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A detailed Monte Carlo simulation model has been developed to study the absorption of soft x rays
and the subsequent behavior of the resulting electrons under the influence of an applied electric field in
gaseous xenon. All relevant physical processes are included from the initial photoionization through the
subsequent decay of the residual ion to the scattering and drift of the electrons resulting from the in-
teractions with the background gas. Details are provided for the cross sections and decay rates em-
ployed as well as the criteria used to terminate the simulation, depending on the information or results
required. Examples of its use in modeling gaseous radiation detectors are included.

PACS number(s): 32.80.—t, 29.40.Mc, 29.40.Cs, 34.90.+q

I. INTRODUCTION

Gaseous detectors for x rays [1] are commonly used in
material analysis by x-ray fluorescence techniques, x-ray
diffractometers, plasma physic studies, etc., as well as in
x-ray astronomy, high-energy physics, and medical in-
strumentation. In order to fully understand the charac-
teristics of such detectors, a comprehensive study of their
behavior is required. Although the physics involved in
such detectors has been studied using Boltzmann analysis
[2-4], this method is not capable of fully investigating
the detailed processes occurring in the detectors. These
involve for a start the photoionization of the gas atoms
by the x-ray photons, followed by the emission of cascade
electrons by the atoms via Auger—Coster-Kronig decays
and shake-off ionization together with the emission and
reabsorption of fluorescence photons. The creation of
these first electrons requires a detailed description of the
atomic processes involved. Within the drift zone of the
detector, these electrons produce further electrons by
ionizing gas atoms until their energy drops below the ion-
ization threshold, i.e., until the so-called primary-electron
cloud is fully developed. Further along, these primary
electrons gain energy from an applied electric field and
may produce additional photons (the secondary scintilla-
tion) or second electrons as a result of inelastic collisions
with the gaseous atoms in the detector. To a first approx-
imation, the number of primary electrons produced is
proportional to the x-ray energy, and the number of
secondary scintillation photons or secondary electrons is
proportional to the number of primary electrons. Hence
either the secondary photons or the secondary electrons
can provide information about the energy of the original
x ray. Proportional counters measure the number of
secondary electrons produced, while proportional scintil-
lation counters measure the amount of vacuum ultra-
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violet (vuv) radiation emitted by the gas, normally at field
strengths below that required to produce secondary elec-
trons, i.e., avoiding charge multiplication. Xenon is often
the gas of choice for these detectors because of its large
x-ray-absorption cross section and scintillation efficiency.
Detectors using xenon can be operated at room tempera-
ture and atmospheric pressure and usually employ a
high-purity quartz window photomultiplier for the detec-
tion of the vuv scintillation. Other gases such as krypton
or argon may also be used.

In this paper we describe a Monte Carlo simulation
scheme that we have developed which takes into account
all processes described above and subsequently follows in-
dividual electrons as they move through the gas under
the influence of an applied electric field. Although we
provide a detailed analysis for the case of xenon, our
model can be extended easily to other monatomic gases
provided the required atomic cross sections, decay rates,
and electron-scattering cross sections are available.

Certain results using our simulation scheme have al-
ready been published elsewhere. We have carried out a
careful study of the charge distribution of the residual
xenon ions produced by x-ray absorption [5,6] and have
investigated the size and shape of the primary electron
cloud [7], the Fano factor F [8], the mean energy w to
produce an electron-ion pair [9], and distortion effects in
the soft-x-ray spectra due to the loss of primary electrons
to the detector window [10,11]. Various electrolumines-
cence parameters in gas proportional scintillation
counters (GPSC) have also been analyzed [12,13]. Our
initial attempt to simulate these detectors used a
simplified unidimensional approach to study the reduced
light output for reduced electric fields below the thresh-
old for secondary-electron production [14]. All of these
studies were carried out for xenon at atmospheric pres-
sure and room temperature. Not only were we able to
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reproduce the experimentally observed behavior but we
could also explain the cause of such behavior and show
that certain commonly held assumptions were incorrect.
For example, for soft x rays, the parameter w as well as
the Fano factor F are not independent of the photon en-
ergy, as commonly assumed, but have a nonlinear
behavior with discrete jumps at the photoionization ab-
sorption edges.

In the next section we present the details of the x-ray-
photon—xenon-atom interaction. In Sec. III the cross
sections required to model the electron-atom collisions
are presented. We describe our Monte Carlo simulation
model in Sec. IV and provide some typical results in Sec.
V.

II. X-RAY-ATOM INTERACTIONS IN XENON
A. Photoionization cross sections

When an x-ray is absorbed by a gaseous medium, it
ionizes a gas atom. If the x ray has sufficient energy to
photoionize an inner shell, this inner-shell vacancy is
filled by an electron from the outer shells and, in the sub-
sequent decay of the residual ion, the emission of further
electrons or fluorescence photons will occur. Accurate
knowledge of the atomic shell from which the photoelec-
tron originates is thus required in order to determine the
energy of the photoelectron as well as the decay paths of
the ion and their relative probabilities.

Angle-integrated photoionization cross sections at
fixed x-ray energies for the individual subshells of; were
taken, for energies lower than 4509 eV, from Kutzner,
Radojevic, and Kelly [15], Band, Kharitonov, and
Trzhaskovskaya [16], and Kennedy and Manson [17] for
the M, M,;, M,s5, N, N3, Nys, Oy, and O, 5 sub-
shells. The sum of these partial cross sections agreed
very well with the total cross section agh given by West
and Morton [18], Wuilleumier [19], and Saloman, Hub-
bell, and Scofield [20]. Since in the simulation we require
these cross sections at arbitrary energies we used a linear
interpolation of the cross section between the given ener-
gy values. We fitted the cross sections between the last
two energy points in the form aE ..’ where E,, is the x-
ray energy, and used this form to extrapolate the cross
sections to energies E,. above 4509 eV. The binding en-
ergies (and hence the absorption edges) were obtained
from Larkins [21]. Where we did not distinguish between
individual subshells, we averaged the binding energies
given there (for instance, we considered the M, and M,
subshells as one).

