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By use of a theory due to Gasser, Tavard, and others, the leading first-order corrections to the spheri-
cally averaged atomic Compton profiles (CP’s) beyond the impulse approximation, for some inert
closed-shell monatomic systems (He, Ne, Ar, and Kr), are obtained. This is accomplished by employing
the Kohn-Sham technique of the density-functional theory, which leads to a self-consistent description,
as opposed to the popular “effective-hydrogenic-potential” theories used in this context. The resulting
corrections to the CP’s thus obtained are seen to compare well with the earlier effective hydrogenic esti-
mates. The orbital corrections are seen to conform to an empirical rule put forth ealier by Gasser and

Tavard [Phys. Rev. A 27, 117 (1983)].

PACS number(s): 32.80.Cy

I. INTRODUCTION

Recently, some accurate theoretical [1-7] as well as
experimental [8—11] investigations have been carried out,
bringing out the deviations of the exact atomic Compton
profiles (CP’s) [12] from their corresponding impulse-
approximation (IA) [13,14] theoretical estimates, an effect
first predicted by F. Bloch [15] in 1934. Tavard and Bon-
ham [16] and subsequently B. Bloch and Mendelsohn
[17,18] developed theoretical framework for the calcula-
tion of atomic Compton profiles within the first Born ap-
proximation. Bloch and Mendelsohn employed the “‘ex-
act” hydrogenic bound- and continuum-state wave func-
tions for a one-electron atomic system, and, within the
Born regime, obtained closed-form expressions for atom-
ic, orbital CP’s. Their studies clearly brought out the de-
viations of the exact CP’s from the corresponding spheri-
cally averaged, symmetric, impulse-approximation CP’s.
A measure of asymmetry in the exact CP is the “Comp-
ton defect,” which is the shift of gq,,, the value of the
Compton parameter g corresponding to the peak value of
the exact CP, from ¢ =0, where the maximum in the cor-
responding IA-CP occurs. This phenomenon has been
studied extensively by several workers [1-12,15-20].

In a systematic and accurate theoretical treatment
developed to account for the aforementioned discrepan-
cy, Gasser, Tavard, and others [1-3] obtained the exact
atomic CP in the form of an infinite series as

J(g, k)= ) +T Vg, k) +T P (g, kK)+ --- , (1)

in which J©(g) is the IA profile and the subsequent
terms represent the corrections to it. Here g, the Comp-
ton parameter is given by (Hartree atomic units are used
throughout) ¢ =E /k — k /2 with E the energy and k the
momentum transferred by the projectile (such as a high-
energy x-ray or y-ray photon) to the electron, in the
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Compton process. Gasser and co-workers [1-3] showed
that the terms in Eq. (1) are alternately symmetric and
antisymmetric in ¢, and further that they bear a rather
simple (and desirable) k=|k| dependence: J'"(q,k)
«1/k™n=0,1,2,...); thus making the successive
correction terms in Eq. (1) of diminishing significance, for
large enough momentum transfers. Equation (1) is thus a
power-series expansion of the exact CP, in powers of 1/k,
with their respective coefficients dependent on g and the
direction of k. For moderate momentum transfers
(k ~5Z a.u., Z being the nuclear charge) the only leading
first-order (in 1/k) term J'V turns out to be a significant
correction, as is borne out from the studies of Bell [4],
Holm and Ribberfors [6], and Datta, Bera, and Talukdar
[7]. This correction term precisely forms the theme of
the preset work, aimed at obtaining decent estimates of
JM(q,k) for a few closed-shell inert atomic systems viz.
He, Ne, Ar, and Kr, using the atomic self-consistent-field
(SCF) description offered by the Hohenberg-Kohn-Sham
[21-23] density-functional approach. In short, we esti-
mate the leading correction by means of a one-particle
theory, viz. the Kohn-Sham (KS) [22-23] technique, ap-
plied to the many-electron, wave-function-based theory
of Gasser and co-workers [1-3], which is accomplished
through the method outlined below.

