm,
the ripple structure in the shape resonance makes it dificult to define a resonance width.

PACS number(s): 32.80.Fb, 32.60.+i

I. INTR.OI3UCTION

Investigation of the behavior of negative ions in ex-
ternal fields gives important information about atomic
structure and about the interactions between electrons
and atoms [1]. Some efFects demonstrate interesting phe-
nomena illustrative of basic quantum mechanics. A typ-
ical example is the prediction [2] and observation [3] of
interference effects in one-photon detachment of negative
ions in a static electric field. Various combinations of ex-
ternal fields (namely, laser fields, and static electric and
magnetic fields) allow one to control atomic processes in-
volving negative ions.

An interesting aspect of the problem is the infl. uence
of external electric fields on resonances. Variation of res-
onance widths with electric-Geld strength was observed
experimentally in photodetachment of H [4—7]. These
experiments studied the Stark splitting of the Feshbach
resonances below the n=2 excitation threshold as well as
the shape resonance above the n = 2 threshold. Theo-
retical calculations [8—10] based on discrete-state atornic-
structure methods have been able to describe some of the
observed features. However, these methods are not able
to calculate the photodetachment cross sections. Most
scattering calculations incorporating the proper bound-
ary conditions deal only with the short-range interaction
between the escaping electron and the atomic residue
(see, e.g. , [ll—14]), ignoring the long-range dipole and
polarization interaction of the d.etached electron with the

residual atom. Only recently have results for photode-
tachment of the H ion near the n=2 excitation threshold
been obtained by Slonim and Greene [15]. These authors
were mostly concerned with the behavior of the Fesh-
bach resonance in the presence of the field and treated
the above-threshold cross section at only a single electric
field value P=255 kV/cm.

In this paper we present more detailed results for one-
photon detachment of H with excitation of H(n = 2) in
the presence of both a static electric field and the long-
range, final-state dipole interaction. This latter interac-
tion occurs when the electron escapes from the H ion
leaving the H atom in an excited state. Three aspects
of the problem of detachment in an electric field are of
interest. The first aspect is the interference effect [2],
which can cause a ripple structure in the photodetach-
ment cross section above the n=2 threshold. The second
aspect is the effect of the electric field on the well-known
iP shape resonance above the H(n = 2) threshold.

The third. aspect is the rescattering effect, i.e. , the scat-
tering by the resid. ual atom of the detached electron wave
refI.ected by the electric field's potential barrier. This ef-
fect was shown to be small if the electron leaves atomic
hydrogen in its ground state [14]. However, if the final
atomic state is excited. , the effect may be much stronger
due to the long-range dipole interaction. In the energy
range for which k ) I'" (in a.u. ), where k is the final-
state electron wave number, a simple representation for
the photodetachment matrix. element has been obtained

1050-2947/93/48(4)/2968(12)/$06. 00 1993 The American Physical Society



48 ELECTRIC-FIELD EFFECTS ON H PHOTODETACHMENT. . . 2969

[16] which includes the photodetachment matrix element
in the absence of the electric field and transition ampli-
tudes describing scattering by the excited states. In the
present paper we generalize these expressions and per-
form calculations employing the photodetachment matrix
elements obtained within the adiabatic hyperspherical
representation. The adiabatic hyperspherical approach
[17] incorporates many of the electron correlations that
are important in H . It has been successfully used for the
calculations of one- and two-photon detachment in zero
static field [18,19]. In addition, near-threshold resonant
structure can be interpreted in terms of the adiabatic hy-
perspherical potentials of this systein [20]. Furthermore,
the hyperspherical representation describes correctly the
efFects of the long-range dipole interaction.

II. THEOR.Y

A. Overview

Our general approach is to relate wave functions for the
H(n = 2)-e three-body Coulomb system calculated in
zero electric field to wave functions appropriate for elec-
tron motion in the external electric R.eld. We do so by
means of an appropriate frame transformation. Such a
frame-transformation theory was suggested by Fano [21]
and Harmin [22] for photoionization in an electric field.
It was developed for photodetachment in external mag-
netic [23] and electric fields [11,24] by Greene, Rau, and
Wong. The key idea is that there are essentially three
important regions of space for such processes [24]: (I) an
inner region near r=o where electron-atom interactions
are dominant and which are best described in coordinates
appropriate for the atom; (II) an intermediate region in
which the detached electron does not have significant in-
teraction with either the atom or with the external field
and which thus may be described either in coordinates
appropriate for the atom or in a coordinate system appro-
priate for the external field (e.g. , cylindrical coordinates);
and (III) a far region in which the electron is strongly in-
Buenced by the external field and which is best described
in coordinates appropriate for the external field.

