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Role of potential structure in the collisional excitation of metastable O('D) atoms
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This paper considers the collisional excitation of O(!D) modeled by the crossing of two valence 1 3Hg
curves dissociating to O(°P)+O(CP) [V,;(R)] and O(*P)+O('D) [V,,(R)] which in turn are further
crossed by the C °II, Rydberg curve dissociating to O(*P)+O(°S) [ V3;(R)]. The role of structure in the
potential curves and coupling matrix elements is quantitatively probed by the first-order functional-
sensitivity densities §Ino,(E)/81In¥V;;(R) of the excitation cross section o,(E) obtained from close-
coupling calculations. The results reveal that, in spite of the well-separated nature of the crossing be-
tween the two valence curves from their crossings with the Rydberg potential curve, the excitation cross
section o, displays considerable sensitivity to the Rydberg curve V;;(R) at all energies in the range
3.0-9.0 eV. For relative collisional energies corresponding to the higher closely spaced vibrational ener-
gy levels of the Rydberg state, the excitation cross section is found to be much more sensitive to the Ryd-
berg state than to the two valence states themselves. At all energies, the sensitivity of the excitation
cross section o, to the coupling V,(R) between the valence states is much larger than the sensitivity to
the couplings ¥ 3(R) or ¥V,;(R) with the Rydberg state. At higher energies, the large increase in the sen-
sitivity of the cross section to the Rydberg potential is mirrored by a similar increase in sensitivity to its
coupling V,;(R) with the upper valence state. Due to the weak coupling between the three curves, a
qualitative similarity exists between the sensitivity profiles and those predicted by the Landau-Zener-
Stueckelberg (LZS) theory. Quantitative departures witnessed in earlier work are, however, more pro-
nounced for the multilevel curve crossings investigated here. Implications of the results for attempts to
extend the LZS-type treatment to multilevel curve crossings and for functional-sensitivity-based algo-
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rithms for the inversion of cross-section data are discussed.

PACS number(s): 34.20.—b, 31.20.—d

I. INTRODUCTION

The interaction of the C 3IIg Rydberg state of O, with
its  two 13Hg valence states dissociating to
O(P)+0O(CP)[V,;(R)] and OCP)+0O(!D)[V,,(R)], re-
spectively, has received extensive theoretical [1-3] and
experimental [1-6] attention. The collisional excitation
O(*P)+O(*P)—>O(*P)+0O('D) is believed to be a
significant source of red line emission in the outer atmo-
sphere and has been modeled [1] by the crossing of the
valence curves V;(R) and V,,(R) with each other and
the C3Hg Rydberg curve V;;(R). Even though the
crossing between the valence curves V;;(R) and V,,(R)
is well removed from their crossings with the Rydberg
curve V3;3(R), the effect of the closed Rydberg channel on
the excitation cross section o0 ,(E) is clearly seen [1] as
resonances in the profile of the |S},|? as a function of the
nuclear angular momentum /. Since these resonances
occur for small / values, the effect of the Rydberg curve
on excitation cross sections has been taken to be
insignificant [1].

While the qualitative reasoning employed above is
plausible, the dynamical dependence of collision cross
sections on the functional form of the underlying
potential-energy curve(s) or surface(s) ¥V (R) may be ex-
amined through a first-order functional expansion of the
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collision cross section o ([ V]),

. . - o
do=a([V+8VF]) a([V])—de—SV(R)SV(R), (1)

where R denotes generic coordinate space variables.

Those regions of R where 8a /8V(R) is large (small)
imply regions of importance (unimportance) for the cross
section. Additionally, the sign dependence of the sensi-
tivities tells the sense of how o will respond to an in-
crease or decrease in V(R). While such an investigation
may also be considered using the brute force method of
varying V (R) and repeating the calculations for the cross
section many times, direct calculation of the functional
sensitivities 8c /8V (R) requires only a minor extension
and expense beyond the cross-section calculation [10]
alone. This approach has been applied to determine re-
gions of potential curves critical to diverse dynamical
processes [7-11].