Above the threshold for ionizing the L shell, the partial
photoionization cross sections o4, for the L, L,, and L;
shells were obtained by subtracting the sum of the partial
cross sections for the outer shells from the total cross sec-
tions. For this purpose, total cross-section values in this
range were taken from Wuilleumier [19], and Saloman,
Hubbell, and Scofield [20] and, at an energy just below
the K shell ionization threshold, from Veigele [22]. Ex-
trapolation of these cross sections was done using the an-
alytic form given above with the values of exponent b be-
ing of the same order of magnitude. These various pho-
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FIG. 1. Xenon photoionization cross sections o}, (partial)
and opTh (total) vs x-ray energy E,;. of;: O, X,+ Kutzner, Ra-
dojevic, and Kelly [15] and Band, Kbharitonov, and
Trzhaskovskaya [16]; A,@®,¢M, % Kennedy and Manson [17]
and Band, Kharitorov, and Trzhaskovskaya [16]. apTh: O West
and Morton [18], O Wuilleumier [19], and A Veigele [22].
Continuous curves represent o4, (- - - -) and o}, (——) pho-
toionization cross sections adopted in this work.

toionization cross sections are shown in Fig. 1.

Since we must also take into account the direction in
which the photoelectron is emitted, we use the well-
known angular differential cross section form for photo-
ionization by unpolarized light

doky,
dQ

for each subshell, where 6 is the angle between the direc-
tion of the incident x ray and that of the emitted photo-
electron, P, is the Legendre polynomial of degree 2, of,
is the partial photoionization cross section for subshell p,
and the values of B for each subshell are given in [17].
Although the B asymmetry parameter exhibits a weak
dependence on the photoelectron energy € in the case of p
and d subshells, we use their fixed high-energy value in all
cases (i.e., we use B=1 for d subshells, 5=1.5 for p sub-
shells, and B=2 for s subshells).

— T [ 1g(e)P, (cosO 1
—47,_[ sB(e)Py(cos0)] (1)

B. Cascade decay rates

If, after photoionization, the residual ion is left in an
excited state it will decay in general through a multistep
cascade process [23,24] leading to a multiple charged ion
in its lowest-energy state. Three distinct processes are in-
volved in this decay.

Auger—Coster-Kronig transitions are radiationless
transitions where an inner-shell vacancy is filled by an
electron from an outer shell with a simultaneous emission
of an electron from the same or some other outer shell.
Thus the residual ion is left in a charge state one higher
than before the transition and an additional electron is
produced. The energy € of the emitted electron is calcu-
lated by means of the (z,z+ 1) approximation [25]

e=P3— {3(B3 +B35)+ (B3, +B3;)) ?
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where the superscript i=1 refers to the shell with the ini-
tial vacancy while i=2,3 refers to the shells with vacan-
cies after the transition and B/ is the binding energy of
the subshell i of the atom with nuclear charge z. The use
of the average of the binding energies of one shell in xe-
non (z=54) with the corresponding shell in cesium
(z=155) approximates the fact that the binding energy of
a particular shell is greater in the ion than in the neutral
atom. Auger—Coster-Kronig transition rates were taken
from Chen, Crasemann, and Mark [26] for K- and L-shell
vacancies, McGuire [27,28] for M-shell vacancies, and
McGuire [29] for N-shell vacancies, and when necessary
they are reduced or updated according to the current sit-
uation of the atom, as follows. If in an Auger transition
the shell from which the two active electrons are taken is
not full, the rates are multiplied by the sample ratio of
the number of available electrons to the number in the
full shell. Let us take, for example, the Auger transition
where the L vacancy would be filled by an electron from
the M, ; shell while an electron from the N, shell is emit-
ted. Suppose that the M, ; shell has only four electrons
rather than a complete shell of six and the N, shell has
one electron instead of two. Then the current rate for
this transition is obtained multiplying the full shell
L M, ;N, rate by the factor £ X 1. In the case of a tran-
sition, where both electrons come from the same subshell,
the ratio of the number of possible pairs is taken. Thus
for the LM, ;M,; Auger transition both electrons
would originate from the M, ; shell with four electrons
and the ratio is 6/15. We further assume that the ion has
no memory of the absorbed x-ray direction when the
Auger-Coster-Kronig transitions take place so the elec-
tron emission direction is assumed to be isotropic.

If an electron makes a transition from an outer shell to
an inner vacancy, a photon may be emitted instead of an
electron as in Auger—Coster-Kronig transitions. The en-
ergy of such fluorescence photons is just the difference in
the binding energies of the electrons in the initial and
final subshells. Transition rates for fluorescence transi-
tions are given by Scofield [30] for K- or L-shell vacancies
and by Manson and Kennedy [31] for M-, N-, and O-shell
vacancies. These transition rates are again adjusted,
when necessary, for transitions from less than a full shell.
Again the distribution of the directions of emission is as-
sumed to be isotropic.

In order to use the Auger—Coster-Kronig or fluores-
cent decay rates of a particular vacancy in the simulation,
they must be converted into probabilities. These proba-
bilities are simply proportional to the magnitude of the
current rates. If inner vacancies still exist, either type of
transition may occur and all the Auger-Coster-Kronig
and fluorescence current rates are considered together to
produce a single set of probabilities which are used to de-
scribe which particular transition occurs at this stage.

Electron shake-off may occur when an electron is emit-
ted (either through photoionization or an Auger—Coster-
Kronig transition) with an energy much greater than the
binding energy of the shell from which it came. The sud-
den change in the effective potential experienced by outer
electrons may lead to the ejection of one further electron,
the so-called ‘“‘shake-off”” electron. This emitted electron
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has a relatively low-energy characteristic of the subshell
from which it was removed (Carlson and Nestor [32]).
Shake-off probabilities following either a photoionization
or an Auger—Coster-Kronig transition are taken from
[32]. These probabilities were adjusted as outlined above
if the shell from which the shake-off electron originates is
not full. As with Auger-Coster-Kronig electrons we as-
sume the direction of emission to be isotropic.

III. ELECTRON-SCATTERING
CROSS SECTIONS IN XENON

After electrons have been produced by the various pro-
cesses described in the preceding section, we simulate
their movement through the xenon gas under the
influence of the applied electric field E, which in the
present work is assumed to be uniform. These electrons
undergo collisions with the gas atoms and we require
both integral and differential scattering cross sections for
these collisions in order to determine the path of the elec-
tron through the gas and the energy transferred between
electrons and gas atoms. Integral cross sections represent
the probability of a given process occurring while angular
differential cross section will determine the direction of
motion of the colliding electron after the collision relative
to its direction prior to the collision.

