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Algebraic rotating-frame approach to electron-molecule scattering
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An approach to electron scattering from molecules is discussed, in which an algebraic description of
the rovibrational states in the molecule (vibron model) is combined with a rotating-frame approximation.
The latter was first introduced for atomic-molecule scattering under the name centrifugal sudden ap-
proximation. The coupled multichannel problem reduces to single-channel central potential scattering
with a fluctuating potential. The method is applied to electron scattering from a rigid molecule with
large dipole moment. Comparison with exact coupled-channel calculation shows that the approach
works well for all partial waves except those with very low angular momentum. The method is also
compared with the algebraic eikonal approach.

PACS number(s): 34.80.Bm, 34.80.Cxs, 03.65.Fd

I. INTRODUCTION

The scattering of medium-energy electrons from polar
molecules is a complex process, which involves the cou-
pling of many channels [1—4]. Various methods were
developed to solve the coupled-channel equations for
electron-molecule scattering. However, for polyatomic
molecules the number of channels becomes very large and
the problem may become intractable.

Recently, an alternative method, the so-called algebra-
ic eikonal approach, was introduced to describe the for-
ward angle scattering of electrons from polar molecules
[5,6]. In this method the rovibrational states of the mole-
cule are described by an algebraic model [7] (the vibron
model) and the scattering process is treated in a sudden
eikonal approximation. The advantage of the approach is
that the S matrix is given in a closed form as a represen-
tation matrix of the group [8] associated with the internal
structure of the molecule. Thus, the coupled-channel
equations are solved effectively to all orders in the in-
teraction by algebraic means. The approach describes
well the forward angle scattering which is dominated by
the long-range interactions, such as the dipole and quad-
rupole interactions [9,10].

To describe large-angle scattering, where short-range
interactions dominate and the validity of the eikonal ap-
proach is questionable, one may use a hybrid approach
[11). The high-angular-momentum partial waves are cal-
culated by the algebraic eikonal approach and the low-
angular-momentum partial waves by a coupled-channel
approach.

The algebraic eikonal approach requires the calcula-
tion of the representation matrices of the dynamical
group of the molecule. Though such calculations are
significantly simpler than a coupled-channel approach,
they may still present a formidable task for polyatomic
molecules whose dynamical group is of higher dimension
and complexity. The purpose of this paper is to present
an alternative approach to the eikonal which is based on

a rotating-frame approximation. In this approach the
molecule is still described algebraically by the vibron
model, but the scattering process is treated in a frame
which is rotating with the incoming electron. If the
Coriolis coupling in the rotating frame is neglected, the
number of coupled channels is greatly reduced. This ap-
proximation was first introduced in the early 1970s for
atom-molecule scattering under the name centrifugal sud-
den [12—16] (CS) approximation. A more recent discus-
sion of the success and validity of the approximation can
be found in Ref. [17]. The approach was recently used
for nuclear collisions [18,19].

The CS approximation was studied for various poten-
tials in atom-molecule scattering and it was concluded
that it is good for short-range or weakly anisotropic in-
teractions but does not work well when a long-range in-
teraction produces a significant fraction of the inelasticity
or when strong polarization eff'ects are present [17]. In
electron scattering from polar molecules the dominating
interaction is the long-range dipole interaction, so that
the CS approximation is not expected to work. We shall
show, however, that with a proper choice of a rotating-
frame approximation and with a proper normalization of
the interaction strength (which is found analytically), it is
possible to apply the approximation successfully to elec-
tron scattering off polar molecules. For that purpose we
compare the results of this approximation with an exact
coupled-channel calculation [20] for an electron scattered
off a rigid molecule with a large dipole moment. We re-
mark that several versions of the CS approximation were
suggested in the atom-molecule work which correspond
to different choices of the effective centrifugal barrier but
we will see that only one choice is the proper one for
long-range interactions.

For medium-energy electron scattering the sudden ap-
proximation may also be used in analogy with the energy
sudden (ES) approximation [14,16,20] in atom-molecule
scattering. In this limit the problem is further reduced to
a single-channel central potential scattering but with a

1050-2947/93/48(4)/2832(12)/$06. 00 48 2832 1993 The American Physical Society



ALGEBRAIC ROTATING-FRAME APPROACH TO ELECTRON-. . . 2833

fluctuating potential. One obtained the laboratory
many-channel S matrix by properly weighting the single-
channel S-matrix elements.

The algebraic rotating-frame approach has two advan-
tages over the algebraic eikonal approach as follows.

(i) The calculation of single-channel phase shifts is a
simpler task than the calculation of the representation
matrices of the group, in particular for polyatomic mole-
cules. In the rotating-frame approach the algebraic
structure still plays an important role, since the values of
the fluctuating central potential are determined by di-
agonalizing a certain generator of the algebra.