In the present work the following procedure is em-
ployed. Dipole transitions are computed in region I in hy-
perspherical coordinates using the adiabatic hyperspher-
ical approximation for the H(n = 2)-e system [18]. This
approximation permits treatment of many of the impor-
tant electron correlations as well as the long-range dipole
field interaction between the degenerate H(2s, 2p) states
and the detached electron. In region II the hyperspherical
final-state wave functions are transformed to an indepen-
dent electron basis. The detached electron's wave func-
tion is then expanded in cylindrical coordinates, which
are appropriate for matching it in region III to a field-
dependent wave function for the detached electron. In
order to take into account the proper boundary condi-
tions for the detached electron, we perform this matching
using the multichannel Green's-function approach devel-
oped in Ref. [16]. Our approach differs from that of Refs.
[21—24] in that the many-body interactions in region I are

treated here by ab znitzo theoretical calculations rather
than semiempirically by means of quantum-defect theory.

A unique feature of the present calculations is the
treatment of photodetachment plus excitation. For the
H atom, of course, the excited states are degenerate. In
the presence of the external field, however, the splitting
of this degeneracy must be taken into account. This re-
quires an additional frame transformation: the one from
the nlm representation of the H atom to that of the Stark
states of the H atom.

B. Formulation

1 2+~ Eb+
2

Here E; is the energy of the initial negative-ion state,~ is the photon energy, and Eb is the energy of the fi-

nal atomic state. For our purposes it will be necessary
to express the function 4&,& in terms of the zero-Geld
functions in spherical coordinates using a frame transfor-
mation. In order to develop such a transformation, we

examine first the Lippman-Schwinger representation for

ben' R

Lippman Schtvi nger -equati on fox &b,z

Following the approach of Ref. [16], we expand the
final-state function @b,& in the wave functions C (r~)
of the atomic Hamiltonian,

, ~(q, rA, r) = A) 4 (r~)g b, ~(q, r), (2)

where A stands for the antisymmetrization operator and
where q /2 is the longitudinal energy of the detached
electron and (kb —q )/2 is the transverse energy of the
detached electron.

The functions g b&, satisfy a system of Lippman-
Schwinger close-coupling equations,

Q b, ~(q, r)

= ~ blab ~(q r)(o)

G &(r, r')U (r')g, b~ @(q, r')dr', (3)

where vfb, ~ is the electron wave function in the channel
6 in the absence of the electron-atom interaction (i.e. ,

We characterize the final state of the H(n = 2)-e sys-
tem by its total energy E, a set of quantum numbers 6

specifying a particular atomic final state, and the com-
ponent m' of the detached electron's angular momentum
along the electric field, which defines the z axis. The
Gnal-state wave function, normalized to a b-function of
energy E, is therefore denoted by 4b, &. The relation
between E and the detached electron's energy kb/2 is

given by conservation of energy:
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, & represents an electron moving in the electric field),(o)

G & is the Green's function for the electron motion in the
external field in channel a, and U is the matrix element
for the electron-atom interaction.

The exact expression for the function g&, @ is well
known [11,14]:

where [b'] stands for the set of quantum numbers bl'm'

characterizing an asymptotic state of the atom-electron
system. If we now express the solution for Q &&, in Eq.
(3) in the form

, ~(q, r) = ) sI (kg, q)j (~,j~(r),

2x/3 'm'@

(q ) =
(2 ),q, ~„,A (&)J- ((k' —q')'"S) (4)

where the argument of the regular Airy function Ai is

2

&( q) = —(2+)"
l

+ 2P (5)

and where J is a Bessel function. Assuming that in
region II of the frame-transformation treatment the static
electric field can be neglected, we expand g& „,& as(o)

/~i ~, ~(q, r) = ) s( (kg, q)jI (kyar)Y( (r), (6)

where j~ is the spherical Bessel function and s~ ~ (kb, q)
are the expansion coeFicients of the electric-Beld-
dependent wave function in field-free wave functions.
The method for obtaining the frame-transformation co-
efFicients 8~ and their explicit expression is given in
Appendix A.