By far the most common type of collision that occurs is
an elastic collision. Although there is no energy lost by
the electron in such collisions when described in the
center-of-mass frame, this is not true in the laboratory
frame. In this frame there is a net transfer of energy
from electrons to the gas atoms. Low-energy integral and
differential cross sections for elastic collisions, oX(g) and
dod/dQ, are discussed by McEachran and Stauffer [33],
Stauffer, Dias, and Conde [34], McEachran and Stauffer
[35]. The integral cross sections described in [34] were
used in the lower range of electron energies, covering the
region of the Ramsauer minimum. Above this our adopt-
ed integral elastic cross section follows data from
Hayashi [36]. In Fig. 2 our elastic cross section is com-
pared to the data of various other authors. Angular
differential cross sections were calculated from the phase
shifts described in Stauffer, Dias, and Conde [34] up to 20
eV; see Fig. 3. Above this value we assumed that the
shape of the cumulative angular probability distribution
P%(g,0) (shown in Fig. 4) obtained from these differential
cross sections (see Sec. IV C) was independent of electron
energy [i.e., P?(e>20eV,0) equal to P(e=20¢V,0)].

If the electrons have sufficient energy, either due to
their formation via photoionization or cascade processes
or by gaining it from the electric field, they can undergo
inelastic collisions with the xenon atoms in the gas.
These are of two types, viz. excitation where the electron
loses an amount of energy necessary to excite the atom to
one of its bound electronic states of higher energy, or ion-
ization where in addition to the initial electron losing en-
ergy, one or more secondary electrons are produced. In-
elastic collisions are of prime importance in the energy
degradation of the cascade electrons, until the primary
(subionization) electron cloud is fully grown.
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FIG. 2. Electron-impact-scattering cross sections o (elastic),
o (excitation), o™ (ionization), and o7 (total) in xenon. o
+ Hayashi [36]; O Register, Vuskovic, and Trajmar [37]; @
Haberland, Fritsche, and Noffke [38]; B Jansen and de Heer
[39]; A de Heer, Jansen, and van der Kaay [40]; and @
McEachran and Stauffer [35]. ¢®*: < Hayashi [41]. ¢ O
Rapp and Englander-Golden [44]; O Schram et al. [45],
Krishnakumar and Srivastava [46]. oT: /A Dababneh et al.
[48]; * Dababneh et al. [49]; A Subramanian and Kumar [50];
@ Nickel et al. [51]; X Hayashi [36]. Continuous curves are
fittings adopted in this work.

There is an infinite number of bound, excited states in
an atom, but only a few are of any consequence for the
simulation in question. In addition, the probability of an
excitation is much smaller than that of an elastic collision
or, where energetically possible, of an ionizing collision.
Collisions producing excited states are responsible for the
scintillation radiation, which is the basis for gas propor-
tional scintillation counters, and we assume that any
atom that is excited will eventually lead to the emission
of a scintillation photon. Our integral excitation cross
section o*°(¢) is obtained from the data of Hayashi [41]
as shown in Fig. 2. Angular differential and partial cross
sections for 12 excitation ‘“features” had been reported by
Filipovic et al. [42] at 11 different energies. From these
we have calculated a weighted mean excitation energy
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FIG. 3. Angular differential elastic-scattering cross section
do®/dQ in xenon for electron-impact energies £<20 eV
(Stauffer, Dias, and Conde [34]).
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E€.xc as a function of the electron impact energy €, which
represents the energy lost by the electron during an exci-
tation. However, in some of our simulations (described in
Sec. V B) we used instead detailed partial excitation cross
sections as recently described in Puech and Mizzi [43] for
12 excited states with energy ... Because of the infre-
quent occurrence of inelastic collisions, accurate angular
differential cross sections were not required. We have
used a simple straight-line representation of these
differential cross sections, do*°/d€), as a function of
scattering angle 6. The slope of these lines is a quadratic
function of the electron energy €, with the coefficients
chosen to reproduce the integral excitation cross section
values from Hayashi [41] and to provide a reasonable fit
to the angular scattering data of Filipovic et al. [42].

The ionization cross section we use is based on the ex-
perimental results of Rapp and Englander-Golden [44]
and Schram et al. [45], and o'°"(g) is represented again
in Fig. 2. Since no results exist for the differential cross
sections in either angle (double) or energy (single) for
electron ionization of xenon we have used the shape of
the corresponding cross sections for helium measured by
Mueller-Fiedler, Jung, and Ehrhardt [47] to calculate the
probability distribution for the sharing of the excess elec-
tron energy €—¢g;,, between the two outgoing electrons.

Z
LEEEE
W 17
Y 7

FIG. 4. Cumulative probability surface P¢(¢,0) for angular
elastic scattering, corresponding to do®!/d Q shown in Fig. 3.
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Figure 5 displays typical single differential cross sections
doi°"/de’ and cumulative probability curves Pi"(¢’) of
this type where € is the electron-impact energy and €’ is
the energy of one of the outgoing electrons (the other will
be emitted with energy €'’ =¢—¢g;,,—€’). Since one elec-
tron always has more energy than the other, we assume
that the faster electron moves in the same direction as the
incident electron after the collision while the direction of
the slower one has an isotropic distribution. Although it
is possible to produce more than one ejected electron dur-
ing an ionizing collision, the probability of such an event
is small compared to the ejection of a single electron
within the electron energy range we considered, and so
we assume that the latter situation always occurs.