II. METHOD

Following Gasser and Tavard [2], we note that within
the first Born approximation, the double-differential cross
section for the scattering of an electron belonging to an
N-electron scatterer may be expressed in terms of the ex-
act compton profile J:

N © )
Jgx=(k/2m) 3 [T dte ™ F,(1,k), 2)
p=1 -
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with

ixX+C

F (t,0)=(@,le" o, 3)

and the operators X and C,, stand for

X=(H—E,), (4)
C,=—ik'V,. (5)
Here, H is the N-electron Hamiltonian with
D,(r,p13, ..., Tx)=(1,1p, ...Tx|®,) the many-

electron stationary state wave function prior to scattering
(the “initial” state) with the associated energy eigenvalue

E,. By definition, X|®,)=0. The operator

exp[it(X +C,)] has the decomposition [2,3]

eit(x+cﬂ)=eitc“+ieitc”f tdt'e —it'CﬂXeit’(anC”) . 6)
0

This operator identity may be established by preoperating
throughout by exp(—ifC,) and then noting that both
sides satisfy the same first-order differential equation in
the time ¢, and further that they both reduce to the iden-
tity operator at r=0. Equation (6) may be iterated,
engendering an infinite series in powers of 1/k. In the in-
elastic scattering brought about, for example, by a high-
energy photon imparting large enough energy and
momentum transfers to the electron [k >>(E,)!/%, where
E, is the binding energy of an electron in the N-electron

system], E becomes overwhelmingly greater than |E,|,
making the time scales involved in the electronic transi-
tion from a bound electronic state to a continuum state
extremely small [12-14], so that only the first term in Eq.
(6) may be retained. This term, on substitution in Eq. (2)
immediately gives a k-independent, symmetric (in q)
directional IA-CP. This CP, upon spherical averaging, is
denoted herein by J{Q(g). It must be noted that the ex-
perimentally accessible CP, through scattering from gas
phase atoms and molecules, also gives a spherically aver-
aged information. The leading first-order correction to
J{9(q) is then obtained, invoking the approximation (val-
id for small time scales ~#/E<<1 [12])
exp[it'(X+C,)]~exp(it'C,) on the right-hand side of
Eq. (6) and truncating the process there [2,3], yielding

N o .
JNgK)=(k/2m) 3 [ dte ™MFDk). ()
p=1 "%

This explicit form of FJ," is

it'C

F}P(x,k)=:‘<<1>a|e"’cﬂf0’dt'e”'cﬂ<H—Ea)e ‘o, )

(8)

which, in terms of the many-body potential-energy opera-
tor U(ry,1,, ..., Ty), emerges as [2,3]

F;))(x,lg)z(i/lc)fo’ﬂzr}z'faﬂrld%2 Ay DE(rLy, . Ty)

X[U(ry, ..

where R=kt, R'"=k¢’'. This Gasser-Tavard [2] equation
is the key result used in the present work.

We employ Eq. (9) in conjunction with the density-
functional formalism [21-23], in particular, the Kohn-
Sham theory [22,23]. The merit of this approach is the
simulation of an N-electron ground-state problem by one
with N noninteracting electrons immersed in a common,
one-body effective potential, viz. the Kohn-Sham [22,23]
potential vgg, leading to the prescription

N
LIN)= 3 vgslr;) . (10)

i=1

Ugs(r,1y, ..

We take, for the wave function ®,,
I = ALY YES(ry) - ey,

(11)

where A is an antisymmetrizer, which in the present KS
description gives a determinant, constructed a posteriori,
out of the lowest lying, occupied KS orbitals ¢¥¥S, which
themselves are the solutions of N single-particle KS equa-
tions:

[—V2/2+vogs(D)]8S(r)=¢,¢X¥S(r) (i=1,2,...,N),
(12)

D, (1,1, ...

