
PHYSICAL REVIEW A VOLUME 48, NUMBER 4 OCTOBER 1993

Single-particle potential for photoexcited electron orbitals of open-shell atoms
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A single-particle potential for the calculation of photoexcited electron orbitals is introduced. This po-
tential is defined to include exactly all of the first-order electron correlations that appear in the diagram-
matic perturbation series of the dipole polarizability and that contain potential corrections in the inter-
mediate state. The angular coefficients that are associated with this potential can be written in the form
of an average term plus a correction to the average. It is demonstrated that the correction to the average
contribution is dependent only upon the initial-state coupling of the atom. Additionally, a trivial rela-
tionship exists between the correction to the average contributions for conjugate initial-state
configurations. The angular coefficients are tabulated for all of the s", p", and d" initial-state LS cou-
plings that are possible. Supplementary analytic relationships are also presented.

PACS number(s}: 32.80.Fb

I. INTRODUCTION

E= E E sic

—i cot+ i co*t2' 2'
and if we use the variable P to represent the induced elec-
tric dipole moment of the atom, then the diagonal com-
ponent of the frequency-dependent dipole polarizability
a(co) is a measure of the linear response of the atom to
the external field in the following manner:

The interaction between an open-shell atom and an
external time-dependent electric field is analyzed in this
paper. Specifically, an investigation is made in order to
define a general single-particle potential for photoexcited
electron orbitals.

A previous investigation into this problem was made
by Qian, Carter, and Kelly [I] (QCK). The analysis in
the QCK paper was performed within the framework of
many-body perturbation theory and examined the first-
order corrections that appeared in the perturbation series
of an exact dipole matrix element. This paper will differ
from the QCK paper in two respects and arrive at slight-
ly different results: the definition of the potential in this
paper will be established using the first-order diagram-
matic perturbation series of the dipole polarizability; ad-
ditionally, the analytic expressions of the angular
coefficients that are associated with this potential will be
presented.

The dipole polarizability of an atom is an important
parameter describing the interaction between the atom
and an external field. For example, if we have the follow-
ing external electric field:

II. ALGORITHM FOR THE POTENTIAL

The Hamiltonian for an atom of nuclear charge Z con-
sisting of %electrons in an external field has the form

H =Ho+H, + V„, ,

with

(3a)

photoionization [3], and the London dispersion forces be-
tween two atoms [4].

In the previous calculations where the QCK potential
for open-shell atoms has been used, the appropriate angu-
lar coefficients of the potential that is introduced in this
paper and the QCK potential are very close, quantitative-
ly. This property can be attributed to the similarity of
the initial step in both definitions. Despite this similarity,
the analytic properties of the potential that is introduced
in this paper are not shared, and do not have counter-
parts with the QCK potential. One of the most
significant properties is that the angular coefficients can
be written in the form of an average term plus a correc-
tion to the average. It will be shown that the correction
to the average contribution is dependent only upon the
initial-state coupling. Additionally, it mill be demonstrat-
ed that a trivial relationship exists between the correction
to the average contributions for conjugate initial-state
configurations.

Section II of this paper reviews the algorithm for the
construction of this potential, Sec. III presents some of
the analytic properties that are associated with this
definition, and the conclusions are presented in Sec. IV.
Additionally, a class of the angular coefficients that are
associated with this potential is tabulated for all of the s",
p", and d" initial-state I.S couplings that are possible.

P= a(co) e ' '+a*(co) e' ' z .
2 2

(2)

The physical processes that can be investigated with ac-
curate calculations of a(co) include the ac Stark shift [2],

N
Ho= g

p2

2
z N——+V, =gh;,

I i=1
(3b)
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and

N 1 N

H, = g —g V, ,
ij =1 iJ i=1i(j

(3c)
V —V(HF)+ 1 y y & & y ~ ( V(N —1) V(HF) )

x 1 —y~y. &&y. ~
(7a)

V„,= (3d)

The potential V, defined in Eq. (7a) will have the follow-
ing properties with respect to the core ~P, & and excited
~P„& orbitals:

Throughout this paper, atomic units will be used except
where it is noted to be otherwise. The analysis will follow
the formalism of the many-body perturbation theory
(MBPT) of Brueckner [5] and Goldstone [6] as it has been
applied to atoms [7,8]. Additionally, the results will be
presented within the context of LS coupling.

The expression in Eq. (3d) represents the perturbing
inhuence of the external electric field of Eq. (1). The in-
teraction Hamiltonian V,„, that is shown in Eq. (3d) is in
the length gauge.

The variable V; in Eqs. (3b) and (3c) is a single-particle
Hermitian potential that will approximate the Coulomb
repulsion between the electrons in the atom and that will
render the zeroth-order Hamiltonian Ho solvable:

/

V(HF)/y

&y„V, ly„&=&y„/V,' -"fy„&,

V(HF)
/ y

ancl

V ~y &
V(N —

1)~y

~(V'N "—V' "') y &

(7b)

(7c)

(7d)

(7e)

A general form of the potential V; that will be under
consideration is [9]

N
V —V(HF)+ 1 y ~y & & y ~

( V(N —1) V(HFj)

In order to obtain Eqs. (7b) —(7f), the condition
& P, ~P„& =0 has been used. This orthogonality condition
is an automatic result of the fact that V; is a Hermitian
potential, provided that E,&s„.