(ii) The eikonal approximation is not assumed.
The outline of the paper is as follows: In Sec. II we in-

troduce the algebraic rotating-frame approach to
electron-molecule scattering. The approach is applied to
polar diatomic molecules in Sec. III. An important con-
clusion is that only the time-reversal-preserving choice of
the effective centrifugal barrier is suitable for electron-
molecule scattering and that a normalization of the in-
teraction strength is required. All partial cross sections
except the very low ones are well reproduced. Finally in
Sec. IV we compare the rotating-frame S matrix with the
eikonal S matrix. For transitions to rotational states with
low spin both methods are comparable, but for transi-
tions to higher rotational states the rotating frame is a
better approximation.

II. ROTATING FRAME
A. Rotating frame and sudden approximations

(2.2)

The electron-molecule system is described by the fol-
lowing Hamiltonian:

2
FI= +Ho(g')+ V(r, g'), (2.1)

2p
where r is the coordinate of the electron relative to the
center of mass of the molecule, p is the conjugate
momentum, and p is the reduced mass. Ho is the Hamil-
tonian of the molecule and V is the electron-molecule in-
teraction which is a rotational scalar. V can be expanded
in products of tensors in the orbital space and the molec-
ular space

V(r, g)= g Vi„(r,g)Yi„(r),
A.p

where V&„ is a tensor of rank 1, in the molecular space
[k].

We denote by I and j the electron orbital angular
momentum and the molecules spin, respectively. The to-
tal angular momentum J=l+ j is conserved so that it is
possible to define a partial S matrix S& '.

&
to scatter from

initial l,j to final l', j' at total angular momentum J. The
scattering amplitude for the electron to scatter from
linear momentum k (~~z) to k' while the molecule is mak-
ing a transition from a state j,m to a state j', m '

(m is the
spin projection), is given by the partial-wave expansion

f~' . (k')= g i' ' '&21+1(IOjm ~Jm)(I'm& j'm'~JM)(S —1)« . i P& (k) .
kk J

M', m, ,

(2.3)

which conserves the projection A of the spin j of the mol-
ecule on z'. However, the centrifugal potential 1 /2pr
introduces coupling between A and 0+1. The rotating-
frame approximation amounts to neglecting these cou-
plings and introducing an average fixed barrier
I(I+1)/2IJ, r with orbital angular momentum I. In this
approximation the original coupled-channel problem
reduces to a set of spinless coupled-channel problems
with an interaction (2.4) and channels

~j,O), where 0 is
fixed at its initial value. If the S matrix of the problem is
denoted by S'', then the partial S matrix of the original
problem at total angular momentum J (J= I + j) is
[12—15]

J .i+i' —2i +(2I+ 1 )(2I'+ 1 )
I'j', 1j 2J+1

Xg (I'Oj'Q~ JQ)S' (IOjQ~ JA) . (2.5)

The rotating-frame (or centrifugal sudden) approxima-
tion was introduced in the early 1970s to reduce the num-
ber of coupled channels in atom-molecule collisions
[12—17]. The rotating frame is defined such that its z'
axis is always along the direction r of the projectile. It is
possible to reformulate the scattering problem in this
frame, in which the potential (2.2) assumes a particularly
simple form

1/2

Vi.o(& 4'»

Various choices of l are discussed in the literature such
as I=J [12,18,19], I=I or I=I' [15], I=II+I')/2, and
others. The choice I =I' leads [15] to a simplified expres-
sion upon substitution in the partial-wave expansion (2.3),
but violates time-reversal symmetry. The choices
I(I+1)=[I(I+1)+I'(I'+1)]/2 and I =(I+I')/2 lead to
a time-reversal symmetric S matrix. We shall show that
only the latter two choices give the correct approxima-
tion for electron-molecule scattering.

If in addition the sudden approximation is assumed
[16,21] (valid when the electron energy is much larger
compared with the rovibrational excitation energies), a
further simplification occurs. We calculate the partial S-
matrix element S& for a single-channel central potential
scattering with a potential pi&(2A, + 1)/4m Vio(r, g),
where g are arbitrary but fixed parameters. The S matrix
S'-.~. ~ is then given by

S,',~,
~= D e,*,, S,'c, (2.6)

where @ n(g) are the molecule's eigenstates.

B. The algebraic rotating-frame approach

In this section we explain how to apply the rotating-
frame sudden approximation in the algebraic framework.
In the vibron model [7] the molecule is described by a
u(4) Hamiltonian. Most diatomic molecules have an o(4)
dynamical symmetry, where
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FIO =aC2( o(4) }+b L (2.7)

V(r, g) =a, (r)r.T,
where T is the dipole operator of the molecule and

2

a, (r)=
r +R

(2.8)

(2.9)

R p is a cutoff radius that crudely models the short-range
electron-molecule interaction.