The Green's function can be written as

G =Go +AG

2. Erame transfor mation

Equation (6) gives the frame transformation for an
electron moving only in the external electric Geld. We
need, however, a frame transformation for the solutions
of Eq. (3), which include all of the many-body electron-
atom interactions. It is straightforward to show that to
a good approximation the frame transformation required
is the same as in Eq. (6).

Let us introduce a set of functions satisfying the follow-
ing system of integral equations for a detached electron
scattering from the atomic residue,

C.(~ )~(r) =ii (4r)&i ~ b

) (Go ) &(r r )+ (r )C (yI~(r )dr

where Go is the Green's function in the absence of the
field (i.e. , the free-particle Green's function) and AG is
the correction due to the field. As shown in Appendix B,
a convenient separable expression for AG can be used
to solve the I ippman-Schwinger equation, Eq. (3), ana-
lytically. However, our calculations have shown that this
correction has almost no inhuence on the results for the
cross sections. Therefore for simplicity in what follows we
make the approximation G = Go, which in any case is
appropriate in region II. The more rigorous treatment
including LG is given in Appendix B.

we see that Eq. (3) is satisfied provided G is replaced
by Go, the Creen's function in the absence of the exter-
nal electric Beld. As long as we are in region II this is
a valid approximation. Hence the frame-transformation
coeFicients s~ (kb, q) in Eq. (9) are the same as in Eq.
(6). Their derivation is given in Appendix A.

The functions ( ~&,~&(r) are the solutions of the many-

body problem in region I. In this work, these functions
are actually computed by solving the adiabatic hyper-
spherical equations (cf. Ref. [18]) and transforming the
solutions to the independent electron states indicated by
the asymptotic quantum numbers [b' ]E. The precise re-
lation between the solutions of the Lippman-Schwinger
Eq. (8) and the adiabatic hyperspherical functions of
Ref. [18] will be specified below when we present our
cross-section formulas.

Consider here, however, another frame transformation
which should. be carried out in region II. The quantum
numbers 6 characterizing the atomic states are given in
the absence of the external Beld as 6 = nlm. However,
this basis should be modified for I" g 0 due to the linear
Stark eA'ect in hydrogen. Since the electric-Beld strengths
considered in the present calculation are not so large as
to acct the atomic states strongly, we may use a pertur-
bative treatment. Consider specifically the n=2 states in
H. We define the following four Stark substates in terms
of the unperturbed functions:

(10)

C'~i = @2p+i-

Thus in the presence of the external Beld, the two states
b = nlm are mixed for m=0 to become the two Stark
levels 28 + 2p. Also, the thresholds for the excitation
of the different Stark substates are shifted in accordance
with the Stark-shift formula. This treatment of the SI;ark
effect for atomic states is similar to the perturbative in-
clusion of the spin-orbit interaction in scattering theory
[25]. For these reasons for H(n = 2) we introduce the
Stark state quantum number A to replace l (i.e. , A = +
or —for m=0 and A = +1 for m = +1) and introduce the
unitary transformation matrix Upi, defined in Eqs. (10)
and (11) to transform from the representation b = nlm
to = num.

9. Cross section formulas-

We introduce now the photodetachment transition am-
plitude in the absence of the electric Beld:

(12)
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where D is the dipole operator for a one-photon tran-
sition and b = nlm. This transition amplitude is for a
detachment transition to a final state having total energy
E in which the H atom is left in the num state and the
photodetached electron is in the l'm' state. It is directly
related to the amplitudes X„L kl, for the corresponding(i)iM

transition introduced in Eqs. (18) and (19) of Ref. [18]:

1/2

Xbl ~ E =
(

—
[

i' (lml'm'
[
1M)X„',~„',

q2k) r

In Eq. (13), the amplitudes X„l &l, introduced in Ref.(n„)IM .

