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Logarithmic mean excitation energies. II. Helium, lithium, beryllium, and the 2s state of hydrogen
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The four logarithmic excitation eneriges I (v) for v= —1, 0, 1, and 2 have been calculated for helium,
lithium, beryllium, and the 2s state of hydrogen. They appear in the expressions of the total cross sec-
tion, the stopping power, and the straggling effect for fast charged particles, and in the expressions of the
Lamb shift of atomic energy levels. The method was introduced some years ago [Rosendorff and Bir-
man, Phys. Rev. A 31, 612 (1985)]. For hydrogen the method is rigorous. Exact one-particle wave func-
tions given by Clementi were used. Thus, correlation and symmetrization effects were neglected. For
the nonhydrogen states, the relevant differential equations were solved by using a computer. An effective
charge was defined which has interesting features. It is helpful in gaining some physical insight into the
results obtained for helium and the 1s and 2s states of lithium and beryllium.

PACS number(s): 34.90.+q, 32.90.+a, 34.50.8w

I. INTRODUCTION

A few years ago a method was introduced [1—3] to cal-
culate four logarithmic mean excitation energies. They
are related to (i) the total cross section of particle-atom
collisions, (ii) the atomic stopping power, (iii) the strag-
gling effect, and (iv) the Lamb shift of atomic energy lev-
els. In Ref. [1] (hereafter referred to as Paper I) the gen-
eral idea of the method was represented, and the 1s hy-
drogen case was treated extensively. In Sec. IV of the
present paper we shall take advantage of these results.
Also, in the same paper the mean excitation energies of
helium were calculated by a parametrization procedure
which turned out to be not very accurate. In Ref. [3]
(hereafter referred to as Paper II) the helium case was
treated much more accurately by solving the underlying
differential equation by using a computer. Three different
wave functions were used which consisted of two basic
functions [Eq. (18), Paper II]. They yielded results which
were all within a range of about 1%. In the present pa-
per the calculation was further improved by introducing
the one-particle was functions of Clementi [4] (see Sec.
IV). In the same section we also represent results for the
1s lithium and the 1s beryllium states. They are summa-
rized in Tables I and II. An effective charge is also dis-
cussed which has simple but surprisingly interesting
features.

The calculation of the 2s state of hydrogen is extensive-
ly discussed in Sec. V. This case is more complicated than
the ls state because the 2s wave function has one nodal
point. However, it turns out that the 2s state can essen-
tially be reduced to the 1s state. This enabled us to solve
the 2s case very accurately. As a matter of fact, all s
states are intimately connected to the 1s state. The re-
sults of the 2s hydrogen states are summarized in Table
III. In Sec. VI the 2s states of lithium and beryllium are

treated. In this case the problem of the nodal point of the
wave function is more involved than in hydrogen. How-
ever, a way has been found to circumvent these
difhculties. The results are summarized in Tables IV and
V. In the same section the results for the atoms of lithi-
um and beryllium are represented and summarized in
Table VI. In Sec. II the basic approach of the method is
summarized. In Sec. III the relevant explicit expressions
of the sums are given and extensively discussed. Energies
are measured in Rydberg units; all other quantities are in
atomic units.

II. BASIC RELATIONS OF THE METHOD

lnI(v)=L(v) jS(v), v= —1,0, 1,2 .

The logarithmic sums are given by

L(v)=yl&0IZln &I'(E.—Eo) +'»(E„—E,), (2.2)

and the sums S(v) are given by

S(v)=g(&O~Z~n &[ (E„—Eo) +', (2.3)

where Z is the z component of the total dipole moment
operator of the electrons of the atom. The sums are over
the complete set of energy eigenstates of the atom.

In order to calculate L (v), we make us of the identity

—ln(E„Eo)= lim f — —InA
dA,

o E Eo+
(2.4)

We now define the operator Fby the equation

In this section the basic ideas of the method are sum-
marized. The four logarithmic mean excitation energies
I ( v ) are defined by
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[Ho F ]go +A.F/0 =Z $0 (2.5)

(~„—E,+x)(nlFlo) =(nlzlo) . (2.6)

We then get, in combination with Eq. (2.4), the expres-
sion of L ( v) in terms of F:

L(v—)=f S (A, )dA, + f [S,(A, ) —S(v)/A, ]dk,
0 1

Here Ho is the Hamiltonian of the atom, $0= lo) is the
wave function of the initial state and Eo is the corre-
sponding energy. From Eq. (2.5) follows the relation

Obviously, this expression breaks up into X one-particle
differential equations of the form

V;F, +27;(F;) AF—; = —z; .
V

l

(2.16)

As our initial state is an s state, the second term of the
above equation becomes simply 2(q&,'/y; )(BF;/Br; ). Final-
ly, as the I' s are p states, it is convenient to put
F, =z,.g, (r, A, ). Putting this back into the above equation,
we get the radial equation for g;,

(2.7) xg,.
"+ (4+2x g,

'
/y, . )g,'+ ( 2y,'. /p, —Ax )g, = —x . (2.17)

where we have defined the sum

S (iL)=g(olzln )(E„Eo)+—'(nlFlo) . (2.8)