In the vibron model [7] the leading term in T is

T=dpD, (2.10)

where D is a dipole operator which together with the an-
gular momentum L form an o(4) subalgebra of u(4). The
applications in this paper will be for the dipole interac-
tion (2.8). The methods, however, are general and can be
applied to any interaction V(r, g).

In the frame which rotates with r, the incoming elec-
tron position is along z, and

V=a, (r)z' T=doa, (r)D, (2.11)
I

The eigenstates of (2.8) are denoted by ~cr,j,m ), where
o(cr+2) are the eigenvalues of C2(o(4)) and j,m are the
molecule's angular momentum and its projection. o. is
determined by the vibrational quantum number U

through cr =(N —
U )/2, where N is the total number of

vibrons.
For a polar molecule, the dominating interaction at

forward angle scattering is the long-range dipole interac-
tion [1,2,5]

Notice that this V conserves the projection 0 of the
molecular spin L along z. In the rotating-frame approxi-
mation, we solve the spinless coupled-channel problem
with coupling

V( )(r) —=doa, (r)( j'Q~D,
~
jQ) (2.12)

D, ~~m „~m2 ) =(m, m2 —
) ~m „'~m2 ) . (2.13)

The transformation which diagonalizes the spinless
coupled-channel problem is

(r)= g (~m, ;~m2~ j'Q)P', (r)
J

= g (~m, ~mz j'Q)P' (r),
J

(2.14)

where we have used the fact that the transformation be-
tween the su(2) Xsu(2) basis and the o(4) basis is given by
the Clebsch coefficients (~m&am&~ j'Q).

The effective central potential scattering problem is

for each initial Q (~ Q~ ~ j).
In the sudden approximation we can decouple the

coupled-channel equations by transforming to the eigen-
states of the interaction in the rotating frame. For (2.11)
this amounts to finding the eigenstates of D, in the
molecule's space. Exploiting the isomorphism of o(4) to
su(2)Xsu(2), D, is diagonal in the latter basis. The
su(2)Xsu(2) basis is ~~m„~m2) where ~=o/2 is the
su(2) quasispin and m„mz are the projection of the two
su(2) quasispins. We have

d 2 l(l + 1) 2p+k — — do(m, —m2)a, (r) P' (r)=0,
dr r 1' 2

(2.15)

where a, (r) is the dipole form factor (2.9). Equation (2.15) describes the scattering from an ordinary dipole potential
with strength do(m, —m2). Denoting the corresponding partial wave S-matrix element by S [m „m2], the S matrix of
the spinless coupled-channel problem is given by a suitable sum over m &, m2.

(&m &&m2 I
j'm )S'[m „m2 ](~m, ~mz I jm ) .

m&, m2

The partial S matrix of the original problem in which the spin of the molecule is taken into account is given by

SJi ~ i. j ~ ~ l
(21 + 1 )(2l'+ 1 ) ~

&
~ r I

) 2J+1 (l'Oj'm
~
Jm )(am, ~m 2 ~

j'm )S [m „m2](xm, ~m2 ~ jm )(lOjm
~
Jm ) .

ml, m2, m

(2.16)

(2.17)

If the initial state is in the vibrational ground state U =0
then v=N I2, where N is the number of vibrons.

C. Normalization of the coupling

In the rotating-frame approximation, a potential which
may depend strongly on the relative orientation of the
electron position and the molecule such as (2.8) is re-
placed by a central interaction. This results in overes-
timating the coupling between the electron and the mole-
cule, in particular since the dipole interaction is long
range. It is possible to compensate for this effect by re-
ducing the dipole coupling strength. By doing so we shall
see that we can extend the applicability of the CS approx-

f&; = — f d be'q f dz(f ~V(b, z)~i), (2.18)

where b is the impact parameter. For the dipole interac-
tion (2.8) we find

I

imation to such cases. The normalization constant can
be found analytically by comparing the Born limit of the
rotating-frame approximation with the Born approxima-
tion of the original problem. We note that the Born ap-
proximation for the j=0~j'= 1 transition is exact in the
limit of small momentum transfer. At small momentum
transfer q, the Born amplitude from an initial state i to a
final state f can be written as
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f&; '= — i ~ '
J b dbJ~ ~(qb) J dza&(r) —(f~T„~i ) . (2.19)

For the rotating-frame interaction (2.11), the Born approximation gives

f&, '= — 5 J b db Jo(qb) f dz a, (r) (f~T, ~i ), (2.20)

where T, conserves the spin projection m. The ratio between the cross sections for the transition v =0, j=0—+v'=0,
j'= 1 obtained from (2.20) and (2.19) is then