The sum of the integral elastic, excitation, and ioniza-
tion cross section produces the total electron-impact
scattering cross section o I(e), which is used to determine
the length of the electron path through the gas. This
cross section depends, of course, on the energy € of the
electron. The total scattering cross section is also shown
in Fig. 2 and compared to various experimental results.
All four electron-impact scattering cross sections in Fig.
2 are represented by cubic spline functions of the
electron-impact energy €, enabling us to calculate the re-
quired values at any given point of the simulation.
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FIG. 5. Single differential cross sections do'°" /d¢’ and corre-
sponding cumulative probabilities P©°*(¢,€’) in xenon as adopted
in this work, represented for electron-impact energies €= 100,
200, 300, 400, 500, and 600 eV.
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IV. THE SIMULATION MODEL

The simulation can be broken down into a number of
separate steps. These involve (i) the photoionization of
an atom by the incident x ray or by a fluorescent photon,
(ii) the decay of the residual ion via Auger—Coster-
Kronig, fluorescence and shake-off transitions, (iii) the
ionization of further atoms by impact with fast electrons,
and (iv) the drift of the electrons through the gas with the
production of scintillation photons and possibly further
electrons. The first three steps are involved with the pro-
duction of the primary-electron cloud while the last step
results in the production of scintillation photons and, for
high enough applied electric fields, secondary electrons.
The details involved in all these steps are summarized in
the flow charts on Figs. 6 and 7. In addition we must
consider the criteria used to terminate the simulation de-
pending on the required results and the physical situation
being modeled, and the means of interpolating the simu-
lation data to extract the physical parameters of interest.
Examples of these are described in Sec. V.

A detailed description of the simulation process is

-x-ray photon:
.energy
.direction
.initial position
-gas density

-photon path length:
.interaction position
-choose subshell to be ionized
-store photoelectron:
.energy’

.direction
.initial position

-choose subshell to be ionized
-store ejected electron:
.energy
.direction
.initial position
-store shakeoff vacancy:
.shell
-update state of the ion

-electron Y
shakeoff

inner Auger|photoion.
vacancy | vacancy

calculate transition probabilities
for current vacancy

=

vacancy

-store ejected electron:

.energy
.direction
.initial position b—
Coster-Kronig -store outer vacancy:
.shell

-update state of the ion

-store fluorescence photon:
.energy
.direction
.initial position
-update state of the ion

fluorescence

o -
available

retrieve
last stored
vacancy

stored vacancies
exhausted

-ion reached ground state
.ionic charge

FIG. 6. Simplified flow chart of the Monte Carlo simulation
of the interaction between an x-ray photon and a xenon atom
and the decay of the ensuing excited xenon ion.
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-electron:
.energy
.direction
.initial position
-gas density
-electric field

-
“electron path:
final direction

Jinal position
final energy

stopping
criterion
is met

terminate simulation
for this electron

null collision collision

type

excitation ionization

real collision
type

-store ejected electron:
.energy
.direction
.initial position
-scattered electron:
.direction .energy
.direction

FIG. 7. Simplified flow-chart of the Monte Carlo simulation
of the history of one electron.

elastic

-scattered electron: -scattered electron:
.energy .energy
.direction

given below. We assume the reader is familiar with the
basics of Monte Carlo simulation and will not go into de-
tail on the generation of random numbers or the choice
among possible outcomes based on standard probability
distributions.

A. Photoionization

In the study of the interaction of x rays with a gas
medium, the absorption of a large number of such x-ray
photons (typically 25000) is simulated. We assume an x
ray of known energy E, that enters the gas parallel to
the applied electric field and perpendicular to the en-
trance window of the detector. We then have to decide at
which depth in the gas the x ray interacts with a gas atom
and from which subshell the photoelectron is ejected. A
similar decision process occurs for each of the fluores-
cence photons produced in the decay of the residual ion.
In the latter case, the direction of travel and energy of the
photon has already been determined during the simula-
tion of the fluorescent decay process (see Sec. IV B). The
applied electric field plays no role in the photoionization
process.

The distance d,, a photon of fixed energy E,, travels
through the gas before it is absorbed has an exponential
distribution with mean d,,=1/No [ (E,,) where N is the
number density of the gas atoms and opTh is the x-ray
energy-dependent total photoionization cross section.
d,, is thus sampled by making d, =—d,InR
= —[1/(Nogh)] InR, where R is a random number
chosen from an uniform distribution in the range ]0,1[. A
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penetration distance for the original x ray is randomly
chosen from this distribution to give the position (0,0,z)
of the photon-atom interaction. A further random choice
is made among the various subshells of the atom for the
origin of the photoelectron based on the relative values at
an energy E, of the partial photoionization cross sec-
tions of, for each of the atomic subshells. The ejected
photoelectron has energy e,,=E, —B’, where B' is the
binding energy of the ith subshell of the atom from which
the photoelectron originates. The photoelectron is emit-
ted in a direction (6, ¢), where 6 is chosen from the distri-
bution based on the angular differential cross section for
the ith subshell having the form given in Eq. (1) and ¢ is
chosen from the uniform distribution on [0,27]. The in-
formation about the photoelectron (energy, direction, and
position) is stored until it is used later as described in Sec.
IV C. Information on the current vacancies in the residu-
al ion is also retained.

B. Decay of the residual ion

Unless the photoelectron has come from the outermost
subshells of the atom, the residual ion is in an excited
state and the photoelectron vacancy will decay via the
three processes: Auger—Coster-Kronig transitions,
fluorescence photon emission, and shake-off ionization.

Immediately after photoionization, a decision is made
as to whether a shake-off electron has been produced and
if so, from which subshell it originates, based on the
probabilities given in [32]. The information on its energy,
direction (from an isotropic distribution; see Sec. II B),
and position (0,0,z,) is stored until needed. The informa-
tion on the current subshell vacancies in the ion is updat-
ed.

At this point a further transition in the ion will nor-
mally take place. In order to determine which transition
occurs from the various Auger—Coster-Kronig or fluores-
cence emission series, it is necessary to use the relevant
current probabilities calculated as explained in Sec. II B.
A specific transition is randomly chosen on the basis of
these probabilities.

If the transition chosen is a fluorescent decay, the ener-
gy, direction of emission, and initial position (0,0,z,) of
the fluorescent photon are calculated as explained in Sec.
II B and this information is stored.

If the transition is an Auger—Coster-Kronig one, the
energy of the ejected electron is calculated according to
Eq. (2). The direction of ejection is chosen from an iso-
tropic distribution and again this information is stored
along with initial position (0,0,z,) of the electron and its
energy. After an Auger—Coster-Kronig transition, a
shake-off electron may also be ejected. This possibility is
considered in the same manner as after a photoionization
as outlined above and the relevant information on the
electron is stored.