[18] have superscripts indicating that in a one-photon
(i.e. , n„=l) transition from the IS' H ground state the
total angular momentuin of the H(n = 2)-e system is
I=1; M is the component along the z-axis and is deter-
mined by the polarization of the photon: M = +1 for
right (+) or left (—) circularly polarized light propagat-
ing along the electric field, and M = 0 for linearly po-
larized light with the direction of polarization parallel to
the electric field. More general cases can be treated eas-
ily and an example of linear perpendicular polarization is
given in Sec. IV. The Clebsch-Gordan coefFicient projects
the L = 1,M state onto the independent electron state
lml'm', and the factor i (rr/2k) / gives the proper en-

ergy normalization for the wave function. (In order to
obtain this factor one notes that the final-state wave func-
tions in Ref. [18] are momentum normalized. Comparing
their asymptotic behavior with the asymptotic behavior
of the functions ( y, ~E(r) [cf. Eq. (8)] gives the desired
factor. ) Thus, to reiterate, we have carried out our ana-
lytic work using Eq. (12) for the transition amplitudes in
region I; these amplitudes are actually calculated, how-

ever, using Eq. (13) and the amplitudes X l &l, calcu-(i)iM

lated in the adiabatic hyperspherical approximation in
Ref. [18].

The transition amplitudes in the presence of the exter-
nal electric field are calculated by making the two-frame
transformations discussed in Sec. IIB 2 above, i.e. ,

Zp E(q) = ) sl (kp, q)Xpl (14)

where

Xal'ml E = VpbXbl'm'E
b

4rl' ld ) ~

C

kp/2 (
&2)I Zp- E(q) I' d I— (16)

where w and c are the frequency and velocity of the in-
cident light, kp/2 is the total electron energy in the fi-

nal state, and q2/2 is the energy of the electron motion
along the electric field. Substituting now Eq. (14) into

Notice that the detached-electron energy kp/2 depends
on the Stark state P of the atom. The cross section for
photodetachment in an external electric Beld can now be
represented as [12]

Eq. (16), we obtain for the cross section

I

/ ll (kp) =

4' w ) XPl'rn'EXPl" vn'EV'I'l" (kP)~
C

LI lII ml

kp /2

(17)

/q21
(kp q)&l* (kp q)dl —

I
(18)k2)

I

Explicit expressions for the coefIicients pl, l„, which con-
tain the entire efI'ect of the electric field, are given in
Appendix C. We note here the limiting value of the co-
efficients [26]:

2k
11II1 Pigiii (k): 8l'l"
F—+0 jr

(19)

When Eqs. (13) and (19) are substituted into Eq. (17),
we recover, as expected, the zero-Beld cross-section for-
mula given in Eq. (33) of Ref. [18]. Note also that if
the z component of the total angular momentum M has
a definite value, then the sum over m' in Eqs. (16) and
(17) contains only one term given by

m'=M —m~, (20)

where mp is the (specified) z component of the final-
state atomic angular momentum and M is defi. ned by the
polarization of the incident photon, as discussed above.

Near -thr eshold ejecta
of long range dipole -field8

One modification of the cross-section formulas pre-
sented in Eqs. (16) and (17) should be done due to the
long-range nature of the final-state interaction. The de-
generacy of' the 28 and 2p levels for F=O produces the
long-range dipole interaction between the electron and
the atomic residue [27]. This interaction controls the
threshold behavior of the cross sections and leads to spu-
rious features if included in the frame-transformation the-
ory in the region of space where the electric-field efFects
dominate. To see this clearly let us note that in the ab-
sence of the long-range interaction the matrix element
Xpl E behaves as kp. From Eqs. (17) and (19) we
see that at E = 0 the cross section behaves according

2l'to the Wigner law
harp

oc kp'+ and at I" g 0 it is fi-

nite at the zero-Beld threshold since the electric field re-
moves the threshold. However, after the inclusion of the
long-range dipole interaction the threshold laws change.