( d o' /d II )(~ )

(do' /d 0 )(g)

J b db Jo(qb )J dz a, (r)

bdbJ, qb dze& rb
(2.21)

Using the form (2.9) for a&(r) we find

dz a&(r)
QO r

2 b
ln 0+ 1+ oR R

(b2+R 2 )1/2 6

2 1/2

(2.22)
oo 1

dz a, (r) =m
GO (b +Ro)'i

Using in (2.21) the limiting expressions of (2.22) for
b &&Ro, we find

(do /dO)~
( d cr /d 0,)~ 2

2

(2.23)

After normalizing the strength of the dipole interaction

do
dQ (2.24)

m/2
the rotating-frame Born approximation will agree with
the usual Born approximation. In the following we shall
use this normalized value of the dipole strength.

III. APPLICATIONS

To test the validity of the algebraic rotating-frame ap-
proach we apply it to electron scattering at E=5 eV

I

I

from a molecule with X=20 vibrons and dipole moment
of 6 D. do is determined so as to reproduce the given di-
pole moment.

We compared the results with an exact coupled-
channel calculation in the space-fixed frame [20]. In this
calculation the molecule is assumed to be a rotor and
convergence of the S matrix associated with the
j'=0, 1,2, 3,4 states of the molecule is achieved by in-
cluding the first ten rotational states. The matrix S is
calculated for 0 ~ J 20. For J & 20 and j'=0, 1,2 we use
the eikonal S matrix and for j'=3,4 the partial-wave ex-
pansion already converges with J (20.

In the usual rotating-frame approach [18,19], one uses
the spinless partial-wave expansion which corresponds to
the choice l = i' [15]. Combining this expansion with the
sudden approximation (2.16) for S', , we obtain

f . (k') =5 (
—1)J+.i g (am, vmz~ j' —m )f ' ' (k')(v mscmz

~j—m ),
m I, P7lg

(3.1)

fml, rn)] ~
where f ' ' (k) is the scattering amplitude for a one-
channel dipole potential scattering (2.15)

f ' ' (It' )=
~2kk
X g (2('+1)(S' [m, —mz] —1)P& (cos8) .

(3.2)

The corresponding cross section (d cr /d 0) 0, (for
U =0) is shown in Fig. 1 and is compared with the exact
result. There is a large discrepancy even at very forward
angles where the Born approximation should be good.
As discussed in Sec. II C, it is necessary to normalize the
dipole coupling strength so we use do=do/(m. /2). The
normalized rotating-frame approximation with l =l' is

t

shown by the solid line in Fig. 1. While the agreement
for 8 & 10' (where the Born is valid) with the exact result
is now better the above rotating-frame approximation
fails even at forward angles. For example, the sharp
minimum around 0=70' in the exact cross section is
shifted to t9=30 in the normalized rotating-frame calcu-
lation.

The reason for the failure of the rotating-frame ap-
proximation is the particular choice l=l'. It can be ar-
gued that the choice l(l+1)=l(l+ I)/2+l(l'+I)/2 is
the one that minimizes the first-order correction to the
rotating frame. If ~l

—i'~ &&(l+I')/2, the latter l is ap-
proximated by i=(l+l')/2. The choice l=(l+l')/2 is
simpler since S' needs to be calculated only for integers
and half integers i. The (normalized) rotating-frame ap-
proximation for l =(l+ l')/2 is shown by the solid line of
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6ao c ~ I I I I I I I I Fig. 2, where we have used (2.17) and (2.3). The agree-
ment with the exact result is now good, in particular at
forward angles. In Fig. 2 we also show the algebraic
eikonal approximation for the j=O—+j'=1 transition.
All three curves agree well at forward angles. The
rotating-frame approximation describes the cross section
as well and even better than the eikonal approximation.
Notice that the sharp minimum of the cross section in the
rotating-frame calculation is between the ones for the
eikonal and exact calculations. At large angles both the
rotating-frame and the eikonal approximations do not
work well but this can be taken care of in a hybrid ap-
proach [11].