LIRS Ly = UrgTy, . L

I P (ry, o1, R, L L Ty) 9)

"

[
with

vgs(n)=—Z/r+ fd3r’n(r’)/|r—r’|+8E,Ifcs[n]/5n(r) .
(13)

With the identification (10) of the many-body (effective)
potential-energy operator Ugg in the KS picture, the KS
equations (12) emerge out of a minimal property of
(@,|T+Ugg|®,)/{P,|®,). The quantities ¢, in Egs.
(12) are the Lagrange multipliers that take into account
the orthonormality of the KS orbitals. [T is the many-
electron kinetic-energy operator T=3N_,(—V?/2).] In
Eq. (13), n(r)=3N_,|¢X5(r)|? gives the ground-state den-
sity of the system (that plays a central role in the
density-functional theory [21-23]), of which the Kohn-
Sham exchange-correlation energy EXS is a universal (but
hitherto explicitly unknown) functional.

It is desirable to use Eq. (9) in its given form (rather
than evaluating the potential matrix elements separately),
because Eq. (10), substituted in Eq. (9), results in cancella-
tion of every other contribution to AU in Eq. (9), except
that from r,. Thus the only term that survives inside the
bracket in Eq. (9) is vgs(r, +R’) —vgg(r,). This readily
simplifies the expression for F(!’, now expressible in
terms of the uth orbital:
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FV(Rk)= z/k)f dR’ [ d*r y¥S*(r

r)[vgs(r+R") —vgg(r ]¢

(r+R) . (14)

Note that r,=r has now become a dummy integration variable, while the subscript 1 on F as well as on XS denotes the
orbital state index (such as 1s, 2s, etc.). The leading correction then emerges as a sum over the KS orbitals

T (g, x)=irk)~" [© _dR e—zqu dr’ [ d*r E YKS* (x

vgs(r+R)—vgg (D) JYRS(r+R) , (15)

Ju (q,k)=i(27rk)_1f‘ dR e*'qu dR’fd r[vKS(r-i—R')—vKS(r)]F(Kl%(r{r—i—R) . (16)

This last one expresses the correction in terms of the full, one-particle KS density matrix I'}J. Equation (16) simplifies

further into a sine transform,

JWg,k)=(1/k) [ “dR sin(qR)fORdR'fd3r[vxs(r+R’)—va(r)]

which, evidently, is antisymmetric in g. The dependence
of J'V on the direction of the momentum transfer k
comes through that on the direction of R =kz, which also
is the support for R’.

The one-body KS potential vgg is the appropriate self-
consistent, common effective potential, to be contrasted
against the orbital-dependent ‘‘effective hydrogenic”
(—Z 4/r) potentials of Refs. [4-7]. Usage of a self-
consistent theory is a very apt one, as has been recently
emphasized by Issolah et al. [5], since it leads to a more
realistic atomic potential than does the effective hydro-
genic one.

For computation of the impulse profile, the spherically
averaged IA-CP derived from the spherically averaged
Ver510n of the electron  momentum  density
yp)=3N,|xXS(p)|? is used herein, where yX5(p) is
the Fourier transform (FT) of ¥XS(r). Of course, while
the KS scheme yields, in principle, the exact coordinate-
space ground-state electron density n(r), it does not
necessarily give the correct momentum density through
the above prescription, as pointed out by Lam and Platz-
man [24]. This is due to the noninteracting model em-
ployed within the KS framework which subjects 7 (p)
to an additional correction term [24]. It, however, turns
out from the studies of Lam and Platzman [24] that the
estimated corrections are only marginal (maximum rela-
tive correction, occurring at the peak of a CP, is typically
less than 2%, as seen from the work of Harmalkar,
Panat, and Kanhere [25]) and hence for consistency
(in J© and J'¥ computations) will not be taken into
account here. Thus J;%(q)ZZﬂff;‘?(p )p dp, with

f d QAY 3(p)/(4m), the spherically averaged ver-
sion of 7 (p) It must be noted that for the closed-shell
atomic systems dealt with herein, the fotal orbital contri-
bution to y(O)(p) after summing over the magnetic sub-
states will be spherically symmetric, and thus will not de-
pend on m,, the magnetic quantum number. Also, in the
context of an atomic (or molecular) electron momentum
density, what is experimentally tractable is essentially a
spherically averaged information, as remarked above.
The IA-CP thus obtained will be isotropic in ¢ and mono-
tone decreasing in |g|.