—1/2The matrix element Xpl E starts to behave like A:&

and oscillates near threshold [18,27]. This behavior leads
to the divergence of op as kp w.hen I" g 0. In order
to eliminate this spurious behavior, we have to cut oA'

the long-range dipole interaction at distances dominated
by the electric-field interaction. It is more convenient
to formulate the cutofI' procedure in energy space. Let
us choose some boundary value E of the electron en-

ergy below which the behavior of the zero-field matrix
elements is controlled by the long-range dipole interac-
tion. A reasonable choice for this energy in our case is
the position of the P shape resonance, which in our
calculations lies at 41 meV above the zero-Beld thresh-
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old. For E ) E we use the matrix elements calculated
with inclusion of the long-range dipole interaction, and
for E ( E we multiply all matrix elements by a factor
which gives the signer behavior at the threshold and
at the same time gives a smooth transition to the region
E ) E . This procedure gives a reasonable extrapolation
with the proper threshold behavior for P g 0. However,
for high enough fields this approach as well as the whole
approach of frame-transformation theory fails since the
atomic-field region and the electric-field region start to
overlap strongly. As follows from Lin's calculations [10],
this effect occurs at fields above I"=1 MV/cm. There-
fore higher fields have not been considered in the present
calculations.

III. CALCULATIONS FOR ZERO FIELD

Our results for the total photodetachment cross sec-
tion in the absence of an electric field are discussed in
detail in Ref. [18]. The cross section above the n = 2
threshold of H is about a factor of 1.75 wider in energy
than is measured experimentally [5]. Detailed compar-
isons of experiment with theory have recently been pre-
sented by Halka et al. [28]. The peak value of our cross
section is about a factor of 2.5 lower than that given by

the 160-configuration J-matrix calculations of Broad and
Reinhardt [29]. Nevertheless, the cross section is in much
better agreement with the relative experimental measure-
ments than is the one obtained by a simple close-coupling
calculation [30]. Also, as we shall see in Sec. IV, the cor-
responding matrix elements can be used to make certain
conclusions about the behavior of the cross sections for
nonzero fields.

IV. RESULTS AND DISCUSSION

Calculations have been performed for two types of po-
larization: linear and parallel to the external electric field
(7r polarization) and circular with the direction of pho-
ton propagation along the electric field (cr+ polarization).
The experimental data [5—7] on photodetachment in an
external G.eld were obtained with a polarization state
which "favors vr,

" although its exact preparation was af-
fected both by a finite angle between the negative-ion
beam and the laser beam and by optical activity within
the prisms used in the experiment.

Some data [6,7] were also obtained for light linearly po-
larized perpendicular to the external field. Comparison
of theory with this set of experimental data requires some
care. Let us consider the relation between the dipole op-
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E . (13) containing bWe obtain two terms in q.
and the final expression for the cross section is

o = —(a++o- ) (22)
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1
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c (E) —cr —err,
res

O~ + OIr,
(24)

0

(~ + e)'
o Fano(E) o a + p2

+ og) (25)

where

where o (E) is the total detachment cross section and cr

and o.b are obtained by fitting the shape resonance to the
Fano profile formula [31]

0.8-
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0.4—
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(D 1
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0
0.2 ~

]

s = 2(E —Eo)/I'. (26) 0.0
0.0 0.2 0, 4 0.6 0.8 1,0

In Eqs. (25) and (26), s is a reduced energy defined by
Eq. (26) in terms of the resonance position Eo and reso-
nance width I', o is the part of the cross section which
interacts with the resonance, and og is the background
cross section. Fitting Eqs. (25) and (26) to experimental
data provides values for the parameters o, og, Eo, and
r.

Substituting now Eqs. (25) and (26) into Eq. (24), one
obtains the following result for the resonance strength [5]:

~cr (q2 —1)I'
2(cr + crr, )

(27)

The results of our fitting procedure for the Fano parame-
ters (to our theoretically calculated curves) were subject
to considerable irregular variations with the electric-Beld
strength E. Interestingly enough, the same kind of vari-
ation, but to a much greater extent, occurred in the fits
to the experimental data [5—7] (see, e.g. , Fig. 20 in Ref.
[5], which shows the dependence of the shape parame-
ter q on I"). Whereas variations of the experimentally
fitted values might have occurred due to experimental
uncertainties, there are two physical reasons for these
variations: namely, low Gelds the shape of the curve is
affected by the ripple structure and the Fano formula [cf.
Eq. (25)] cannot fit this oscillatory structure. At higher
Gelds the Stark splitting of the atomic states becomes im-
portant, and the total cross section, which is the sum of
the partial cross sections for excitation of diferent Stark
substates with difFerent thresholds, again cannot be rep-
resented by the Fano profile. For a more complete anal-
ysis, parametrization of the partial cross sections would
be necessary, as is done for the case I"=0 in Ref. [28],
using an appropriate generalization of the Fano profile
formula [32].