To investigate in greater detail the validity of the
rotating-frame approximation we examine its partial S
matrix. A quantity of interest is the partial cross section
at a given total angular momentum J. The integrated
cross section for a transition j~j can be written as

0 40 80 180 160

8 [deg)
o~ '=, g (2J+ 1)cr

J
(3.3)

FIG. 1. Differential cross section for the transition v=0,
j=0~v'=0, j'=1 for electron scattering from a diatomic mol-
ecule with dipole moment of 6 D. The scattering energy is
E=5 eV. The dashed line is the exact coupled-channel result
[11,20]. The long-dashed line is the rotating-frame approxima-
tion using the spinless partial-wave expansion (3.1) and (3.2) (ob-
tained for l=l'). The solid line is the rotating-frame approxi-
mation with a normalized coupling do=do/(m/2). Notice the
disagreement with the exact result even at forward angles.

where the partial cross section o. . ' is

o,= g (S —1)I '. I ~

1

I l'
(3.4)

We have investigated the transitions j=0~j' where
j'=0, 1,2, 3,4. Figure 3 shows o.

o ' vs J for the three
possible choices of the rotating-frame approximation
(corresponding to the various choices of l) and for the ex-
act coupled-channel calculation. As expected l = l'
disagrees with the exact result while the other two
choices (quadratic and average) agree very well for J~ 2.

610 s ' I
' I

1O'

10

10

1O-'~o

10

10 4-

I i I i I i I i I i I s I s I

40 80 1PO 160
9 [deg)

FIG. 2. Differential cross section for the transition
j=0—+j'=1 in 5-eV electron scattering from a diatomic mole-
cule with dipole moment of 6 D. The short-dashed line is the
exact coupled-channel calculation, the long-dashed line is the
eikonal approximation, and the solid line is the rotating-frame
approximation with l =(l+l')/2 and a normalized coupling.
All three calculations agree at forward angles. The rotating
frame is closer to the exact result than the eikonal.

10 ~ ~ I I I s I i I i I i I i I i I i I s

0 1 2 3 4 5 6 '7 8 9 10

FIG. 3. The partial cross section oo &
vs J for the

j=0~j'= 1 transition in electron scattering (E= 5 eV) from a
diatomic molecule with dipole moment of 6 D. The short-
dashed line is the exact coupled-channel result, while the other
three lines are in the rotating-frame approximation with l=l'
(long-dashed line), 1(1+1)= [1(1+1)+1'(1+1)]/2 (long- and
short-dashed line), and l =(l+ l') /2 (solid line).
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frame fails to reproduce only the very low angular mo-
menta.

The quantity (3.4) does not give information on the in-
dividual magnetic transitions. To see how well the latter
are reproduced in the rotating frame we define a partial
cross section o. ' ~ through

Only for very low total angular momenta (J=0 and J= 1)
there is a discrepancy. The latter two choices for I which
preserve time-reversal symmetry give similar results and
in the following we shall discuss only the case
1=(i+i')/2.

The quantities o.o ' for j' =0, 2, 3,4 are shown in Fig.
4 vs J. Again we see that above a certain low angular
momentum (J=2 or J=3) the agreement between the
rotating-frame approach with l =(l+ l')/2 and the exact
coupled-channel calculation is excellent. The rotating

I

o, ) =, g(21'+1)o'
I'

(3.5)

and

(3.6)

I

hybrid approach [22,23] are the algebraic eikonal [11]
and the unitarized Born approximation (Born II) [24,25].
The latter two are compared in Ref. [11]for the same ex-
ample discussed in Sec. III. It was concluded [ll] that
the unitarized Born works almost as well as the algebraic
eikonal approach. However, it is in general much harder
to calculate the T-matrix elements in a systematic way in
the unitarized Born than in the algebraic eikonal ap-
proach. Also the algebraic eikonal seems to be a better
starting point for a hybrid calculation. Since the algebra-
ic eikonal was concluded to be preferable to Born II, we
will compare the rotating frame directly to the algebraic
eikonal approach.

The quantity (3.6) offers a much more critical test of
the rotating-frame approach. Figure 5 shows o.oo, ~ vs
I' for m'=0 and m'=+1. Here too the agreement is
very good except for the very low l'. Notice that the par-
tial cross section for m'=0 decreases much more rapidly
than for m ' =+1. This is well reproduced by the
rotating-frame approximation.

A similar study for the 0,0~2m ' transitions with
m'=0, +1, and +2 is shown in Fig. 6.

IV. COMPARISON
WITH THE EIKONAL APPROXIMATION

The results of the previous section indicate that the
rotating-frame approach is useful in bridging the low par-
tial waves where an exact coupled-channel calculation is
required, to the high partial waves where the Born ap-
proximation is valid. Other possible methods to use in a

A. The eikonal approximation

The amplitude in the multichannel eikonal approxima-
tion is a function of the momentum transfer q=k' —k
and is given by

io io-'

j =0 j'=0

iO'

O
io-'

b
FIG. 4. Partial cross sections

oo o, o.z 2 (left) and o.o 3 OQ 4

( right ) vs J for the same case as
in Fig. 3. Short-dashed line: ex-
act coupled-channel calculation.
Long-dashed line: rotating-
frame approximation with l = l'.
Solid line: rotating-frame ap-
proximation with l = ( l + l') /2.