Notice that the definition of the potential V; given. in
Eq. (7a) allows one freedom in the choice of the V,

'

potential for the excited orbitals. There are an infinite

x 1 —y ly, &&y, l

'0

a" „~r + (corrections) = a" „r

This potential is Hermitian. The operator V,
' "' is the re-

stricted Hartree-Pock potential for the X orbitals that are
occupied in the initial state of the atom

j P; ~i H (1, . . . , N ) I. The operator Vl " is an arbitrary
frozen-core Hermitian potential for the orbitals that are
not occupied in the initial state of the atom

IP, ~i E(1, . . . , N)I.
The X electron orbitals that are occupied in the initial

state of the atom are referred to as core orbitals and are
indicated by the use of the subindices a and 6, or

(6a)

The remaining solutions of Eq. (4) that are not occupied
in the initial state of the atom are referred to as excited
orbitals and are indicated by the use of the subindex r, or

(6b)

The use of the subindex i will indicate a summation over
both the core and excited orbitals

u [y. ] = Iy„I u [yb I (6c)

The use of the a, b, r, and i subindices follows that of
Lindgren and Morrison [8]. Using this notation, Eq. (5)
can be rewritten as

'0

+ +
a" .-- b

b
a"

'0

+ a" lir +

a",
( r

'0

FIG. 1. The lowest-order Brueckner-Goldstone diagrams
that contribute to the dipole polarizability and that contain di-
agonal corrections on the particle line. The expansion used here
was developed by Kelly [12]. The time ordering of these dia-
grams proceeds from the bottom to the top. The solid lines with
arrows refer to the orbitals in the basis set, and the direction of
the arrow signifies the occupation status of the respective orbit-
al. In the initial state of the system, all of the core orbitals are
occupied and none of the excited orbitals is. An arrow pointing
down indicates an unoccupied core orbital and an arrow point-
ing up indicates an occupied excited orbital. A dashed line con-
nected to a small circle indicates a dipole interaction. A dashed
line that connects two sets of arrows indicates a Coulomb in-
teraction. The dashed line that is connected to the symbol in-
dicates an interaction with the potential —V;. To define the po-
tential, we require that the first-order terms, which contribute
to the (corrections), cancel.
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number of potentials V;, therefore, that can be defined
over all of the orbitals IP; & and that behave as a restrict-
ed Hartree-Fock potential V,.

' "' when operating on the
core orbitals IP, &, as indicated in Eqs. (7b) and (7e). The
di6'erence between the definitions of the potential V; that
are possible is the result of their operation on the noncore
orbitals, as indicated in Eqs. (7d) and (7f). The purpose of
this paper is to provide an explicit choice for the poten-
tial V " such that certain classes of MBPT diagrams
within the perturbation series of the dipole polarizability
are automatically cancelled. The use of two potentials in
a MBPT calculation, such as V "' and V ", has been
discussed by Ishihara and Poe [10]. They used the term
"multiple basis set" in order to refer to the partitioning of
the core and excited orbitals that occurs in Eqs. (7b) —(7f).
Furthermore, Ishihara and Poe demonstrated, with a cal-
culation of the photoionization cross section of helium,
that the proper choice of a V " potential could im-
prove the convergence of a calculation [11]. In this pa-

per, the basic algorithm for the construction of the poten-
tial V,

' "will be derived through an analysis of the per-
turbation series of the dipole polarizability a(co). The di-
agrammatic series for a(co) as developed by Kelly [12]
will be used.

Some first-order corrections within the perturbation
series of the dipole polarizability are shown in diagram-
matic form in Fig. 1. These corrections are with respect
to the correlation Hamiltonian H, of Eq. (3c) and contain
diagonal insertions on the particle line. The horizontal
lines that end in open circles indicate dipole matrix ele-
ments. The horizontal lines that connect two sets of ar-
rows indicate a Coulomb interaction r &z, and the dashed
line that connects to the symbol (3 indicates an interac-
tion with the potential —V, . According to Eq. (7d), the
specific matrix element will be with respect to the poten-

& t„I

—v; I y, &
=

& y, I

—v ~ "Iy, &

ing wave functions composed of single determinants, Fig.
1 represents the following mathematical expression:

—lim & &P, lzlg„&&&„lzlg, &

1 + + (corrections)
1

o+,„' " " '
E, —E„+omega +iq) (E, —E„—co —ig)

+o+,„' " " ' (e, —E„+co+i') (e, 8„co i')— — —

—lim g &P, IzIP„&&/„(1)P (2) r, ' IP„(1)P (2) &&/, lzlg, &

a, r, b

a, r, b

+& &4. zlzz, &&A, (i)4.(2)lri2'IP. (I)4,(2) &&4, lzlg. &

a, r

—g & P, Iz IP„& & P„(1)P,(2) ~r i2' P„(1)P,(2) & & P„z IP, &

a, r

a, r

(8a)

The definition of V,
' " can be established by requiring that the terms, which contribute to the (covrections) in Fig. 1

and Eq. (8a), sum to zero. With this condition, one obtains the algorithm

1

a', r'
a'E

I nl I

X y &y. Izly„&[& y„(i)y, (2)lr,—,' Iy„(i)y, (2) &
—&y„(i)y„(2)lr,—,' Iy„(i)y„(2)&

a, r, b
a c I nl I

+ & P„(1)P,(2)
I
r ~q' IP, (1)P„(2)&

—
& P„(1)P,(2) lr i2' IW, (1)P,(2) & ] & 0, Iz I P, & .

(8b)

Notice that the summation over the index a has been restricted to a summation over the single-particle magnetic (mi)
and spin (m, ) quantum numbers of a given subshell of the atom (subshell nl) This is du. e to the degeneracy of the
single-particle energy eigenvalues c, for the orbitals within the subshell nl. Notice, also, that the potential is a scalar
operator and it should be independent of ml and m, values. This dependence can be factored out for the interactions
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from a given subshell and is why the summation over the r index can be moved to the denominator on the right-hand
side of Eq. (8b).