However, for the purpose of comparison with the ex-
periment [6], we present in Fig. 4 a piecewise-spline fit to
our data for the strength of the shape resonance. The re-
sults confirm the experimentally observed growth of the
resonance strength Q, , with the electric field, although
the absolute magnitude of the theoretical values is about
a factor of 2 smaller than that of the experimental val-
ues. A strong dispersion of the experimental data does
not allow one to make more definite conclusions.

In Fig. 5 we present the fitted resonance width I' as
a function of the electric-Geld strength E. At lower
Gelds, 1" cannot be determined uniquely due to the ripple-
structure efFect mentioned above; therefore we present

electric field strength [- (MV/cm)

FIG. 4. The resonance strength Q„„as a function of the
electric field [cf. Eq. (27)]. Theory: solid curve, 7r polariza-
tion; dashed curve, o polarization. Experiment [6]: triangles,
a polarization; circles, o. polarization; squares, unpolarized
data.

theoretical values only for I" &0.4 MV/cm. Experimen-
tal data presented in Refs. [5,6] are also very dispersed.
Figure 5 shows two possible analytical fits [5] to the ex-
perimental data for the case of m polarization. Comtet
et aj. [7] detected a slight decrease (of about 3.3+0.9%)
of the width when increasing the Geld from 0 to 0.24
MV/cm. However, this decrease lies well within the un-
certainty caused by the ripple structure.

For E = 0 our result for the width is too high (about a
factor of 1.75), as discussed above. Our results for higher
Gelds are much closer to the experimental results. For
fields above 1 MV/cm, when the atomic-field potential
and the electric-Geld potential overlap substantially, our
results begin to become unreliable since, as we indicated
above, the frame-transformation treatment fails in this
case.
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FIG. 5. The width I" of the shape resonance as a function of
the electric-field strength I" . Solid curve: present calculations,
vr polarization; short-dashed curve: present calculations, o
polarization. The cross gives our value at I'=0. Long-dashed
and dot-dashed curves: two analytical fits to the experimental
data [5]; circles: theoretical calculations of Wendoloski and
Reinhardt [9].
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Our results confirm the theoretical findings of Lin [10],
who found very high stability for the shape resonance
up to fields of 1 MV/cm. Wendoloski and Reinhardt's
results [9], obtained via the method of complex coordi-
nate rotation, exhibit a monotonic increase of the width
at low fields. Their data represent the imaginary part of
the S-matrix pole in the complex energy plane and may
not reBect the ripple structure of the photodetachment
cross section. (However their results are most likely more
precise for the magnitude of the width. )

V. CONCLUSIONS

Using photodetachment matrix elements calculated in
the adiabatic hyperspherical approximation at E=O one
can make certain conclusions about photodetachment of
H with excitation of H(n=2) in the presence of an exter-
nal electric field. We find that the electric-field-induced
ripple structure in the total cross sections is not notice-
able for a polarization, but is relatively well pronounced
for 0 polarization. However, noticeable ripple structures
are obtained for both polarizations in the case of par-
tial cross sections corresponding to a zero value for the
magnetic quantum number of the detached electron. The
case of excitation of the m, =1 atomic Stark substate by
circularly polarized photons is especially favorable in this
respect. Qn the other hand, the rescattering eKect result-
ing from interaction of the detached electron with the
H(n=2) excited states is found in all cases to have no
significant eBect on the cross sections.

Our results confirm a strong enhancement of the
strength of the shape resonance observed experimentally
by Butterfield et al. [6]. Accurate values of the resonance
width cannot be obtained for small values of the electric-
field strength E because of the ripple structure in the
cross section. However, the overall behavior of the width
as a function of the electric-Beld strength for higher val-
ues of I" confirms the earlier theoretical prediction [10] as
well as experimental observations [5,7] of a high stability
of the shape resonance with increasing Beld strength I".
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22/3~1/6
Ai'(((0, q) ), (A2)
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r (q) =, Ai(((0, q) ), (A3)
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indicates the derivative. The function gl l can be ex-
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imP