After any specific transition has taken place, the state
of the current electron vacancies in the ion is updated. If
there still exists an inner vacancy the decay of this vacan-
cy is simulated by repeating the process described above.
When the residual ion has reached its lowest-energy state
no further transitions will take place. The exact sequence
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of steps is given in Fig. 6. In the end, when no more tran-
sitions are available, the residual ion will reach its
lowest-energy state, with all vacancies in the three outer-
most subshells.

Once the residual ion has reached its lowest-energy
state its final charge is recorded. However, the effect of
the fluorescent photons which have been emitted during
the decay still has to be considered. Each of these pho-
tons is assumed to photoionize another gas atom. The re-
sults of such photoionizations can be calculated in exact-
ly the same manner as for the incident x ray. Only the in-
itial conditions of the photon (energy, direction of travel,
initial position) are different from the original incident x
ray. Once all of the fluorescent photons have been treat-
ed in this manner another x ray from the original set is
introduced and the simulation process repeated. Once
the set of x-ray photons is exhausted there remains stored
a large number of electrons which will now be followed as
described in Sec. IV C.

C. Electron-gas interactions

The free electrons move through the gas under the
influence of the applied uniform electric field E. The ini-
tial conditions of each of these electrons have been stored
the moment they were emitted by the atoms and we treat
each one in turn, following its progress through the gas
until the criterion for ending the current electron history
has been reached (see Sec. IV D). Unlike the photons, the
electrons are affected by the field, so that their paths are
parabolic and their velocities (and hence energies) change
continuously along their paths. The formula for the com-
ponent of electron velocity parallel to the field v, at a
time ¢ after the beginning of the electron trajectory is
given by

v,=v,yteEt/m ,

where v, is the component of electron velocity at time
t=0, e the electron charge, m its mass, and E the
strength of the applied electric field. The components
perpendicular to the field remain constant. This free path
of the electron is terminated when it collides with a gas
atom.

The fact that the energy and hence the total scattering
cross section o ! do vary along the path means that the
determination of the time between collisions is computa-
tionally intensive. However, we can avoid this problem
by using the null collision method [52-54]. This method
allows us to use a constant collision frequency I" along
the path at the cost of introducing extra collisions (the
null collisions) which have no effect on the final results of
the simulation. Details of the efficient application of this
method are given in Ref. [52]. The time 7 between col-
lisions is thus determined by sampling from an exponen-
tial distribution with mean r=1/T, i.e., by taking
7=—7InR =—1/T'InR, where R is a random number
chosen from an uniform distribution between ]0,1[.

A decision is made, at each electron impact energy e,
on which type of collision occurs—elastic, excitation, or
ionization—depending on the relative magnitudes of the
individual integral cross sections. Note that elastic col-
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lisions are always possible, but the other two require the
electron to have an energy in excess of their respective
thresholds: 8.32 eV for excitation, 12.1 eV for ionization.

The cross sections refer to collisions in the center-of-
mass frame of reference of the electron-atom pair. Thus
in the case of elastic collisions we transform to this frame
before determining the direction of travel of the electron
after the collision. In the range where inelastic collisions
are possible, the energies of the electrons are large com-
pared to the thermal energies of the gas atoms and we
remain in the laboratory frame for these collisions. The
velocity of the gas atom is randomly chosen from a
Maxwellian distribution reflecting the temperature of the
gas. The scattering angles of the scattered electron rela-
tive to its velocity just prior to the collision are in each
case determined from the angular differential cross sec-
tions do /dQ=0(6,¢) described in Sec. III. The cumu-
lative probability for the scattering of an electron with
energy € through a polar angle 6 is given by

P(e,0)= [ “o,(6")sin6'd6 / Jodosineder

while the azimuthal scattering angle ¢ is chosen from a
uniform distribution on [0,277]. Note that the angular
differential cross section implicitly depends on €. In or-
der to reduce the computation time, surfaces of P(g,0)
are constructed on a mesh of values of 6 and ¢, and the
particular values required are interpolated from these
values. Such surface are used for elastic collisions and
excitations. The plot of one of these surfaces, namely
P°(¢,0), is shown in Fig. 4. If the electron energy im-
mediately before a collision is € and the event is an inelas-
tic one, a new energy €° after the collision is calculated as
the excess e°=g—¢g,,, where g, is taken, in the case of
ionization or excitation, as the ionization threshold ¢,
or the excitation energy ¢.,., respectively. If the collision
is an ionizing one, an additional electron is produced and
the energy €° is shared between the two outgoing elec-
trons as described in Sec. III. The position and the veloc-
ity of this electron are stored to be considered along with
the rest of the free electrons not yet analyzed. At this
point a new free path is determined using as initial condi-
tions the velocity and position of the electron immediate-
ly after the collision. This process is repeated until the
criterion for terminating the electron history is satisfied.
Then another electron is treated in the same manner until
all the electrons stored have been considered.

D. The stopping criteria

The point at which the simulation terminates depends
on the process being studied. We give below the criteria
used in the various processes we have studied to date.

For those parameters which involve a knowledge of the
growth and final state of the primary-electron cloud, or in
other words, those which describe the conversion of the
energy of the incident x ray into the primary-electron
cloud, the simulation is terminated when all the electrons
produced reach an energy below the ionization threshold
of xenon. This was the stopping criteria used to investi-
gate the size of the primary-electron cloud [7], the Fano
factor F, intrinsic energy resolution R [8], mean energy w



2894

to produce an electron-ion pair, and the intrinsic energy
linearity of the average number of primary electrons pro-
duced per x ray [9].

In our study of spectral distortion due to the presence
of the entrance window [10,11], the history of each elec-
tron ends either when it hits the window or it reaches a
position from which it is energetically impossible to re-
turn to the window.

We have also calculated several parameters charac-
teristic of the drift of primary electrons under the
influence of the electric field in xenon, namely electron-
drift velocity and mobility, diffusion coefficients, and
characteristic energies in the gas, as well as some xenon
scintillation parameters such as excitation and scintilla-
tion efficiencies, reduced light output, distance between
luminous layers, number of elastic collisions, and elapsed
time between successive excitation collisions [12,13]. For
all these calculations, we allowed the sample of electrons
considered to drift for a time long enough so that these
parameters reached, in each case, an equilibrium value in
the applied electric field.