In our earlier analyses using functional-sensitivity den-
sities from close-coupling calculations [7,8] a qualitative
similarity to the idealized 8(R —R *)-type behavior
for 80 ,(E)/8V,(R) and the *+d8(R —R*)/dR-type
behavior for 80 ,(E)/8V;;(R) and 80,(E)/8V(R)
pointing to the critical importance of the curve crossing
point (R*) conformed to the predictions of the weak-
coupling Landau-Zener-Stueckelberg (LZS) theory [12].
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The area of importance of all the potential curves was,
however, found to be much larger than the span of the
loosely defined avoided crossing region or the transition
width prescribed by the LZS theory [13] even for the
weakly coupled systems. For systems with strong cou-
pling [8,9] there was little resemblance between the sensi-
tivity results and those predicted by the LZS theory.
These analyses were, however, limited to systems
modeled by the coupling of only two electronic levels.
While the use of only two electronic states in the descrip-
tion of nonadiabatic transitions is generally reasonable
[14,15], many collisions involve coupling of three or more
electronic levels [1,15,16] and the attempts continue to
extend the LZS-type description to such cases. These
methods have, however, been applied only to model sys-
tems with constant couplings [15,16] and the tacit as-
sumption of localized transition regions needs to be
probed. Thus a functional-sensitivity analysis for a realis-
tic three-state nonadiabatic system would be important to
isolate the potential features controlling the dynamics.
The use of functional-sensitivity densities as the kernel of
an inversion algorithm is emerging as a powerful tool for
the extraction of potentials and coupling matrix elements
from spectroscopic and cross-section data [16]. An
analysis of the functional-sensitivity profiles for three lev-
el systems should also be useful in the refinement of these
inversion algorithms for extension into the multilevel
nonadiabatic regime.

This paper analyzes the role of structure in potential-
energy curves and the coupling matrix elements on the
collisional excitation of O('D) modeled by the three
crossing curves [1]. The results are discussed in Sec. II
and finally some concluding remarks are offered in Sec.
111

II. RESULTS AND DISCUSSION

The three potential curves used to model the collisional
excitation O(3P)+0O(*P)—O(P)+0O('D) are displayed
in Fig. 1. The potential curves and the coupling matrix
elements are the same as those employed by Sun and Dal-
garno [1].

The total inelastic cross section o ,(E) for the present
case involving the collision of two identical Bosonic
atoms is given by [1]

28, ®
o= k12 21(21+1)|s{2|2, @)
1

where g, is the probability that the atoms approach in
channel 1 and the summation is limited to even values of
I. The functional-sensitivity densities [8—-11],

8SL,(E)
8V;(R)

b

SonlE) _ 28,7 (21 +1)Re |[S),(E)]*
8V, (R) k2 21 e [[Si,(E)]

(3)

at the nth point R, on the solution grid are given by

o(®p) + 0(®s)

Potential Energy ( eV )

o(®p) + o(!p)

o(3p) + 0 3p) |

2.0 25 3.0 3.5 4.0 4.5

R (units of ao)

FIG. 1. The diabatic potentials V;(R), V5, (R), and V3;3(R)
for calculation of the total excitation cross section o,(E) for
the process O(*P)+O(*P)—O('D)+O(*P). The lower valence
potential curve V;;(R) crosses the 3Hg Rydberg level V;;(R) at
2.5885a,. The upper valence level V,,(R) crosses the Rydberg
level at 2.235a,. The two valence levels cross at R * =3.046a,.
These curves are identical to those used to calculate o,(E) in
Ref. [1].

8o ,(E) 8g,7*
= > Q2I+1)
8V, (R,) k? 9

X Im[(S),)*ULT(5,2)Ul T, 1)],
4)

where U'" is the outgoing wave function. Equation (4)
serves as our working equation for the computation of
sensitivities reported below.

The square of the scattering matrix element [S!,|? as a
function of the nuclear angular-momentum quantum
number / at a relative energy of 4.16 eV has been plotted
in Fig. 2. This figure is identical to a similar figure in
Ref. [1] and the effect of the closed Rydberg channel as
resonances in the |S),|> profile is clearly seen. The
greatest contributions to the excitation cross section are
from the / values in the vicinity of 150. The sharp reso-
nant structures due to the closed Rydberg channel occur
for small / values and therefore do not contribute
significantly to the total excitation cross section [1]. The
value of /* associated with the maximum in the [S},|?
profile corresponds to kR *, where R * is the internuclear
distance at which the two valence levels V;(R) and
V,,(R) cross. The value of R corresponding to the reso-
nant / values cannot be obtained from this kind of classi-
cal reasoning and indicates the quantum and nonlinear
nature of the influence of the Rydberg level on the col-
lisional outcome.