[v(q) sin qz + r(q) cos qz] J ((k —q ) p)
2vr '~'

= ).s~-(» q)&~(«) &~-(0 &) (A4)
l

The simplest way to obtain explicit expressions for the
coeKcients st (q) is to consider the limit of Eq. (A4) as
r —+ 0. The Bnal expressions are

spp(k, q) = r(q)~2,
3qv (q) (A6)

(A7)

2r(q)11 —k. I,
(

»2(k q) = r(q) I

(
s2p(k, q) =

(A8)

(A9)
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APPENDIX 8: FRAME- TRANSFORMATION
EXPRESSION FOR THE GREEN'S FUNCTION

AND INCLUSION OF THE RESCATTERING
EFFECT

If the energy of the outgoing electron is above the
threshold, the Green's function (7) may be written in
the form [16]

~+ ~+ + ik(z+z')ye )

APPENDIX A: EXPRESSIONS FOR
FRAME- TRANSFORMATION COEFFICIENTS

where for high enough k [16]

2k /3Fy= e
4~ik2 (B2)

In order to obtain the frame-transformation coeK-
cients si (q) we follow the procedure developed in Refs.

The function G can be obtained from Eq. (Bl) by com-
plex conj ugation.
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Equation (B2) diverges at the threshold when k —+ 0
and should be modified in that energy region. Let us
rewrite Eq. (Bl) for r' = 0:

0.002

0.001

I I

F—D. 44 MV/c cc

G+(r, 0) = + ye'

Equation (B3) may be solved for y to give

(B3)

+

o 0 ppp

—0.001

1
y = lim G+(r, 0)—

v —+0 27rr 27r
(B4) —0.002

27rG+(r, 0) =
k /2

dl —Jo((k —q )' p)g(q, z),

(B5)

where

g(q, z) = Ai(())Ci((&), (B6)

To calculate the right-hand side of Eq. (B4), we employ
the integral representation for the Green's function [33]:

—0.003
0.00 0.02 0.04 0.06 0.08 0.1 0 0. 1 2 0.1 4 0. '1 6 0.1 8 0.20

electron energy (eV)

FIG. 6. Real and imaginary parts of the Green's function
G+(ri i rz) for an electron in a static electric field E=O 44.
MV/cm for ri ——4, rz ——5, zi = 4, zz ———2.5. The real part
ReG+: solid curve, exact result using Eq. (5) of Ref. [13];
short-dashed curve, approximate result using Eqs. (Bl) and
(B10). The imaginary part ImG+: long-dashed curve, exact
result; dash-dotted curve, approximate result.

(& ——max[((z, q), ((0, q)], (& ——min[((z, q), ((0, q)],

and Ci(() is the irregular Airy function which satisfies
the asymptotic boundary condition of the outgoing wave.
Following Demkov and Drukarev [33], we introduce the
representation

(q, r) = ).si,-, (q)i .(b l(r)
l~

—) i, (,l
(r) i '- [4~(2l', + 1)]' V,b~ (q),

e, l'

(Bl1)

e*~"dq —ik + O(r)
where

V.b, (q) = y*). e '"' U, (r')g b, (q, r')dr', (B12)
and approach the limit in Eq. (B4) along the z-axis.
Substituting Eq. (B8) to the right-hand side of Eq. (B4)
gives

2vry = lim lim
p —+oo z —++0 qg(q, z)dq —i e'~'dq . (B9)

Calculation of this limit using the asymptotic expressions
for the Airy functions [34] leads to the result

(2~) i/s iky= [Ai'( —q) Ci'( —ri) + riAi( —rl) Ci(—rl)] ——,
2 2' '

(Blo)

where q = k /(2F) ~ . En Fig. 6 we compare the exact
Green's function, given by Eq. (5) of Ref. [13], with
the approximate representation given by Eqs. (Bl) and
(B10). We see that this representation gives a good ex-
trapolation of the asymptotically exact formula down to
the threshold.

Let us turn now to the solution af the basic Eq. (3).
Since the electric-field correction to the Green's function
is separable, we can again express the solution in terms
of the functions ( ~b, ~&, defined. in Eq. (8). Equation (9)
for the channel wave function becomes

V.b, (q) = y* ).).si, , (q)
lI

—ke '"' U~, (r') i,
'

~b, j
(r') dr'.