V. RESULTS OF THE SIMULATIONS

We will now summarize in more detail how the various
parameters are obtained from the simulation data and
present some typical results. More extensive results are
in general given in our papers [5—-13]. Throughout all
these simulations we have assumed a temperature of 293
K and a xenon pressure of 760 Torr.

In Sec. VA we will present results which essentially
were obtained with simulations starting with a sample of
x-ray photons absorbed in xenon, following, whenever re-
quired, the final primary (subionization) electrons in their
drift in the gas, whereas in Sec. V B we look into another
group of results corresponding to simulations which were
directly initiated with a sample of electrons.

A. X-ray photon simulation

Starting with a sample with not less than 10000 x-ray
photons of fixed energy E,., in a first stage of the work
we have calculated the charge distribution of the xenon
ions resulting from the absorption of the x rays [5,6] us-
ing the cascade decay scheme described in Sec. II. A
careful modeling of the vacancy cascade decay of the ex-
cited photoionized xenon ion is very important, as the re-
sulting emitted electrons, together with the photoelec-
tron, constitute the initial source which produces the
primary-electron cloud, thus affecting all results involv-
ing the final group of primary electrons. In Figs. 8—10
we present examples of xenon charge distributions yield-
ed by the present simulation, showing good agreement
with published data [S5-58]. Moreover, we tested our
decay scheme by calculating the ion charge distribution
after internal conversion following radiative decay in xe-
non, to compare it with experimental [59] and earlier
Monte Carlo results [23]. Good agreement was also ob-
tained in this case as shown in Fig. 11.

The size and shape of the primary-electron cloud
which develops after x-ray absorption is an intrinsic limit
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to the spatial resolution of position sensitive gaseous
detectors, therefore we have investigated the spatial den-
sity distribution of primary electrons [7]: some typical
results are shown in Fig. 12 for the range of x-ray ener-
gies studied. We can observe that as the x-ray energy in-
creases, the cloud extends to larger radial distances, with
a broad maximum gradually emerging and shifting to the
right. This maximum was found to correspond to the
contribution of the primary electrons arising from the ini-
tial photoelectrons, whose energy increases in general
with x-ray energy. By selecting, in the Monte Carlo
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simulation, only the Auger electrons we found them to be
the main contributors to the central part of the primary
electron cloud; this is to be expected since they tend to
have a lower and constant energy distribution (except
when a new atomic subshell can be photoionized). In ad-
dition, fluorescence emission becomes more important
with increasing x-ray energy (above the L edge), but the
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FIG. 11. Xenon-ion charge distribution as a result of the
internal conversion following the decay of *'Xe™ (10* ions): A
Pleasonton and Snell [59], experimental; M Mukoyama [23],
Monte Carlo; O this work.
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FIG. 12. Electron radial distribution dn /dr as a function of
the radial distance r in the primary electron cloud produced in
Xe by x rays with energies in the range 3-30 keV.

long tail at large radial distances which corresponds to
that effect contains only a small percentage of the total
number of primary electrons. In general we conclude
that, for the x-ray energy range studied, the size of the
primary-electron cloud is below the experimental resolu-
tion obtained with position-sensitive detectors for the
lower energies. However, for energies higher than 30
keV it reaches sizes that cannot be neglected when spatial
resolutions of the order of 1 mm are required [60].

A very important characteristic of gaseous detectors is
their energy resolution, which is limited by the variance
in the number # of primary electrons produced by the ab-
sorbed photons of a given energy E,,. This variance is
lower than the mean number 7 by a factor F, the so-
called Fano factor, characteristic of the gas:

ol=Fn .

The intrinsic energy resolution of a detector [full width at
half maximum (FWHM)] is therefore given by

R (%)=235.5(F /7 )1/?=235.5(Fw /E )'?,

where w =E,_ /7 is the mean energy required to produce
an electron-ion pair.

With our Monte Carlo simulations, we were able to an-
alyze the behavior of R, F, and w with varying x-ray ener-
gy [8,9]. In Table I we list a series of values obtained for
these three quantities where the Fano factor and w were
calculated directly from the simulation and R was ob-
tained from the FWHM of the Gaussian fits to the calcu-
lated spectra (the corresponding spots can be found in
Figs. 1 and 3 in Ref. [8] and Fig. 3 in Ref. [9]). Although
commonly assumed to be constant, the Fano factor and
the w value were found to be x-ray energy dependent,
with discontinuities clearly arising whenever the ab-
sorbed x-ray energy reaches a value just high enough to
allow for a new (inner) atomic subshell to be photoion-
ized. The nature of the dependence of F, w, and R on the
x-ray energy, together with their sensitivity to the shell
structure of the absorbing gas, was fully explained by our
simulation analysis, which enables us to scrutinize the
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contributions of all aspects of the processes involved. In
spite of the fact that in previous experimental GPSC
work clear discontinuities in energy resolution had al-
ready been observed apparently pointing to an energy-
dependent Fano factor [61], and, likewise, distinct breaks
in energy linearity had also been reported in [62-64],
these effects had not been fully understood prior to our
work. Moreover, the magnitude of the discontinuities in
energy linearity which our simulations produced [9] [ex-
amined here in Figs. 13(a)-13(d) for x-ray energies close
to the M, s and L, absorption edges], are in excellent
agreement with the observed experimental values [63,64].
Also, some nonlinearity effects observed in another type
of x-ray detector, a low-pressure gaseous detector based
on electron counting, have also been attributed in part to
the energy dependence of the w values which we have
demonstrated [65].

The distortion observed in soft-x-ray energy spectra
[66—69] was another important topic thoroughly investi-
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gated by our simulation work [11]. It was found that this
effect could be fully accounted for by the loss of electrons
to the entrance window of the detector when the x-ray
penetration depth is small. The detailed Monte Carlo
simulation study we have carried out in the E,, =0.1-5-
keV range [11] has provided a full assessment of the
influence of the applied electric field in the x-ray absorp-
tion zone in minimizing the degradation of soft-x-ray
spectra. As an illustrative example, we show in Fig. 14 a
series of spectra calculated at different electric fields in
the case of E, =715-eV x rays, which at P=1 atm and
T=293 K have a mean path length d, in the gas
[dx,=1/N0pTh(Exr)] equal to 111.8 um. These spectra
are compared with the reference spectrum which was ob-
tained neglecting electron losses: with increasing
electric-field strength the successive spectra get closer to
the reference spectrum, reflecting the gradual improve-
ment in the collection of electrons.