Our main task is to calculate the operator I". We as-
sume that it depends only on the coordinates of the elec-
trons (but not on the momenta). This by no means re-
stricts the generality of the method. According to Eq.
(2.5), it depends also on A, and is functionally dependent
on the initial state fo of the atom. If we introduce the
function

In Papers I and II the above equation has been solved
analytically and numerically for the 1s states of hydrogen
and helium, respectively. In Sec. IV of the present paper
the 1s states of helium, lithium, and beryllium are solved
with the help of this equation. The 2s states are more
complicated because the wave functions have one nodal
point. Thus, the logarithmic derivatives of these wave
functions in the above equation have one pole. This gives
rise to some complications, which, however, can be
solved satisfactorily. For hydrogen this is worked out in
Sec. V, and for lithium and beryllium in Sec. VI. '

O=F$0', (2.9) III. THE SUMS S„(A,) AND S(v)

then Eq. (2.5) becomes

(Ho —Eo+A, )V=ZQO . (2.10)

Z= zt ~ (2.1 1)

For the ground-state wave function we take the product
of the one-particle wave functions of Clementi [4],

In the present paper we deal with s electrons only. Thus
the right-hand side (rhs) of the above equation is a p state,
and therefore V is also a p state. We shall make use of the
above equation in order to solve the 2s state of hydrogen.
This is discussed in detail in Sec. V.

Next, we derive from Eq. (2.5) the differential equation
for I' for an X-electron system. The z component of the
dipole operator is given by

S,(A, ) = ( Po l
ZFl go )

N= g &q;lz;F;Iq;&; (3.1)

the latter follows from the fact that (qr; lz; lp; ) =0. Thus,S,(A. ) becomes, after integrating over the angles, for
each electron,

In this section the sums S (A, ), Eq. (2.8), and S(v), Eq.
(2.3), are discussed. Obviously, S(v) is obtained from S,
by putting I' =Z. We consider each of the four cases sep-
arately. We shall make explicit use of the dipole operator
Z, Eq. (2.11); the wave function Po, Eq. (2.12); and the F
function, Eq. (2.14).

(i) v= —1. By the definition of S &(k), Eq. (2.8), we
get

$0(1,2, . . . ) =g), (1)y), (2)p2, (3)qrz, (4). . .

Thus, Eq. (2.5) becomes

(2.12)

(2.13)

S,(A, )=—,
' f p g(x, A, )x dx . (3.1')

For the remaining three cases, we make use of the results
which appear in the Appendix of Paper I.

(ii) v=o. By Eqs. (A6) and (A2') of Paper I, there are
two possible expressions for So, namely,

Next, we put

F(1,2, . . . ) =Fi, (1)+F„(2)+F2,(3)+F2,(4)+
(2.14)

and

(3.2)

(3.2')

then the above equation assumes the form

— X~'F II&, 2X~~;F ).(~ ~ ) II ~J—
I ~ J E J(+l)

(2.15)

where, in general, A =[HO, A, ] and AO=A. If $0 is
an exact eigenstate of the Hamiltonian, these two expres-
sions are equal to each other. However, our wave func-
tions are not completely rigorous; for instance, correla-
tion and symmetrization effects have been neglected.
Thus, the question arises as to which of the two expres-
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sions is more accurate. The interesting point in the
present case is that we can prove that both expressions
are identical without making the assumption that gp is an
eigenstate of the Hamiltonian. The proof is simple: sup-
pose So' ' and So "are equal; then we should have explic-
itly

—
(gaol [a,,

z]Flump

&
=

& golz[H„F]i go &,

and therefore the following equality must be satisfied:

(@,la, zFlq, ) =(q, lzFa, lq, ) .

(3.3)

(3.4)

Now all three operators Ho, Z, and F are Hermitian
and real. Thus, the left-hand side (lhs) becomes
(HogolzFgo), and the rhs becomes

(Fzy la q ) =(ZFy la y ); (3.5)

That S (0)= 1 is in accordance with the Thomas-Reiche-
Kuhn sum rule.

By Eqs. (2.11), (2.12), and (2.14) and the fact that
Z, = 2iP„ t—he expression (3.2) becomes

So(A) =2i ( /pl P,F l fo )

=2iy &q, ip,.F, ly, &;
j=1

the latter follows from the fact that (y;lp;, ly;) =0.
Thus, So(A, ) becomes, after integrating over the angles,
for each electron,

Sp(A, ) = —
—,
' f tp'(pg (x, k)x dx .

We skip the v=1 problem and consider next the v=2
case which is very similar to the v=O case.