(B13)

Using then the integral representation for the T matrix
for electron scattering by the hydrogen atom,

T( j(b j
= 4i(k kb) ) Yi (f' )ji (k r')U, (r')

x (+(b,
j
(r') dr', (B14)

and the connection between the incoming and outgoing

where [6'] stands for 6, lb, mb, [c'] stands for c, l,', m', and
the second sum in Eq. (B5) contains only m, ', = 0. For
simplicity we omit here and below the total energy index
E The coeffic.ients V b (q) satisfy a system of algebraic
equations which can be obtained. by substitution of Eq.
(B11) into Eq. (B12). However, for the electric-field
strengths considered in this paper, the first-order term
in y is sufficient. Thus we approximate Eq. (B12) by the
first term in Eq. (Bll),
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tain Bnally

x [4vr(2l' + I)]'~'T[*,][b,],
(B15)

discussed by Liu and Starace [35]. The scattering ma-
trix in the representation

~

lbmbl'm') can then be ob-
tained by standard angular momentum decoupling tech-
niques. Since the external electric field intermixes the
initial I = 1 state with the L = 0 and I = 2 states, cal-
culations of the T matrix corresponding to these angular
momenta as well as the one for L = 1 were performed.

where the T-matrix element is evaluated for I,' = O.

The latter condition results from the fact that the plane
wave contributing to the Green's function (Bl) propa-
gates parallel to the electric Beld.

Equation (14) for the photodetachment matrix element
in the presence of a static electric field can be generalized
now as

APPENDIX C: INTKGRALS OF PRODUCTS
OF THK FRAME- TRANSFORMATION

COEFFICIENTS

In order to calculate the cross sections given by Eq.
(17), we need to evaluate the integrals

where

Zb,'(g) = ) si, , (g)Q[b] (B16)
l

I Pi (k) =
t' q~

s( (k, q)sI (k, q)d[—
2

(CI)

Q[bi] = X[bl] + arty ) t + (kbkc)

x [(2l,' +. 1)(2l," + 1)]'~

t--]I~ )~I- i.
The cross section then takes the form

where the explicit form of s~~ (q) is given in Appendix
A. Those expressions show that all integrals can be re-
duced to integrals of products of the Airy function Ai,
its derivative, and powers of ((0, q) [cf. Eq. (5)]. These
integrals can be evaluated as suggested in Refs. [13,36].
Defining the parameter rl = k /(2P)z~ and introducing
the notation

) Q[b']Qtb ]P~ ~
(B18) (z f, g) = z"1-'( z) g( z)—dz, — (C2)

The equations obtained above have a simple physical
meaning. The first term in Eq. (B17) describes photode-
tachment without the external Beld and the second term
describes photodetachment with formation of the hydro-
gen atom in the state c followed by rescattering of the
photodetached electron leading to the state 6.

In order to calculate the photodetachment amplitudes
as given by Eq. (B17) we need the T-matrix elements for
E=O. They were calculated in the present work using the
adiabatic hyperspherical representation, as discussed in
Ref. [18]. The long-range dipole interaction between the
electron and the excited hydrogen atom is diagonal in the
adiabatic hyperspherical representation, which makes the
calculation of the scattering matrix easy. First, we cal-
culate the adiabatic phase shifts and then convert them
in the representation of the total angular momentum, as

we obtain the following results for the integrals necessary
for evaluating the coefficients pP&„(k) in Eq. (Cl):

(Ai, Ai) = (Ai')'+ iIAi', (C3)
(Ai', Ai) =

z Ai, (C4)

(zAi, Ai) = s [Ai'Ai+ rl2Ai + ((Ai') ], (C5)
(Ai', Ai') = —sAiAi' + s (Ai, Ai), (C6)

(zAi', Ai) = -', (Ai')2, (C7)

(z2Ai, Ai) = —,'[(1+ris)Ai + 2rlAiAi'+ q'(Ai')'], (C8)

(zAi', Ai ) = (zzAi, Ai) —rlAiAi' —(Ai', Ai). (C9)

In each of these equations the argument of the Airy func-
tion and its derivative on the right-hand sides equals —g.

I

These equations allow the evaluation of p), )„ for I,
' & 2.
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