io
io

I I I ~

1 ' 1 I

=0 j'= 2 j = O~j'= 4
io

ip
io '

OJ

b

ip

io'

10

1 2 3 4 5 6 7 8 9 10
J (8)

io
0 1 8 3 4 5 6 7 8 9 10

J (a)

' 1/2

o". , ,
——g gi' '+' (10jm I

Jm )(1'mi j'm
I
Jm )(~ 1)rj', iq

m(, J, l
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f, ', (q)=« ' 'f bdb~~ ~(qb)&j'm'IU(b} —11jm&, (4.1)

U(b) = 7;exp i— f dz' V(b, z')
Ak

(4.2)

To obtain an amplitude which satisfies time-reversal sym-
metry we choose [26] the z' axis in (4.2) along the direc-

where U(b) is the propagator in the interaction picture
for a straight-line trajectory at an impact parameter b
parallel to q (which for convenience will be chosen as the
x' direction). If the sudden limit is also assumed then [5]

tion (k+k')/~k+k'~ which bisects k and k'.
Neglecting the z ordering in (4.2) (which is a 1/+ effect

[6]) we have (for q~~x)

Pdp
U(b) =exp —i

2 f dz ai(r) D„—, (43)

where we have used f" dz a, (r)/r =0.
Notice that the interaction in (4.3) does not conserve

j,. It is possible [6] to rotate D„ in (4.3) to D, so that

& j'~'l &(&)ljm &
= g&„""„—(j'~"

771
I

r

Pdp b
exp —i

z fdzai —D, jm" D~„ (4.4)

where D(m. /2) is the Wigner rotation matrix by n/2 a.round y. It is possible to calculate the matrix in (4.4) by trans-
forming to eigenstates of D, :

(j 'm'~ U(b)~ jm &
= g D * —(~m, lrm2~ j'm")

m"
ml, m2

Pdp
~ // 7T

Xexp i — dzai(b/r)(m, mz) —(xm, l~mz~jm")DJ- (4.5)
Ak 2

Note that the exponential in (4.5) is the eikonal limit of S [m„m2], so the expansion (4.5) has some similarities to
(2.16). However, (4.5) contains an additional rotation with a Wigner function which is different from the transforma-
tion (2.5) to the rotating frame. Also, for a general interaction it is not possible to bring the interaction in the eikonal
phase to the rotating-frame form (2.4) where only a @=0 component is present.

B. Eikonal S matrix

To make a detailed comparison between the eikonal and the rotating-frame approximations it is necessary to obtain a
partial-wave expansion (2.3) for the eikonal amplitude. This is accomplished by an inversion of Eq. (2.3},as is done in
Ref. [11]:

I' —I+ 11 —1+1
(S —

)i J' i/= . g (imijm
~
JM)( 'm) j'm'~JM) f f dkdk'5'i (k)PI* (k')fj J(k', k) . .

2~ 2J+1
m), m(

(4.6)

The eikonal partial S matrix is obtained by using in Eq.
(4.6) the eikonal amplitude f'

~ (q) [given by (4.1)].
Notice that the integral in (4.2) is calculated along a tra-
jectory parallel to (k+k')/ k+k'~ while the quantization
axis, with respect to which the projections m and m' are
defined, is fixed in the laboratory frame. The four-
dimensional integral over k and k' is evaluated in this
fixed frame. It is, however, possible to reduce (4.6) to a
one-dimensional integral as we shall now show. We
define an x'-y'-z' coordinate frame by a Euler rotation
(C&,B&

—@},where (B,@) are the spherical coordinates of
(k+k')/~k+k'~ in the fixed x-y-z laboratory frame. In
this frame z' is along (k+k')/~k+k'~. We define 8 to be
an angle between k and k', and P the angle that the plane
passing through k, k' makes with the x' axis. The polar
angles of k and k' in the x'-y'-z' frame are (8/2, $+~)

and (8/2, $), respectively.
Denoting by (8„$,) and (82, $2) the polar angles of k

and k' in the x-y-z frame, we make the transformation

8»4i'Oz 4'z (4.7)

sinOisin82d Oid /id 82d$2 =sinO sinB d 8 dP d Bd&0 .

(4.8)

We first evaluate the 8,4 integral. Denoting by R the
rotation operator associated with (4&, B,—@)we have

I jm &, =& ljm &, , (4.9)

in the double integral of Eq. (4.6). In Appendix B we
show that the Jacobian of this transformation is such that
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where the subscripts denote the axis with respect to
which m is calculated. Using the definition (4.1) of the
eikonal amplitude we find

f , (k.', k)= g Di, , (R)DJ* (R)f, , (q),
I

rn&m&

(4.10)
I

where f~ .
~ (q) is evaluated in the x'-y'-z' frame, and

depends only on 0, P. The spherical harmonics P& and

in the integral of (4.6) transform according to D
and D, respectively. Recoupling of the various D's us-
ing the orthogonality relations of the Wigner function we
find

kk'
(S —1),.J' &J.