For the functional EX5[n], we have taken a simple,
local-density functional, viz. the Dirac-Slater X,

Nrlr+R) , 17

[

prescription  Eke[n]=—(9a/8)(3/m)'" [d*r n*/(r)
with a=2 as recommended by Gaspar [26] and Kohn
and Sham [22]. Of course, one may choose different
kinds of exchange-correlation functionals that are replete
in the literature [23], but the results presented herein
with the above local form are not seen to alter qualita-
tively (and also appreciably quantitatively) after employ-
ing different approximate forms for EXS[n]. What is
more crucial, as it turns out, is the use of an effective SCF
potential that has the correct limiting (r —0)~—Z /r
and asymptotic (r— o)~ —1/r behavior [5,14,27,28],
satisfaction of which was made sure in this work by in-
corporating a correction due to Latter [27,28].

For numerical computations involved in Eq. (17), we
have employed prolate spheroidal coordinates (&,7,¢)
with the polar axis, which also is the axis of quantization
for specifying the magnetic substates, being chosen along
the momentum transfer k, facilitating elimination of the
azimuthal angle ¢. Integrations over & (1 to ) and 7
(—1 to 1) were performed using an accurate Gaussian
quadrature coupled with an accurate interpolator. Final-
ly, the sine FT was carried out using the well-known
FILON routine. In the following section, we summarize
our numerical results on J'V(g,k) and compare them
with the corresponding IA-CP, J ‘]gs)(q), for He, Ne, Ar,
and Kr. To further gauge the significance of the leading
correction, we choose different momentum transfers for
scattering from specific atomic orbitals. Also, whenever
relevant (and possible), a comparison between the results
obtained herein with those in the previous works will also
be made.

III. RESULTS AND DISCUSSION

The results for the leading antisymmetric correction
JV(g,k) are portrayed in Figs. 1-6. Figure 1 gives the
percent relatlve deviation of total atomic J'! from the
respective J{%, i.e., R% =J"(q,k) X 100/J9(q), versus
q for the inert atoms He—Kr. For a direct comparison
with Bell’s [4] important work, we have chosen k =5Z
a.u. [We choose J{X(g) here for comparison and not
J(g,k)=JQ(g)+JV(g,k), in contrast with Bell, who
has chosen J(q,k) in the denominator.] A suitable sum-
mation over the orbital-magnetic substates for p and d or-
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—.—.—He,k=10au.
Ne, k=50a.u.
--—— Ar, k=90au.|

------ Kr, k=180a.u|

|

1
A
00

-10.0  -8.0 -4.0 4.0 80 10.0

q(a.u.)

FIG. 1. Relative deviation [R (%)]= 100J{"(q)/J{%(q) for
the atoms He, Ne, Ar, and Kr. The momentum transfers k are
chosen to be k =5Z a.u.