The total excitation cross section o ,(E) as a function
of the relative collisional energy is plotted in Fig. 3. The
oscillatory feature seen here is not well resolved in the
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FIG. 2. The square of the scattering matrix element |S/,|? as
a function of the nuclear angular-momentum quantum number /
at a relative energy of 4.16 eV. The effect of the closed Rydberg
channel as resonances in the |Si,|? profile is clearly seen. How-
ever, while the I* clearly corresponds to kR *, the value of R
corresponding to the resonant / values cannot be obtained from
this kind of linear classical reasoning.

equivalent plot of Ref. [1]. The oscillations begin at
values of E lower than the Rydberg state minimum and
have the same general energy dependence seen in the res-
onant scattering off shallow wells [18]. Such a well in
V5, (R) is indeed seen in Fig. 1. Thus, from this argu-
ment alone, the impact of the third Rydberg level at
lower energies is expected to be small. The oscillatory

Excitation Cross Section (10_17cm2)

E (eV)

FIG. 3. The !D excitation cross-section profile o ,(E) as a
function of the relative collisional energy. The oscillatory struc-
ture begins at E values much below the Rydberg minimum and
corresponds to resonances in scattering off the shallow well in
the upper valence curve ¥, (R). The resonant structure disap-
pears at higher energies due to additional influence of the Ryd-
berg level.

structure is lost for energies higher than or approaching
the value at the crossing between V33(R) and V,,(R).

The log normalized functional-sensitivity derivatives
81no,(E)/8InV;;(R) can assess the relative importance
of different potential curves as well as that of different re-
gions in these curves to the collision cross section. Using
long normalized functional-sensitivity densities, we can
easily determine if the cross section is more sensitive to
variations in a particular potential-energy curve or
whether the coupling matrix element is the more im-
portant input. The functional-sensitivity densities
81no,(E)/81nV;;(R) for various values of the total col-
lision energy are plotted in Fig. 4. At all energies the col-
lision cross section o ,(E) is much more sensitive to the
potentials than the coupling matrix elements and signifies
a weakly coupled system [1-6,8]. At energies lower than
that for the crossing between the lower valence curve
V11(R) and V3;3(R) [e.g., for E =3.30 eV, the energy cor-
responding to the first excited vibrational level (see Table
I) of the Rydberg curve], the excitation cross section is
much less sensitive to the Rydberg curve as compared to
the two valence curves, but is still more sensitive to the
Rydberg curve than to the coupling between the two
valence curves. The sensitivity of o ,(E) to the couplings
V13(R) and V,3(R) of the Rydberg curve with the two
valence curves is almost negligible at all energies except
at E=6.1 eV corresponding to a resonance spike in the
total excitation cross section versus energy profile of Fig.
3. This resonance at 6.1 eV therefore must be attributed
to the participation of the Rydberg level.

For total collision energy £ =3.30 eV, clear qualitative
similarity exists between the Gaussian-like profile for
81Ino,(E)/ 8InV,(R) centered at the crossing point
R*(3.046a,) and the idealized 8(R —R *)-type behavior
prescribed by the LZS theory. Similarly, the
+d8(R —R*)/dR-type behavior with 8lno(E)/
8InV | (R)=~—81Ino ,(E)/61In¥V,,(R) near R=R* is in
conformity with the prescription of the LZS theory found
in the earlier analyses of weakly coupled systems [7,8].
This idealized behavior for §1no ,(E)/8InV;(R) is lost
at E =6.1 eV corresponding to a resonance spike in Fig.
3. The unusually large internuclear distance over which
81Ino ,(E)/8In¥V;(R) is significant for this energy and
the fact that this span is much larger than that for

TABLE 1. Rydberg vibrational level energies in eV for / =0
with respect to O(3P)+O(3P) level.

Theory Experiment

v Ref. [2] Ref. [4]
0 3.037 3.038(10)
1 3.269 3.261(14)
2 3.498 3.488(12)
3 3.722 3.718(10)
4 3.942 3.933(15)
5 4.158 4.168(15)
6 4.370 4.388(15)
7 4.578 4.598(15)
8 4.781 4.800(20)
9 4.981 5.015(?)
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S1lno ,(E)/81nV,(R) points to a strong role for the
Rydberg level. This behavior clearly brings into question

the notion of a uniform and localized transition region .

central to all generalized LZS-type treatments.

While the dominance of 81no,(E)/81InV,(R) over
8Ino,(E)/81nV 3(R) and 8lno,(E)/81InV,3(R) per-
sists at all energies, for E =4.60 eV [i.e., the energy of
the seventh vibrational level in the Rydberg well and
where V;(R) and V3;(R) cross] and at other higher en-
ergies the excitation cross section is much more sensitive
to the features in the Rydberg level V33(R) than to the
valence levels V{;(R) and V,,(R) directly involved in the
collisional excitation. At each energy, the radial span of
the sensitivity profile §Ino,(E)/81InV3;(R) corresponds
to the internuclear distance of the corresponding highest
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accessible vibrational level in V3;3(R). For E =9.0 eV, a
peak also appears near the crossing point R * between the
two valence curves. The fact that the large sensitivity
does not translate into a similar impact on the excitation
cross section as noted during the discussion of Fig. 3 is
made explicable by Fig. 5, where once again many reso-
nance spikes are seen in the |S!,|? profile but the total
cross section is dominated by the critical cutoff at
I"~kR". The resonance structures again occur for
values much smaller than the /* corresponding to the
maximum in the |S},|? profile. Also, while we have
I*~kR*, no such linear classical correlation exists for
the 8Ino,(E)/6§InV33(R), 6Ino,(E)/8InV 3(R) or
81Ino ,(E)/81nV,3(R). The richness and magnitude of
structure for higher E values points to a bottling up of