= . i' '+' g (Im&jm ~
JM)(l'm&j 'm'~ JM) f dP f sin8d8 PI (a)5'& ~ (Ir')f~'

~ (q),2J+1 0 0

m(, ml

(4.11)
where a. and Ir' are the vectors k and k' in the x'-y'-z' frame. The P dependence off . (q) is e. asily determined to be

(4.12)

The P integral in (4.11) can be done to give the final inversion formula

&kk' . I I+ ) (2l+ 1)(2l'+ 1)
4~

' 2J+1
mI mI

X(l'm&j 'm'~ JM) sin8dOdt —d 0
—fz' z(qx') ..

0 I 2 I'0 2 J m', Jm

(4.13)

d' in (4.13) are the Wigner functions. Notice that the
eikonal amplitude in (4.13) depends only on the magni-
tude of q, q =2k sin(8/2).

C. Comparison

We now compare the eikonal to the rotating-frame ap-
proximations for the same example discussed in Sec. III.

Figure 7 shows o.z ' vs J for j'=0, 1, and 2. In each
case we show the rotating-frame (solid line), eikonal (long
dashed), and exact (dashed) calculations. Except for the
very low waves (J=0, 1) both the rotating-frame and
eikonal results agree well with the exact results. Note,
however, that for j'=2, the eikonal result shows some
spurious oscillations while the rotating-frame result is
smooth.

Figure 8 is similar to Fig. 7 but for j'=3,4. Here we
see that the eikonal approximation fails even at large J.
The rotating frame, however, works well for J~3. We
conclude that the eikonal approximation is good for low
spin excitations while the rotating frame is good for both
low and high spins.

The differential unpolarized cross sections
(do /dQ)o, were already shown in Fig. 2. Both the ro-
tating frame and the eikonal compare well with the exact
calculation at forward angles. The discrepancy at large
angles is due to the small partial waves (J=0, 1) where
the approximations do not work well. This can be
corrected in a hybrid approach [11,27].

&o'

so-' ~

10

so-'

10

10

&o-'-

I I I i I
f I I s

~ I
I I I ~ I
I ~ I ~ I

g ~

D. A rotating-frame eikonal approximation

The basic quantity calculated in the rotating-frame ap-
proximation is the 'S-matrix element S [m &, m2] for the
single-channel problem (2.15). It is possible to further
simplify the calculation by taking the eikonal limit of 5'

0 1 2 3 4 5 6 7 8 9 10

FIG. 5. The partiaI cross sections o.oo, ~ vs I' for the tran-
sitions 0,0~j' = 1,m ' =0 (top) and 0,0~j' = 1,m ' =+1 (bot-
tom). Lines are as in Fig. 4.
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FIG. 6. As in Fig. 5 but for the transitions 0,0~2,0 (top),
0,0—+2, +1 (middle), and 0,0~2, +2 (bottom).

FICx. 7. The partial cross section cr~~; vs J for the transition

j=0—+j' for 5-eV electrons scattered from a diatomic molecule
with dipole moment of 6 D. Shown are the transitions 0~0
(top), 0—+1 (middle), and 0—+2 (bottom). Short-dashed lines:
the exact coupled-channel [13,14] result. Long-dashed lines:
the eikonal approximation using the inversion formula (4.13)
with the eikonal amplitude (4.1). Solid lines: the rotating-frame
approximation with l = (l + l') /2.
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1 IPS [m„m2]=exp —
2 do dzaI(r)(mI —m2)

Ak

pdp

b = ( I + ]. /2) /k
(4.14)

Thus, for the above dipole interaction we even have an
analytic result in that limit. We found that this rotating-
frame eikonal approach also works quite well at forward
angles. An example is shown in Fig. 9 for the cross sec-
tion j=0~j'=1. In general, the rotating-frame eikonal
approximation is much simpler to calculate than the mul-
tichannel eikonal approximation.