35 1222
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n (47806V)
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FIG. 13. Calculated number of electrons
produced when 10° x-ray photons with energy
E,. (O, 682 eV; M, 697 eV; O, 4780 eV; @,
4785 eV) are absorbed in xenon. In (a) the
break in energy linearity near the M, 5 absorp-
tion edge (683 eV) is shown, similarly in (b) for
E,, near L; (4782 eV). The straight lines are
the linear fits to the various calculated points
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at lower and higher energies (not shown). In
(c) and (d) the energy spectra belonging to the
points represented in (a) and (b) are shown,
where the continuous curves are Gaussian fits
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to the calculated points (spectra are obtained
as frequency plots of the number of primary
electrons produced by the absorbed x-ray pho-
tons). The spectra in (c¢) and (d) reveal that
notwithstanding the fact that E,, increases be-
tween () 682 and (M) 697 eV, as well as be-
tween (O ) 4780 and (@) 4785 eV, a clear shift
of the mean number of produced electrons to a
lower value is evident in both cases, causing
the energy linearity breaks shown in (a) and
(b).
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B. Electron-drift simulations

In parallel with the results obtained when starting with
a sample of x-ray photons absorbed in xenon (which were
summarized in Sec. V A), a second group of results was
obtained by directly ““injecting” into the gas a sample of
electrons (typically 2500) with zero or low initial energy,
which are then allowed to drift in the gas at various E /N
values. For these simulations a more recent and detailed
set of excitation cross sections described in Puech and
Mizzi [43] has been used, and the possibility of the excita-
tion of the 12 discrete excited states considered there was

TABLE I. Mean energy to produce an electron-ion pair w,
Fano factor F, and energy resolution R as a function of ab-
sorbed x-ray energy E,, in gaseous xenon.

E, (eV) w (V) F R (%)
213 24.00 0.193 34.9
300 23.46 0.188 28.4
500 22.70 0.178 21.3
600 22.53 0.174 19.0
682 22.42 0.169 17.5
697 (M) 23.14 0.181 18.3
700 23.19 0.183 18.2
900 22.91 0.183 16.0
970 22.78 0.184 15.4
971 (M) 23.14 0.209 16.6
978 23.17 0.221 17.0
1000 23.01 0.213 15.8
1100 22.91 0.211 15.5
1147 22.88 0.211 15.1
1147 (M{) 22.87 0.209 15.5
1156 22.99 0.231 15.3
1200 22.95 0.234 15.1
1500 22.72 0.229 13.5
2000 22.46 0.213 11.4
3000 22.20 0.197 9.0
4000 22.05 0.192 7.5
4500 22.01 0.187 7.1
4780 21.98 0.184 6.8
4785 (LF) 22.36 0.290 8.3
5000 22.38 0.297 8.3
5100 22.35 0.292 8.2
5105 (L;) 22.42 0.303 8.4
5150 22.43 0.301 8.4
5200 22.42 0.301 8.3
5400 22.39 0.296 8.1
5452 22.45 0.314 8.3
5453 (L{) 22.45 0.311 8.4
5480 22.46 0.318 8.3
6000 22.38 0.304 7.8
7000 22.24 0.282 7.0
8 000 22.14 0.266 6.3
9000 22.06 0.256 5.8
10000 22.00 0.240 5.3
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included. Various transport parameters for electrons in
xenon were obtained, such a drift velocity v,;, mobility
u=vy/E, characteristic energies €, =eD;/u, and
gy, =eD,/u with D; and D, the longitudinal and trans-
verse diffusion coefficients, together with mean electron
energies and distribution functions. The electron drift ve-
locity v,; and the diffusion coefficients were calculated ac-
cording to the definitions

_dz  _1d(’=z>) [ _1dr’
e’ 7' 2 de TN 4 odr
using the slopes of the linear variation of the electron en-

semble averages Z, 22—z 2, and r? with elapsed drift time
t. Here z is the electron position in the direction of the
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electric field (z=0 being the release point of the electrons
at t=0) and r its radial coordinate perpendicular to the
electric field. A representative example is shown in Fig.
15, for the case of a reduced electric field E /N=0.1 Td.
The drift time limit ¢, for each simulation was always
selected according to the observed evolution with elapsed
drift time #: for each E /N considered, t;;;, was kept as
short as possible to save computing time, while guaran-
teeing that € had reached an approximately constant
value, and that similarly z, z2—% 2, and r2 exhibited an
average linear dependence on ¢, in order to guarantee that
results are obtained when equilibrium with the electric
field is reached. As is clear in the example of Fig. 15, a
transient nonequilibrium behavior may be visible at very
low ¢ (open symbols), and therefore in this case and in any
similar one, transport parameters were obtained neglect-
ing this initial phase (relaxation time).

In Figs. 16-20 we present our simulation results for
drift velocity v,;, mobility u, characteristic energies €,
and g, diffusion coefficients D; and D,, and mean elec-
tron energy € Where data were available from the litera-
ture we compare our calculated values with either experi-
mental or Boltzmann analysis results. As shown from
Figs. 16-20 we have obtained very good agreement in
every case.

In addition, for the xenon scintillation range
(E/N~3-16 Td) we present various other parameters
which we have investigated, related to the electro-
luminescence in xenon, which are of special interest for
gas proportional scintillation counters [12,13]. In these
calculations it was assumed that for every xenon atom ex-
cited, a vuv scintillation photon with energy £,;=7.2 eV
was emitted (at P=760 Torr, the xenon continuum emis-
sion is peaked at 7.2 eV [80]).

Total excitation and scintillation efficiencies Q.,. and
Q.. were calculated as
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FIG. 16. Mean energy € of electrons in Xe as a function of
reduced electric field E /N.
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tric field E that is used to produce excitation or scintilla-
tion. Here n is the number of electrons in the sample, z;
is the distance traveled by electron j during the selected
drift time, €., is the energy of the ith atomic excited level
(i=1,...,12), and n} is the number of excitations to the
atomic level i produced by electron j.