Equation (8b) is in terms of wave functions composed of single determinants. In terms of the multideterminant LS
coupled initial state

I G (Mr ) &
= I(nl)~LSD Mr Ms &,

and an LS-coupled final channel

IF(~) &
= l«nl)' 'LrSryr ElF )LFSF7 FMLMs &

Eq. (8b) can be rewritten

& G(M,' ) C,' I

F'(S') & & F'(r') C,' I G(M,' ) &

F', I', M

& G (M, ) coi
I
F(r) & & F(s)

I
r i2' F (J) & & F (J ) I

coi
I G(M, ) &

F,I,J,M
& V '(nl)~:LSy; (nl, elF ) &

=

(9a)

(9b)

(9c)

where Co is the spherical tensor operator appropriate to the dipole interaction [8]. The radial dependence and, there-
fore, the gauge dependence of the matrix element of the external field has been factored out. Notice that the potential
depends only on the initial-state coupling and on the interaction between (nl, ElF ). There is no dependence on the cou-
plings LF,SF,yF, or Lr, Sr, yr from Eq. (9b).

The algorithm that is shown in Eqs. (8b) and (9c) differs slightly from the algorithm that was introduced in the QCK
paper. For notational sake, the QCK potential will be denoted by & & V '

&. The algorithm for the construction of the
potential (, & V '& is [1]

g &«Mg)ICOIF(I) &&F(I)l~„'IF(J)&&F(J)ICOIG(M, ) &

g& V '(nl)qLSy;(nl, ElF)&=+
M~ g & G(Mr ) IC0 F'(I') & &F'(I')I Co I 6(Mr ) &

F', I'

(10)

In the analysis in the QCK paper, the perturbation expansion of the dipole matrix element was used and the terms in
this expansion are Mr dependent. The treatment of the variable Mr in Eq. (10) was introduced in order to remove this
dependence.

The & & V '
& potential has been used to generate excited orbitals of open-shell atoms in the past. In particular, it

has been used in photoionization calculations of chlorine [1],yttrium [13],sulfur [14], and tungsten [15]. It is found in
practice that the potentials defined in Eqs. (9c) and (10) are approximately equal, & V '&=&& V '&, for the
Ace+ n (l)~E( l + 1) transitions. In the case of tungsten [15], the largest difference between the definitions & V & and

&& V '& for the A'co+5d~Ef transitions is of the order

I & V '5d D;(5d, Ef ) &
—

&& V '5d D;(5d;Ef ) & I

max =1% .
I&& V '5d": D;(5d, Ef)&I

The analytic properties of & V '& will be examined in
this paper rather than the properties of & & V '

&. One
of the most significant analytic properties is that a unique
average can be defined for & V '

& that extends over all
of the initial-state configurations and couplings. There
does not exist a similar relationship for & & V '

& as
defined in Eq. (10). Exact analytic expressions for the an-
gular coefficients that are associated with & V '

& will be
presented in Sec. III for atoms with multiple open sub-
shells in the initial state. Supplementary analytic rela-
tionships will also be presented.

III. ANALYTIC PROPERTIES OF THE POTENTIAL

A complete derivation of the analytic properties that
are presented in the paper can be found in Bayle [16].
The derivations were made beginning from Eq. (9c) and
using the graphical technique of angular momentum cou-
pling. Useful references for this technique are Lindgren

I

and Morrison [8] and Yutsis, Levinson, and Vanagas
[17].

The results of this section will be presented within the
context of photoexcitation. The photoionization cross
section o (co) is related to the frequency-dependent dipole
polarizability in the following manner [3]:

o (co) = 1m[a(co) ],4&CO
(12)

where c is the speed of light. Although the discussion of
the physics in this section is from the standpoint of pho-
toexcitation, the potential V,

' " is defined from the
standpoint of the polarizability, and will be useful for the
calculation of any physical quantity that can be deter-
mined from an accurate calculation of the polarizability.

The following process is considered for an atom with a
single subshell in its initial state:
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&~+1(n.l. )':L.S.y. & ~ l(n. l. )':LtSiyI &

+ 1&(a)1(a) ) (13)

In Eq. (13), the initial state of the atom is represented by

1(n, 1, ) ':L,S,y, ). The variable y, represents any addi-
tional quantum number that might be necessary to com-
pletely specify the initial state, for example, a Racah
seniority number. A possible ionic core left behind
by the exiting electron is represented by

1(n, 1, ) ':LISIyI ). The index I is used to indicate that
I

there may be many parent LS couplings that are possible.
The electron that is photoexcited from the initial state is
represented by Ie'„'1„").The superscript a is used to in-
dicate that the excited electron originated from subshell
(a), which was indicated by the subscripts on

(n, l, ) ':L,S,y, ).
The ( V ') potential for the excited orbital IE'„'1„")

is defined such that the (corrections) in Fig. 1 sum to zero.
For the potential interactions between the excited elec-
tron IE'„'1„")and the subshell from which it originated

1(n, 1, ) ':L,S,y, ), the algorithm of Eq. (9c) yields [16]

( V '(n, l, ) '.L,S,y, ;(n, l„E„"1„")

(
—1) ' '(q, —1)[l„l„l„"]Q[Lq,LI ]

PP' PP'~I'P'
, SI r

J' J'~J'

qa q
—1 q

—1 2
X(1,'LSy[11,' L S y, l )(I, ' L S y I11,' L S y, l )

q~ 2 q
—1 q

—1 qaX (1 LppSppypp 1
I ] I LJSJy J )( 1 LJS~y~ 1

I I 1 L S y )

X ' ~ ~

I l l L LI LJ Lpp LI LJ

l l ~ l" l"
a a ~ r r

X F (n l aiEaI li )5(SIySJ )
O O 0 () () 0

+ g (
—1) ' G"(n, l„c,'„'l„")[)~]Q[Sz,St]

SJ
S

I
2

1

2

S, j',

S
l,
l" nT

(14)

The notation for the multiplicity of an angular rnomen-
tum value j that is used in Eq. (14) is