V. CONCLUSIONS

In this paper we have discussed and explored the valid-
ity of an algebraic rotating-frame approach to electron-
molecule scattering. This approach, which is based on a
centrifugal and energy sudden approximation introduced
in atom-molecule scattering, is much simpler than the
conventional coupled-channel approach since it reduces
the problem to a family of single-channel potential

0
Q r I I

~ I
' I ' I I I

&o'

10

10

10

scattering problems. When compared with the algebraic
eikonal approach, it is found that both approximations
work well for the transitions to low-lying rotational states
except for the few low-J partial waves. For transitions to
higher rotational states, the S matrix continues to be well
reproduced in the rotating-frame approach but not in the
eikonal approximation. Due to its simplicity the
rotating-frame approach might be useful in treating elec-
tron scattering from complex polyatomic molecules. We
remark that in realistic applications one should include
short-range (such as exchange) interactions. These in-
teractions acct mostly the low partial waves and can be
dealt with in a hybrid calculation where the low partial
amplitudes in the eikonal [11]or rotating-frame [27] ap-
proximations are replaced by the exact ones obtained
from coupled-channel calculations.
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APPENDIX A: DIPOLE POTENTIAL SCATTERING

The phase-shifts of the one-channel dipole potential
scattering problem are found by solving the radial
Schrodinger equation (2.15) using the Numerov algo-

10 610 s ~, v

i 0-'

10

I i I I I

I ' I
' I

I i I i I i I s I

=i'=4 10

io 10

&o-4

&o'

to'

10
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I I I I I I ~ I & I ~ I g I & I f I I
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FIG. 8. As in Fig. 7 but for the transitions 0~3 and 0—+4.
Notice the oscillatory behavior in the eikonal result (for the
0~3 transition) and the disagreement between the eikonal and
the exact result even at high J's.

10 4-

40 80 180
9 (deg)

160

FIG. 9. Differential cross section (do. /dQ)0, for the same
case as in Fig. 2. Dashed line: exact coupled-channel result.
Solid line: the rotating-frame eikonal approximation.
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d 1 d+— + 1—
dx x dx

V2

x
/=0,

where

rithm. Care should be taken since the dipole potential
do(m& —mz)e /(r +Ro) is a long-range potential, and in
principle the equation has to be integrated to very large
distances. To overcome this problem, notice that for
r »R o, Eq. (2.15) reduces to a Bessel equation for
P =P/&x (x =kr)

An infinitesimal rotation dA is parametrized by

dA =%(—id')' d'),

where dm' are the components of the rotation vector
along the x'-y'-z' frame and 8 is the spin-1 representa-
tion of the angular momentum. Using (Bl) and (82) we
can express (dk) in the rotated frame as

(dk) =(da) —a ( id—a)' 8) k+2da ( id—a) 8')sc .

v =l(l+1)+—,
' —2p, e do(m& —mz)/A'

The general solution of (Al) is

P= AJ (x)+BN (x),

(A2)

(A3)

where J,X are Bessel functions of order v. By solving
(2.15) to distance r »Ro, we can determine B/A in (A3).
Using the asymptotic expansion of J, X at yet longer
distances we find the S-matrix element S' from

Using a similar expression for (dk') and k, = K„,
ky' +y& kz' Kz we fjnd

( ds ) =2( 1 —~, )d co„.+2( 1 —I~, )d co +2( 1 —I~, )d co,

4a,v —.de .des ~ +4 sin (8/2)dg de,
In terms of the Euler angles,

S =—I 1 iB /—3 (T uz—)~—
I+iB/3 (A4)

d COx' —cos4 sine —sin+ 0
d coy

—sin+ sine —cosN 0

d~ ~
0 1

e (87)

APPENDIX B: JACOBIAN OF EQ. (4.7)

k=%(4,6, —@)a,
k'=%(C&, 6, —4)a', (81)

In this Appendix we show that the transformation (4.7)
preserves the Jacobian (4.8).

The transformation 8„$,;8&,gz~6, @;8,$ is defined
by the rotation %(@,6, —@) from the x-y-z to x'-y'-z'
frame g =2

gee gee goy

gee gee
0 g~~ 0

0 0 g6)g

(88)

Using (86) and (87) we find the metric tensor g in the
coordinates 6,4; 8, P

K—

0
sin —cos(~+ P )

2

0
sin —sin(~+ P)2

0
cos

2

0
sin —cosP

2

a'= sin —sing
2

(9
cos

2

The metric in the x-y-z frame is given by

(ds )=(dk) +(dk') =(d8&) +sin 8&(dg&)

where % is the Cartesian rotation matrix and a, a' are the
vectors k, k' in the x'-y'-z' frame g~z, =[1—(I~„.cos@+I~ stn4) ]stn 6

+(1—~,', )(cos6 —1)',
gee = 1 (Kx sin@ Icy cos@)

g&& =sin 0, g@ =
—,',

g@e = [a„lrz cos2@—
—,'(Ir —Ir, )sin24]sin6,

~ p t9
g =(cos6 —1)sin —.

The volume element is then found to be

(89)

+(d8z) +sin 8z(diaz) (83) &detg d@d6dgd8=sin6d6dC&sin8d8dg . (810)
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