The xenon reduced light yield Y /N, defined as the
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FIG. 20. Longitudinal and transverse diffusion coefficients
D;N and D,N for electrons in Xe as a function of E/N: ©
Hashimoto and Nakamura [77]; - - - - Suzuki ef al. [4]; @, ¢
this work.
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average number of vuv photons produced by one electron
per unit length and unit density, was calculated as the ra-
tio
2
J— 1
where n;= 3 n;

i=1

Y/N=(/N)| ¥ n;/ 3z

j=1 j=1

and showed a linear increase with E /N which could be
described by

Y/N (10~ " photons electron™! cm? atom ™ !)
=(13.89E /N —40.20)%3.28

above a scintillation threshold at E /N=2.89 Td, which is
very close to the experimental value [81,82]. For E/N
larger than ~ 18 Td, the simulations showed the xenon
ionization started to occur, confirming experimental re-
sults for the ionization threshold [81,82] (Y /N is expect-
ed to deviate from the linear behavior described above at
higher electric fields due to electron multiplication).
Other characteristic parameters of interest for gaseous
scintillation detectors have been calculated, together with
their statistical fluctuations, namely the average distance,
time interval, and number of elastic collisions between
successive excitations. These parameters, as well as the
calculated excitation and scintillation efficiencies and re-
duced light yield, are listed in Table II. We observe that
for the larger reduced fields the efficiency for conversion
of electrical into optical (scintillation) energy is close to
80%, which might be of practical importance in the pro-
duction of high-efficiency vuv sources; on the other hand,
the large number of elastic collisions between successive
inelastic collisions (which produce the scintillation pho-
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FIG. 21. Mean time interval between electron—Xe-atom col-
lisions: @ Monte Carlo simulation, —1/v(e). The electron en-
ergy distribution functions f(¢) for E/N=0.03, 0.2, and 14 Td
from Monte Carlo simulation are also outlined.
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TABLE II. Electroluminescence parameters in gaseous xenon as a function of £ /N.

Excitation and Reduced
scintillation light yield Reduced average distance and time, and average number of
efficiencies Y/N elastic collisions between successive excitation collisions
E /pro; (10~ photons AZ N

E/N (Vem™!' Qe O.i electron ™! (10'® atom AT N AN,
(Td) Torr™!) (%) (%) cm? atom™!) cm™?) (10" s atom cm™?) (10° elastic collisions)
2.00 0.66 0.05 0.04 0.0140.21
3.00 0.99 5.30 4.59 1.73+£2.36 89.30+33.00 44.00+£57.67 857.80+1132.00
4.00 1.32 26.90 23.28 11.08+8.28 31.40+7.64 19.86+15.72 460.55+368.72
5.00 1.65 48.68 42.11 27.29+8.89 24.20+4.67 14.32+9.48 353.7+226.12
6.00 1.98 63.44 54.86 44.52+6.41 17.10+3.02 7.09+3.77 183.44+93.27
8.00 2.64 78.60 67.84 74.76+4.14 12.10£0.90 2.85+0.74 77.98+£18.91
10.00 3.30 85.96 73.98 102.41+2.84 9.12+0.59 1.62+0.30 45.34+7.91
12.00 3.96 90.08 77.20 128.50+2.08 7.49+0.38 1.07£0.15 30.18+3.94
14.00 4.46 92.68 79.07 153.68+1.37 6.60+0.47 0.76+0.07 21.80+2.01
16.00 5.26 94.20 80.00 177.37+1.65 5.49+0.23 0.58+0.06 16.82+1.64

tons) emphasizes the importance of the gas purity. The
spacing between periodic excitation regions (the so-called
luminous layers [83]) is also exhibited in our results, a
spacing which is seen to decrease with increasing E /N,
i.e., with the increasing excitation efficiency.

In Fig. 21 we present the calculated mean time interval
between electron-xenon collisions, calculated for a series
of increasing E /N values, versus the corresponding cal-
culated mean electron energy € The maximum located
near 1 eV is related to the minimum in the electron col-
lision frequency v (e)=oc(e)Nv (v is the electron velocity)
due to the Ramsauer minimum in the scattering cross
section o®(¢) (located at ~0.8 eV).

In Fig. 21 we illustrate the fact that in this region the
simulation values differ substantially from the corre-
sponding 1/v(e=F€) values, which are represented by the
solid line. Since near the Ramsauer minimum electrons
have very long free paths and the collision frequency
varies very rapidly, the energy distributions tend to be
very broad, and therefore the mean electron energy will
not provide a reliable measure for the general behavior.
To illustrate this, some calculated electron energy distri-
butions are also given in Fig. 21, at some typical E/N
values (very low, 0.03 Td; intermediate E /N allowing for
electron energies near the Ramsauer minimum, 0.2 Td;
above the scintillation threshold, 14 Td).

Finally we would like to comment on the earlier calcu-
lations where a unidimensional model was used to calcu-
late some electroluminescence and drift parameters in no-
ble gases [14]. Where there were common results, a de-
tailed comparison with the present three-dimensional
simulations is made in [13]. However, we can say that
above ~11 Td these results tend to deviate from the ex-
pected behavior, namely drift velocities are too low, and

light yields do not show linear behavior. This is attribut-
ed to the simplicity of the unidimensional approach and
to the crudeness of the inelastic-scattering cross sections
adopted in that work.

VI. CONCLUSIONS

In this paper we have described in detail our Monte
Carlo simulation model which we have used to study the
characteristics of xenon-filled gaseous detectors and the
physics of the processes involved. A number of typical
results have been presented which show the power of the
Monte Carlo method in being able to model detailed
atomic processes which occur in these detectors. Our re-
sults have led to a more complete understanding of the
behavior of such detectors and how they can be operated
in an optimal manner. Further work is already under
way, namely the extension of our work to the case of
xenon-filled proportional counters. Also planned is a
study of the influence of the position and depth of the
Ramsauer minimum on the values of electron transport
parameters, as well as a study of electron relaxation time.
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