I:jl =(~j+1»

lj( j~]=(~J)+1)(2j2+1» (15b)

and so on. The q, are the initial-state occupation
numbers of the subshell n, l, . The
variables (1,'L, S,y, [11,' LIStyI, l, ) and

q
—I 2

(1 LtStyt [ 11 LppSppypp 1 ) are coefficients of
fractional parentage. The variables Lpp, Spp, and ypp are
the total orbital angular momentum, the total spin angu-
lar momentum, and any additional quantum numbers
that may be necessary to completely specify the
grandparents of the initial state 1(n, l, ) '.L,S,y, ). No-
tice that independent summations are carried out over
the parents of the initial state, as indicated by the
separate summations over the LI,SI,yI, and LJ,Sz, yz in-
dices. Additionally, the quantities F and 6' are the usu-
al F and 6 radial Coulomb integrals:

and

K

F (n;1;,n 1)=f dr, f dr. 2P„((ri )P„( (rz)
i I J J p

XP„((r()P„)(r2, ) .
t t J J

(15c)

K

G (n;1;,n 1 )= jdr( Jdr2P„((ri)P„((r2)ii JJ
XP„((r, )P„((r2) .

J J t

In Eqs. (15c) and (15d), the quotient P„((r) Ir is the radi-
i t

al portion of the orbital P;, and the subscript ( ( ) ) on
the variable r indicate the use of the lesser (greater) of r,
and r2. Notice that Eq. (14) is for the diagonal matrix
elements of the potential ( V( ''), and not the single-
particle operator V,

' ". If we are considering the
single-particle operator

(15d)

V„'=g [q, c(r, a, ~)J„& +q, d(r, a, ~)K„( ],
K, Q

(16a)

then we will use the following notation for the diagonal
matrix elements with respect to the excited orbital
I

E(a)1(a) ).
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(E'„'l„"iV„'~e'„'l„")=g [q, c(r, a, ir)F'(n, l„e", 1„")+q,d(r, a, )r)G "(n, l„s'„'l„")]
K, a

=y ( V"-'(n. l. ,"'l„")&

a
where we have used the following properties of the radial operators J„"I and K„& ..

a a a Q()()()()()
Er r n I ~r r na a&~r ra a

(16b)

(16c)

(17a)

( ()()~ ()() — ()()
Er r n I ~r r na a~~r ra a

(17b)

In Eqs. (16a)—(16c), the coefficients c (i j,)r) and d (i j,x ) are the angular coefficients that are associated with the poten-
tial V; operating on the orbital p;. The use of the c (i,j,z) and d (i,j,ir) coefficients follows that of Lindgren and Mor-
rison [8].

Throughout this paper, the diagonal matrix elements of V( "are determined, and it is assumed that the excited or-
bital ~E'„'l„")occupies an initially vacant subshell. This condition will be true for excitations into the continuum.

Next, the photoexcitation transitions for an atom that contains two open subshells in its initial state will be con-
sidered:

&~+l((((n, l, ) ':L,S,y )(nblb) '.LbSbyb)L, bS,b) (((n, l, ) ':Lp Sp 'yp")(nblb) 'L~Sbyb)L, 'b'S,'„')+ E'„'I„") .

For the potential interactions between the excited electron and the subshell from which the electron originated [subshell
(a)], one obtains [16]

( V '(((n, l, ) ':L,S,y, )(ni, lb) ':LbSbyb)L, bS,b, (n, l„E'„'l„")) = ( V '(n, l, ) '.L,S,y, ;(n, l„e(„'I„")). (19a)

This demonstrates that Eq. (14) is a general result for the electrons that are interacting with the subshell from which
they originated. Subshell (b) acts as a bystander for the (n, l„E,'„'l„")interaction.

For the potential interactions between the excited electron and a subshell from which the excited electron did not
originate [subshell (b)], one obtains [16]

( V '(((n, l, ) ':L,S,y, )(nbl(, ) '.LbSbyb )L,bS,b;(nblb, E'„'l„"))
i+i( )+L(b)+i

(q„)(—1) "[L„Lb,l„lb, l„(']
(b) (b) (b)ip

I (a) g(a) (a)
p ) p ~Pp

K

X (l, 'L,S,y, [ ~/,
' L "Sp"yp", l, )(l, ' Lp"Sp"y'p ', l, ~ I l, 'L, S,y, )

X(lb"L)S(yb[Ilb Lp Sp yp l(, )(lb Lp Sp yp lbl Il,'"L,S,y, )

a a a a b b a a

r Lp La La Lp Lb Lb Lab Lb Lb

Ib lb
X F (n, i„e(„'l„")

~( ) ~( )
r r

0 0 0

n —S"—S(b)+S+g ( —1) '"G (nb l E"l")[S„Sb,)r ]
0

(a)
-

((a) )(a)
- S, Sb

r + r r
X 0 0 0 0 l l

' S S

(20)

(19b)

Next, the photoexcitation transitions for an atom that contains three open subshells in its initial state will be con-
sidered:
Rco+ ~(((((n, l, ) '.L,S,y, )(nblb ) '.LbSbyb)L, bS,b )(n, l, ) ':L,S,y, )L,b,S,b, )

~ ~((((( nl, ) ':Lp"Sp"yp )(nblb) "LbSbyb )L,'b)S,'b')(n, l, ) 'L, S,y, )L,'b,'S,'b,'+ ~c'„'l„") . ,



2866 JAMES J. HOYLE

For the potential interactions between the excited electron and the subshell from which the electron originated [subshell
( a ) ], one obtains, again [16],

( V '(((((n, l, ) '.L,S,y, )(nblb) '.LbSbyb)L, bS,b)(n, l, ) '.L,S,y, )L,b, S,b, , (n, l„s(„'l„"))

=( V '(n, l, ) '.L,S,y, ;(n, l„E'„'1„")). (2la)

For the potential interactions between the excited electron and subshell (1)), one obtains [16]