bitals was carried out as Jlﬁl):(%)J[ﬁ;) +(§)J,§;)l and
JiV=(0I) +(D1Jg) +J4) 1. This makes the total
first-order correction [denoted hereafter by Ji!(g)] “iso-
tropic” in k. The overall trends of R % for Ne and Ar
are seen to match very well with their counterparts in
Ref. [4] (Fig. 4, Ref. [4]), for |g| <5 a.u., beyond which
the asymmetry in R % in the plots of Bell is conspicuous.
The present curves are, of course, manifestly antisym-
metric as they represent only the leading first-order
corrections (while Bell’s work gives corrections, within
the effective hydrogenic realm, to all orders in 1/k). For
He and Kr, the R % values are, respectively, rather large
and small, a fact attributed to two causes: small J (Ig)(q)
and comparatively small k (=10 a.u.) for He, as opposed
to their corresponding large values (k=180 a.u.) for Kr.
For all the plots except He, the first maximum in R % is
seen to occur for a positive (albeit small) g, which is the
consequence of the dominant py=p, contribution (cf.
Ref. [2], Figs. 3 and 4 therein). For a closer comparison
with Bell’s results, we choose the example of the Ar 1s or-
bital and compute the ratios [R' (%)] =
100J ,((Yll)s(q)/J X 15(q), obtained within the present regime,
and compare with their corresponding values defined on
a similar footing through the index [R’' (%)] =
100[J29™(g)—J X (g)1/7 X (g), obtained via a systematic
recipe due to Bell [4], within the effective hydrogenic
theory and the first Born approximation. The momen-
tum transfers k are chosen to be k =90 and 360 a.u. with
the g range —20 a.u. <¢g <20 a.u. This comparison is
made in Fig. 2, which brings out the similarity between
the trends of R’ under the two regimes and reveals that
for the larger momentum transfer (360 a.u.), Bell’s results
for R’ also tend to be fairly antisymmetric and the simi-
larity in the trends of both the R’ values is even closer.
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Ar, 1s orbital

k=90

Present work}
au.

— === Bell

R'(%)
)
1.
/
£

————— Present work

= u. \
Bell }k 360 a.u /

q (a.u.)

FIG. 2. Relative deviation [R’ (%)] = 100J},(q)/J% 1s(q)
for the Ar ls orbital obtained in the present work compared
against [R’ (%)] = 100[JE3™q)—J{X(q)]1/J{X(q) values and
Bell [4], within the effective hydrogenic and Born regime (see
text for further details).

This reiterates that J}(”, orbitalwise, gives a decent esti-
mate of deviation from the impulse profile for wide range
of g values.

Since the KS-SCF potential, by construction, gives a
central field, the orbital angular momentum / and the re-
lated orbital magnetic quantum numbers m; are good
quantum numbers. This enables one to obtain different
orbitalwise contributions to J{"(¢) and further compare it
with the respective orbital IA-CP JQ (q). For represen-
tative cases, we have chosen the momentum transfers as

Orbital k (a.u.)
He 1s 2
Ne 2py,=2p, 20
Ar 2p 10
Kr 3d,,), m=0,+1,+2 50

These results are presented in Figs. 3—6. For the orbital
impulse approximation profiles presented in these Fig-

ures, we choose the normalization [ *J{}(g)dg=1. In-

terestingly enough, the J'! plots for Ne 2p, and Kr 3d
orbitals are the only ones that have a global maximum for
g >0, whereas all other cases exhibit a global minimum
for g >0, conforming to the Gasser-Tavard [2] rule that
for given / and m; values (the leading contributions to —)
the Compton defects have a positive sign for odd values
of I+|m 1[ and a negative one for their even-valued com-
binations. Thus the orientation of orbitals as well as their
mutual overlap both seem to play a significant role in de-
ciding the sign of the defect. It is worth noting further
that for krypton, the 3d,, orbital J{!(¢) contributions
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FIG. 3. Leading first-order correction Ji!(g) to the helium s
orbital, compared with its corresponding zero-order, spherically
averaged impulse Compton profile J{Q(g) (1s) (the latter is nor-
malized to % electrons). The momentum transfer kK =2 a.u.

emerge with decreasing significance with increasing
m =0, 1,2, an effect that may be traced back to the degree
of polarization of an orbital along the direction of the
momentum transfer.