$inoy5(E)/81nV, (R)
$inay(E)/81aY, (R)

FIG. 4. Sensitivity profile
81Ino,(E)/8InV;;(R) for vari-

vvvvvvvvvvvvvvvvv

-05L
-10L
-15
-20
-25
-30f
-3sL
-40L

T

——rii

8inoo(E)/8InY,(R)

ous values of the total relative
collisional energy E. Highly
nonlinear and nonclassical foot-
] prints of the closed Rydberg
channel are clearly seen for
higher energies. The corre-
lated +d8(R —R *)/dR-type

E=460eV

Sine, ,E)/810V, (R) (10%)

-45L
-S04
-35L
-6.0
P} N T SO S VA S SN SR WA SUY YU ST S S S S S

........

behavior for the sensitivity
1 profiles 81Ino,(E)/8InV | (R)
and 81no,(E)/ 8InV,(R) in
the vicinity of R* and the

........

...............

1s0) E=6ley

210

0.90 |

dine, ,(E)/8InV, (R)
8ino5(E)/ llﬂV“(R)

]
I
i

Gaussian-type feature for
] 8Ino,(E)/ 8InV ,(R) centered
] at R* mimic the idealized
) 8(R —R™) behavior predicted
1 by the LZS theory at most ener-
gies. The domain of sensitivity,
however, extends beyond the
crossing region and has a strong
dynamic dependence with

different transition widths for
V“(R) and sz(R) at £ =6.1

Sin H(E)/ B0V, (R)
‘lnvlz(E)/dan.‘(R)

eV and underscores the need to
augment intuitive pictures root-
ed in the LZS theory.

P 1 S Y ST S S S S ST S S | L -0.50

PR
151719212325272931333537394143454749

R (a.u.)

151719212325272931333537394143454749

R(a.u.)



290 PADMAVATHI, MISHRA, AND RABITZ 48

0.9 j
E = 9.0 eV
oaT
0.7 | i
06| B
R
=
! 0.5 J
2

0 30 60 920 120 150 180 210 240 270 300

1

FIG. 5. Same as Fig. 2 but for E =9.0eV.

the wave function between many turning points in the
Rydberg well for these energies. From Fig. 1 we can see
that these energies correspond to the further crossing of
the Rydberg level by the lower valence level V;,(R)
(E =4.6 eV), resonance in the total excitation cross-
section profile (E =6.1 eV), or availability of closely
spaced, nearly degenerate vibrational levels in the Ryd-
berg curve (E =9.0 eV). We believe this bottling up of
the wave function in the Rydberg well at higher
energies is responsible for the large magnitude of
81no ,(E)/8InV;;(R) at these energies. This would be in
accord with our earlier finding that the sensitivities for
the two-level case increases with a decrease in energy
[7,8] (.e, there is more “time” to sample the features of
the potential curves). In any case, there is a very strong
dynamical dependence in the role of potential structure,
and the notion of transition width prescribed by LZS
theory [13] has little relevance in this context where
widely different domains of sensitivities are seen for
different potential curves.

III. CONCLUDING REMARKS

In this paper first-order functional-sensitivity deriva-
tives were employed to gain insights into the comparative
importance of various potential-energy curves and cou-
pling matrix elements mediating a nonadiabatic collision
involving multilevel curve crossings. The calculation of
nonadiabatic collision cross sections using the generalized
LZS-type extensions for systems with multi-level-curve
crossings has so far been limited to those with constant
coupling matrix elements and/or simple repulsive poten-
tial curves [15,16]. While the generalized LZS-type ex-
tensions have offered excellent agreement for many model
systems, our results indicate that application of these
methods to more realistic systems like the one treated
here should offer interesting new insights in establishing
them as general tools. The strong energy-dependent
quantum interference behavior reflected in all the sensi-
tivity profiles underscores the need to augment intuitive
pictures rooted in LZS theory.

The wuse of sensitivity coefficients 8lno,(E)/
S8InV;;3(R) in Eq. (1) points to an inherent nonlinearity in
the influence of the Rydberg level on the collisional out-
come. This implies that the domain of linearity in the
present system is small and that an inversion algorithm
based on first-order sensitivity densities [17] will need to
utilize a large number of small step sizes in moving
through the function space to extract ¥;;(R) from cross-
section data for this system.
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