( V '(((((n, l, ) '.L,S,y, )(nblb) '.LbSbyb)L, bS,b)(n, l, ) '.L,S,y, )L,b, S,b„'(nblb, E'„'1„"))

=( V '((n, l, ) '.L,S,y, )(nblb) '.LbSbyb)L, bS,b, (nblb, E'„'1„")). (21b)

Equation (21b) demonstrates that Eq. (19b) is also a general result for two subshells that are coupled together.
Finally, for more complicated couplings and interactions in the initial state of the atom, the ( V ') potential is ob-

tained by a simple recoupling transformation over the initial state of the atom. For example, the potential interaction
between the excited electron and subshell (c) for the transition depicted in Eq. (20) can be written as [16]

( V '({({(n,l, ) '.L,S,y, )(nblb) '.LbSbyb)L, bS,b )(n, l, ) ':L,S,y, )L,b,S,b, , (n, l„E'„'1„"))
Lb Lab L~ Sb Sab S~

X [ ab~Sab& ac&Sac ]
L S c ac abc c ac abcac' ac

X ( V '(( ( n, 1, ) ':L,S,y, )( n, 1, ) '.L,S,y, )L„S„;( n, l„E'„'1„") ) . (2lc)

Equation (21c), again, displays the general nature of the result derived in Eq. (19b).
The extension to atoms with four or more open subsells in the initial state is obvious.
Next we examine some of the analytic properties of the algorithm that is presented in Eq. (9c). A definition of an

average ( V ') potential can be arrived at by using as weighting factors the L and S degeneracies of the initial-state
configuration, and by normalizing over the number of electron pairs that are interacting:

[L„S,]( V '(n, l, ) '.L,S,y„(n, l„E'„'1„"))
y , L , S

( V -'(n. l. "'1„") ) = " " '
(q, —1) g [L„S,]

y, L,S

(22)

and

[L,b, S,b]( V '(((n, l, ) ':L,S,y, )(nblb) ':LbSbyb)L, bS,b;(nblb, c„"1„"))
ab' ab(V '(n 1 E"1") )=

(qb) g [L,b, S,b]
ab' ab

With the definitions that are shown above and for all initial-state configurations and couplings, one obtains [16]

( VN —i(n 1 .E(a)1(a)) ) Fo(n 1 &(a)1(a))
2[1, ]

a a~ r r av (41 +1) a a r r
a

(23)

t( )

o 0 o G (n, l„s"1„")

+X ] 1 1 1 0 Q Q 0 Q(41 +1) ' "
a a

and [16]

t( )

3(41, +1) ' " " (24)

t nt"
(a) (~)( V '(nblb, 'E(„'l„"),„)=F (nblb, E(„'1„")——g2 Q

G"(n 1 "'1") (25)
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Notice that one of the important difFerences between the average ( V '(n, I, ;c'„'I„"),„) and a Slater average for non-
equivalent electrons is the possibility of a positive coefficient for the exchange term 6'(n, l„c'„'I„").In fact, a quick
analysis of Eq. (24) demonstrates that the coefficient of the exchange term 6'(n, l„c(„'I(')) in ( V '(n, l„c(„')I('),„)
wi11 be negative only if I,"=0.

Equations (24) and (25) represent normalized results for the case when the atom consists initially of closed subshells.
In this case, the singly excited I.S-coupled channel is uniquely determined:

A~+~(n. l. ):L=0,S =0) ~(((n. l.):I., —,')c'„'I„")'P) . (26a)

Equation (24) represents the following identity:

( V'"-"(n.l. ):O,O;(n. l. , "„'I„"))
(41, +1)

((((n.I.):l., —,
' )"„'I„")'P~r,—,' ~(((n.I. )

(41, +1) (26b)

where the equality in Eq. (26b) is only over the (n, l„c'„'I„")interaction. That is, the value of the matrix element
( V '(n, l„'c'„'I„"),„) is equal to the excited orbital potential for transitions from a closed subshell, divided by the
number of electron pairs that are interacting: 41, + 1. The value of the matrix element ( V '(nblbc' ,'I„"„)),„is equal
to the Slater average for nonequivalent electrons.

In special cases, for transitions from a subshell with a single electron [16],

( V '(n, l, ):I, ,';(n—,l„c'„'I„"))=0,
for transitions from a subshell that has one less electron than a closed subshell [16],

( VN —i( I )
a .I ) .

( I (a)1(a)) ) (41 )( VE —i( I . (a)I(a)) ) (28)

for transitions from a closed subshell [16],

( V '(n, l, ) ':0,0;(n, l„c'„'I„")),=(41, +1)(V '(n, l, ;c'„'I„"),„),41 +2

for the interaction between two subshells, with one subshell closed [16],

( V '(((n, l, ) ': 0, 0)( nbl() 'LbSbyb)L. bS(„(nbl(„c'„'I„"))=qb( V '(n/, li„c'„'I„"'),„),
( V '({(n,I, ) ':L,S,y, )(n&Ib ) ':0,0)L,S, ;(nblb, c'„'I„")) =2[1&]( V '(n&lb', c(„'I„"),„),

and for open subshells that are coupled to a single s electron in the initial state [16],

( V '(((n, l, ) '.L,S,y, )(nblb =s):0—,')L,S,+—,';(n„s, c,'„'I„"))
1 1(a)=F (n&s, c"I„")—,(q, —1+[S,])G" (n&s, c„'I„")

~a r

and [16]

( V '(((n, l, =s):0—,')(nblb) '.LbSbyb)LbSb+ ,';(nblb, c'„'I„"=—p))

(29)

(31)

(32)

Ib 0, 1

F (n(, lb, c'„'p) —~ 0 0 0 (qb
—1+[Sb])G (nbl(„c'„'p)

2gb
(33)