Choosing different forms of gradient corrections, and
further, addition of correlation to the X, exchange func-
tional is not seen to alter the above inferences qualitative-
ly. For instance, our tests on the neon J'*(g) and J{(q)
results showed that they changed by less than three per-
cent and one percent, respectively, after employing some

Neon , 2R, orbital
k =20 au.

-02

q(a.u.)

FIG. 4. J{2(q)(2p), the spherically averaged orbital Comp-
ton profile for the 2p orbital and J{!(g) (k=20 a.u.) for the 2p,
orbital of neon.
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0.120 Argon,pr/py orbital

k =10 a.u.

(o)
(q) (2p)

0.060
0.030
(1
J Q)
El
L jioo N N
- -6.0 -20 0.0 20 60 10
=0.015
q(a.u.)

FIG. 5. J{Q(q)(2p) and J{"(q) (k=10 a.u.) for the 2p, /2p,
orbitals of argon.

sample gradient corrections and correlation functionals
cited in Ref. [23]. As remarked above, the Latter correc-
tion [27,28], which mimics the real atomic potential
asymptotically (~—1/r), overrides the exchange-
correlation potential for large r values. In the present
scheme, the construction of a Kohn-Sham ‘“‘determinant”
is essentially perforce, in the absence of any simple alter-
native prescription. On the affirmative side, we note that
the KS theory gives a one-body self-consistent potential
(duly rectified, self-consistently, for the correct asymptot-

Krypton, 3d orbitals

1l
(o) IA(3d)

-0.06+4

. R . N
100 6.0 2.0 0.0 40 8.0
q(a.u)

FIG. 6. J{%(q)(3d) and J{"(g) (k=50 a.u.) for the 3d orbit-
als of krypton, for different m; values =0,+1,+2. Note that
the signs of the peak corrections for positive g values are, re-
spectively, negative, positive, and negative (see text for further
details).
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ic behavior), which takes into account the many-body
effects of exchange and correlation, practically, albeit in
an approximate way. The confluence of the Gasser-
Tavard theory with the KS description is thus expected
to lead to a better simulation of the actual one-electron
atomic potential, in contradistinction with the effective
hydrogenic picture.

We point out here that J(g,k) can be calculated exact-
ly (within the Born regime) with rather poor wave func-
tions (scaled hydrogenic ones), whereas with better quali-
ty wave functions only the first correction, viz. J s
available, which estimates the correction to the impulse
result only for moderately large momentum transfers to
the electron within the Compton scattering process. For
relatively small momentum transfers one must take into
account the higher order corrections. However, compu-
tation of these becomes increasingly difficult. It would
also be worthwhile to look at the effect of an incorpora-
tion of the self-interaction correction (SIC) [29,12] into
the present framework, but then the SCF potential be-
comes orbital dependent, losing its simplicity. These two
tasks will be pursued in the University of Poona’s Physics
Laboratory at Pune. For extremely large momentum
transfers, one could make an asymptotic (y — « ) expan-
sion of Bell’s [4] functions F(x,y), F,(x,y), and F;(x,y)
(cf. Ref. [4]), in which case F;~(7Zg4)""
(14+mn/y —27*n%/(3p2)+ - -+ ), F,~1, while F is man-
ifestly in the desired form of a power series in 1/y. Here

y and x are suitably scaled versions of k and g, respective-
ly, and n is the principal quantum number of a given or-
bital. Thus an expansion of the Compton profile as a
power series in 1/y (or 1/k) is indeed obtainable; howev-
er, this being an effective hydrogenic scenario, a perfect
antisymmetry/symmetry characteristic (as a function of x
or g) of a given correction term is not guaranteed. Note,
incidentally, that for extremely low momentum transfers,
the Born approximation itself becomes questionable. It is
thus indeed gratifying that the present simple and
straightforward approach yields decent estimates for the
leading part of the correction to the atomic impulse
Compton profile for moderate (kK ~5Z a.u.) momentum
transfers.
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