Equation (28) utilizes the fact that a closed subshell minus one electron will have a unique Ls coupling in the initial
state: I„—,. Therefore the ( V ) potential for such an initial state, according to Eq. (22), will be the excited orbital
potential for transitions from a closed subshell, multiplied by the scaling factor 41, /(41, +1). Using Eq. (26b), this ap-
pears as

( V '(n, I,):I,—,';(n, l„c'„'I„"))
4l,

( V '( n, I, ) ':0,0; ( n, l„c'„'I„") )
a

4l, 41 +1
( ) ( )((((n, l, ) ':I„—,')c.'„'I„")'P~r,2' ~(((n, l, ) ':I„—,')c'„'I„")'P) .

a
(34)
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The relationships that are indicated by Eqs. (22)—(25) are very powerful results, and are useful for the implementation
of & V '). For example, using Eq. (22), the definition of a correction to the average & V '& potential can be estab-
lished:

&bv '(n, l, ) '.L,S,y„'(n, l„E'„'l„")& =
& V '(n, l, ) '.L,S,y, ;(n, l„E'„'I„")& (q—, —1)& V '(n, l„E'„'l„"),„& .

(35)

For conjugate configurations in the initial state, it has been proven that [16]

& b, v '(n, l, )
' ':L,S,y, ;(n, l„E'„'l„")&=

& b, v '(n, l, ) '.L,S,y, ;(n, l„EI't„")& .
4I, +2—q,

(36)

Table I contains the values of & V '(n, l„'s'„'I„"),„& for I, =s, p, and d electrons. Table II contains the values of
& b, V+ '(n, I, ) ':L,S,y„(n, l„c'„'l„".) & for all of the initial-state p and d couplings up to and including half-filled sub-
shells. The contributions to the potential for the s configurations are determined from Eqs. (27)—(29).

For the case q, (2l, +1, the & V '
& potential is given by

& V '(n, l, ) '.L,S,y„(n, l„s'„'l„")& =(q, —1)& V '(n, l, ;E'„'I„"),„&+& 6.v '(n, l, ) '.L,S,y, ;(n, l„E'„'l„")&,

which can be constructed from Tables I and II.
For the case q, )21, + 1, the & V '

& potential is given by

& V -'(n. I.)':L.S.y. ;(n. I., E(„'i„")&

=(q, —1)& V (n, l„s„'l„"),„&+I)() ~+ q x —i 4'+~
&b, v '(n, l, )

' '.L,S,y, ;(n, l„E' l„")& .
qa

(37)

(38)

again, which can be constructed from Tables I and II.
In the perturbation expansion of the dipole matrix elements, the diagrams which the & V '

& potential does not can-
cel in the final state are shown in Fig. 2. In Fig. 2, an excited orbital has been labeled with the core index a in order to
indicate an excitation into one of the unoccupied mi"', or valence, orbitals of the open subshell n, l, . These diagrams
will occur only in open-shell systems. In order to determine the angular contribution from the diagrams in Fig. 2 to a
particular LS-coupled final channel iF (I) &, the following formula from perturbation theory can be used:

[angular contribution from the diagrams in Fig. 2 to the channel ~F(I) &]

=& &+(I)Ir12 IF(J)&&+(~)IZ.pIG(M&) &
—

& V '(G);(~I, EI~) &&F(I) Z, ~G(Mg) & .J (39)

The analytic relationships discussed in this section make the &
V+ '

& potential very easy to apply For example
us consider the ground state of fluorine: [He]2s 2p . Let us suppose that we are interested in constructing the & V
po«ntial for the excited sd orbital for transitions from the 2p subshell. According to Eq. (28), the & V '

& contribu
tion will be given by

"V-' 2'pI( 2,pE)d&= &4V~ '(2p; d),„&.
From Table I, therefore,

TABLE I. The & V 'll, ;l,"),„& contribution to the single-particle potential as defined in Eqs. (22)
and (24) for l, =s, p, and d electrons. The coefficients in this table were obtained by evaluating Eq. (14)
for all s, p, and d initial-state configurations and couplings, and then performing the averaging pro-
cedure indicated in Eq. (22). The results were then checked against the analytic results indicated in Eq.
(24). Notice that one of the important differences between the average ( V '(I„'I„"),„& and a Slater
average for nonequivalent electrons is the possibility of a positive coefficient for the exchange term
G'(l„l„' ').

F (l„l„") 6 '(l„l„' ")
( V& i(I /") )

F (l„l„") G'(l„l„") F (l„l,") G'(l. , l„")

p
p
d
d

S

d

1

3—1

15
14
75
2

27
11
63

—1

25—1

45—8
315

—9
175—1

21—4
189

—2
189

—50
2079
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TABLE II. The (AV~ '1,'.L,S,y„(1„1„"))contribution to the single-particle potential as defined
in Eq. (35) for l, =p and d electrons up to and including half-filled subshells in the initial state. Equa-
tion (36) provides the relationship necessary to deduce (AV '1,'.L,S,y„(l„l,")) for the subshells
that are more than half filled in the initial state. The general case l', =s is covered by Eqs. (27)—(29) and
Table I. The coe%cients in this table were obtained by evaluating Eq. (14) for all p~ and d~ initial-state
configurations and couplings, and then performing the subtraction indicated in Eq. (35). The relation-
ship indicated in Eq. (36) was found to hold and served as a double check for all
except the half-filled-subshell configurations. A further check on the coefticients is the identity

z [L„S,](1),V '1, ':L,S,y, ;(1„1,")) =0, which is a trivial result of Eqs. (22) and (35). The

presubscript y, in the third column refer to Racah seniority numbers.

(hV '1, '.L,S,y, ;(l„l„"))
2S +1

L, G1(l l( )) F2(l l( )) G'(l„ l,")
3p

1D
15
6
15

6
15

0

0

0

0

0

0

4,s
2D

2p

—8
15
2
15
2
15

0

0
0

0

0-

3p

'D

—4
75
9

75
—9
75

:3
50
3

50
12
50

—27
350
27

350
108
350

43S

2D

2p

—8
75
5

75
—3
75

:3
25

0
2

25

—27
175

0
18

175

3F

3p

1G

'D

,'s

—10
135
—10
135
44
135
—19
135
—I
135

—58
630
77
630
50

630
—13
630
140
630

—20
1470
—245
1470
88

1470
277
1470
448
1470

d3 4F

4p

H
2G

2F

2D

2D

2p

—40
270
—40
270
68

270
8

270

32
270
—1

270
—13
270
—58
270

—31
315
14

315
—4
315
—19
315
41
315
35

315
23
315
—4
315

—65
735

—140
735

34
735
79

735
—29
735
112
735
16

735
76

735

d4 5D

4H

4G

F
4F
3D

3p

—40
180
20
180

5
180
2

180:7
180
—16
180
—28
180

—35
420
—23
420
—8
420
22

420
4

420
13

420
7

420

—175
980

5
980
—10
980
32

980
—22
980
—31
980
77

980
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TABLE II. (Continued).

(b, V '/. ':L,S,y, ;(.l„l,"))
lq l(a) 2S +1

L, G'(l„l„") F (l„l„") G 3( l l(a))

d4 3p

4'I

16
16
1F

1D

1D

pl

1g

—22
180
50
180
14
180
17

180
5

180
14
180
—4
180
—1

180
—13
180

19
420
—17
420
10

420
16

420
28

420
73

420
37

420
70

420
46
420

—37
980
95
980
164
980
62
980
50

980
59

980
41
980
224
980
32

980

d' 65S

4, G
4F

4D

4p

21

H
26

26

2F

2F

D
2D

2D

2p

5S

—200
675
—20
675
—20
675
—83
675

—155
675
133
675
61
675
106
675
34

675
—74
675:2
675
:2
675
—20
675
—29
675
61

675
—56
675

—175
1575
—85
1575
23

1575
—22
1575
—112
1575
—76
1575
—58
1575
167

1575
23

1575
—85
1575
59

1575
140

1575
104

1575
86

1575
320
1575
113

1575

—875
3675
—245
3675
—245
3675
—308
3675
70

3675
178

3675
376
3675
—29
3675
79

3675
511
3675
43

3675
448
3675
160

3675
16

3675
—254
3675
—11
3675

(b, V~ '1, '.L,S,y„'(l„l„"))

q l(a)
T'

2S +1
L, 6'(l„l,") F2(l l( )

) 6'(l„l„") F (I„l") G'(l„l(')

F
3p

16
1D

~1

20
2205
—280
2205
368

2205
—178
2205
—322
2205

—232
2205
308

2205
200
2205
—52
2205
560

2205

—490
6615
560

6615
414
6615
176

6615
644

6615

5
1323
—70
1323

15
1323
50

1323
140

1323

125
14 553
—1750
14 553

375
14 553
1250

14 553
3500

14 553

d3 4F

4p

H
26

2F

2D

2D

2p

—80
2205
—280
2205
388

2205
128

2205
—8

2205
—161
2205
—173
2205
—298
2205

—248
2205
112

2205
—32
2205
—152
2205
328

2205
280

2205
184

2205
—32
2205

—1680
19 845
420

19 845
—228
19 845
—568
19 845
2088
19 845
966

19 845
1518

19 845
528

19 845

—60
3969
—210
3969
60

3969
110

3969
—90
3969
210
3969
—30
3969
60

3969

—1500
43 659
—5250
43 659
1500

43 659
2750

43 659
—2250
43 659
5250

43 659
—750
43 659

1500
43 659
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TABLE II. (Continued).

la
2S +1

L, G '(l„l„")
(b, V 'l, '.L,S,y„(l„l,"))

F (l„l( )) G3(l„l( )) F (l„l( )) G'(l. , l„")

5D

4H

3G

F
3F

3D

3p

3p

11

1G

4'G

IF
1D

1D

~l

4'S

—140
1470
160

1470
45

1470
—38
1470
—47
1470
—116
1470
—168
1470
—162
1470
310
1470
54

1470
57

1470
—35
1470
—86
1470
—104
1470
—161
1470
—173
1470

—70
735
—46
735
—16
735
44

735
8

735
26

735
14

735
38

735
—34
735
20
735
32

735

56
735
146
735
74

735
140
735
92

735

—525
6615
—285
6615
—65
6615
99

6615
111

6615
243
6615

14
6615
331

6615
—165
6615

63
6615
319

6615
495
6615
798

6615
627
6615
483
6615
759

6615

—105
2646
15

2646
—10
2646
45

2646
—30
2646
—45
2646
70

2646
—55
2646

75
2646
135

2646
20

2646

0
30

2646
—15
2646
210
2646
—30
2646

—2625
29 106

375
29 106
—250
29 106
1125

29 106
—750
29 106
—1125
29 106
1750

29 106
—1375
29 106
1875

29 106
3375

29 106
500

29 106

0
750

29 106
—375
29 106
5250

29 106
—750
29 106

d' S
4G

4F

4D

4p

2I

H
2G

2G

2F

2F

D
2D

D
2p

S

1400
11 025
160

11 025
—320
11 025
—806
11 025
—1190
11 025
1786

11 025
922

11 025
412

11 025
268

11 025
—428
11 025
—284
11 025
—644
11 025
—680
11 025
—698
11 025
—758
11 025
—1112
11 025

—1400
11 025
—680
11 025

184
11 025
—176
11 025
—896
11 025
—608
11 025
—464
11 025
1336

11 025
184

11 025
—680
11 025
472

11 025
1120

11 025
832

11 025
688

11 025
2560

11 025
904

11 025

—3500
33 075
—1420
33 075
—260
33 075
—188
33 075
—1820
33 075
—1052
33 075
—1004
33 075
2316

33 075
884

33 075
—884
33 075
1588

33 075
1288

33 075
1840

33 075
2116

33 075
4876

33 075
2644

33 075

—70
1323
—20
1323
—16
1323
—34
1323

14
1323
20

1323
44

1323
—6

1323
—2

1323
50

1323
—10
1323
56

1323
8

1323
—16
1323
—40
1323
—22
1323

—1750
14 553
—500
14 553
—400
14 553
—850
14 553
350

14 553
500

14 553
1100

14 553
—150
14 553
—50

14 553
1250

14 553
—250
14 553
1400

14 553
200

14 553
—400
14 553
—1000
14 553
—550
14 553

( V '2p: P; (2p, cd ) ) =4[F ( 2p, cd ) + —,
'4 G '( 2p, cd ) ——,', F (2p, cd ) ——,'„G (2p, cd ) ] (41a)

or

( V '2p: P; (2p, cd ) ) =4F (2p, cd ) + —,",G '(2p, cd ) —4, F (2p, cd ) —,",, G (2p, cd ) . (41b)

= l. %

consistent with the results of Eq. (11).

Notice that these angular coefficients are also valid for the Acu+3p~Ed excitations in chlorine, with the initial state
[Ne]3s 3p . Comparison between the results of Eq. (41b) and the &( V ') angular coefficients for chlorine published
in the QCK paper show that

I( V '3p' P;(3p, cd)) —g( V '3p ". P;(3p, cd))
I

max x —i szI, &
V"-'3p' P;(3, d))l
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Next, we will consider the more complicated case of the ground state of carbon: [He](2s 2p ) P. Again, let us sup-
pose that we are interested in constructing the ( V ') potential for the excited Ed orbital for transitions from the 2p
subshell. According to Eq. (37), the ( V ' ) contribution will be given by

( V '2p: P;(2p, Ed)) =( V '(2p;Ed), „)+(bV '2p: P;(2p, Ed)) .

From Tables I and II, we obtain

(V '2p: P;(2p, Ed)) =[F (2p, c,d)+ —,",G'(2p, Ed) —
—,', F (2p, Ed) —

—,'„G (2p, Ed)]

+ [:„'G '(2p, Ed ) ——,', F (2p, Ed ) ——,",,G (2p, Ed )],

(43)

(44a)

or

( V '2p: P;(2p, Ed)) =F (2p, Ed)+ 2, G'(2p, ed) —
,', F—(2p,Ed) —,', G (2—p, Ed) . (44b)

Finally, we will consider an atom with a ground-state configuration which is conjugate to the ground-state
configuration of carbon: we will consider transitions from the ground state of oxygen [He](2s 2p ) P. Again, we sup-
pose that we are interested in constructing the ( V ') potential for the excited sd orbital for transitions from the 2p
subshell. According to Eq. (38), the ( V ') contribution in this case will be given by

( V '2p: P;(2p, sd)) =3( V '(2p;sd)„)+ —2(b, V '2p: P;(2p, sd)) .

From Tables I and II, again, we obtain

( V '2p: P;(2p, Ed)) =3[F, (2p, sd)+ —,",G'(2p, c,d) —
—,', F (2p, Ed) ——„',G (2p, Ed)]

+ —,
' [+,"G '( 2p, Ed ) —,', F ( 2p, Ed—)——,",,G ( 2p, Ed )],

(45)

(46a)

( V '2p: P; (2p, Ed ) ) =3F (2p, Ed ) + —,', G '(2p, Ed )

—
—,', F (2p, sd)

——"G (2p, Ed ) . (46b)

,
ra

~

a+ Qr( 0

FIG. 2. The lowest-order diagrams that contribute to the
perturbation series of an exact dipole matrix element and that
are not taken into account by using the potential defined in this
paper. These diagrams are peculiar to atoms that contain open
subshells in their initial states, since the existence of both the
hole orbital a and the particle orbital a indicates that the n, l,
subshell is not completely filled in the initial state. The correc-
tions to an exact dipole matrix element represented by the dia-
grams shown in this figure and Eq. (39) are expected to be small
for problems that involve single photoexcitation processes.

In Eqs. (40)—(41b) and Eqs. (43)—(46b), we have identified
the angular factors that would be used for the calculation
of the photoexcited cd orbitals and that are solely deter-
mined by the initial-state couplings: [He]2s 2p,
[He](2s 2p ) P, and [He](2s 2p ) P.

IV. CONCLUSIONS

An attempt has been made to define a potential for the
calculation of basis sets of orbitals that can be used in
photoexcitation problems. The algorithm for the con-
struction of the potential was defined in order to be con-
sistent with the perturbation expansion of the dipole po-
larizability.

The two tables in this paper contain the angular
coefficients associated with

( V' "(nl)~:LSy, (nl, E(l+I))),
extending over 91 separate initial-state couplings. Addi-
tionally, the analytic results that are contained in Eqs.
(14), (19b), (21c), and (27)—(33) allow one to treat arbi-
trarily complex initial-state configurations. Access to the
tables simplifies the use of this potential. With the rules
that are provided in Eqs. (27)—(33), (37), and (38), one can
easily construct the potential for the excited orbitals such
that the first-order corrections to the dipole polarizability
are cancelled, as shown in Fig. 1.

As demonstrated in Eqs. (11) and (42), the quantitative
closeness of &( V ') and the ( V ') potential defined
in this paper, and the fact that excellent convergence has
been obtained in the past using &( V ') indicates that
one should expect comparable convergence using the
( V ' ) potential introduced here.

It is hoped that the simplicity of the solution presented
in this paper will motivate investigations into other pro5-
lems where the interplay between electron-correlation
effects and the choice of the potential in the final state
can be significant for the convergence of a calculation.
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