(iii) v =2. We consider the two expressions

the latter follows from the fact that Z and F commute.
As the ground state gp is real, the identity of So ' and
So "has been established. Obviously, the same holds for
S(0); we get

S(10)(P )
—S(01)(P)

—
1 As

Zp = [Ho Z( ] (3.8)

Z) = 2lPz = 2lgp;z

we get

Z~ =2ig[p,„V], (3.8')

where the potential energy is

V=+V+ g Vk( .
i k, l

k&1Hence we get

(3.9)

Z2=2ig p,„+VJ +2ig p(, g V„,
j i k, l

k&1
Obviously, the commutators [pJ„Vk(] with jAk, l are
zero, and the commutators of the form [p;, +p.„V; ] are
zero too, because of the action-reaction principle. It fol-
lows that Zz is given by

real and a function of the coordinates only. We have,
therefore, a similar situation to that in (ii); the rest of the
proof thus follows immediately: S2 ' and S2 "are identi-
cal.

A word is due concerning the two additional expres-
sions S2' ' and S2 '. We cannot prove that they are
equal to the ones discussed above without assuming that
Po is an eigenstate of Ho. It should, however, be pointed
out that these quantities are unsuitable for numerical cal-
culations in any case because their expressions involve
high-order derivatives of the wave functions. Obviously,
these derivatives are rather inaccurate.

We should emphasize at this point that the above ex-
pression (3.7) [or (3.7')] yields very good results for the
Lamb shift. This will become clear in Sec. IV.

To obtain an explicit expression for S2(A, ), we start
with Eq. (3.7). We thus are in need of Z3 which, in turn,
is determined by Z2. The latter is given by

and

s("'(x)= —
& yolz,

Flump&

S,""(A)= ( /pl zpF(

leap)

.

(3.7)

(3.7')

Zz =2ig p;„gVJ.
i j

av,=2+
; az

(3.10)

Suppose they are equal, i.e.,
—

@ol 3 l0o = @olZzF(l@o&

then making use of the definition Z3 = [Ho, Zz ], we get

—&qol[a, Z, ]Fl@o& =
& yolZ, [ao F]lqo&

Thus we get the equality

& @olaoZzFlfo& =
& PolZzFaolfo & .

Now Z2 is given by

Z2=[ao Z&]=[V Z(]

From this we get for Z3,

av,
Z3=2 QPJ, Q

j i

, av, av,= —2g V; +2V; V;az az.

As gp is an s state, this becomes

Z3 = —2g (V; V; ) —4ga, a'v; a
~ ZE

(3.11)

(3.11')

where V is the potential energy of the atom; thus Z2 is Now, V,. is the nucleus-electron interaction; therefore,
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V; V; = 8m.z&5(r; ), where Z& is the charge of the nucleus;
hence we get finally

a'v; a
Z3 = —16m Z~+5(x; )5(y; )5'(z, ) —4g

Br Bz, Br,.

(3.11")

We are now ready to derive the explicit expression of S2,
Eq. (3.7):

X=+J (6p,') r; dr, .

Comparison with Eq. (3.15) yields

The mean nucleus-electron energy of the system is

V„= 2Z~Q J p; r;dr;
0

(3.17)

(3.18)

(3.19)

Sz = —
16zzZzg (6(z, )6(y,. )6'(z, ((6z XF, 6z)

a

4X(6„6, 6„6'z XF. ((z) (3.12)

where we have made use of the fact that Z3 is an anti-
Hermitian operator. Again, the cross terms vanish; in
the first term because 5'(z)is an odd function and in the
second term because (y; ~z; ~(p; ) =0. Therefore, together
with z5'(z) = —5(z) and F, (r, )=Z,g;(.r; ), w.e get

S = 16mz g (5(r; )6P; (r; )g;(r; ) )

—4g( V,."y,' cos (8;)r;g;(p; ) . (3.12')

(iv) v= 1. We first consider the two expressions

s""(1)= —
& @,iz, z, ly, )

and

s'"'(l)=(y, z,z q, ) .

(3.14)

(3.14')

We shall prove that for wave functions of the type used in
the present work [see Eq. (1.12)], the above expressions
are not equal to each other, except for hydrogen. We
have Z& = —2iP„' thus,

Finally, substituting for V;" and integrating over the an-
gles, we get for each electron,

S2(4(.)=4Z~ g (O, A)[((o (0)] + ,' f (—(p )'g (x, A, )dx
0

(3.13)

and comparison with Eq. (3.16) yields

S(2o)(1)= ——'V
ne (3.20)

It follows that, due to the virial theorem (2K = —V), only
for one-electron systems do we have the equalityS'"'=S' '. For all the many-electron systems we get
S'"' (S' '. This follows from the fact that in the above
expression only Vne appears and not the total potential
energy V =( V„,+ V„),where V„ is the electron-electron
energy.

It stands to reasons that only functions which are not
products of one-particle wave functions will yield equal
values for S'"' and S' '. In the present case, where the
wave function is a product of one-particle functions, the
question arises as to which of the two expressions S'"'
and S' ' is more correct. The answer is, S'"' is quite ac-
curate, where S' ' is inaccurate. By the relation

S""=4&y, ~P,P, ~q, ),
we get, in general, S'"'=—', E +6, where 6 reflects elec-
tron correlations. For wave functions which are products
of one-particle functions, 6=0. It turns out that for He,
Li, and Be, 6 amounts to 1 —2%%uo only (for more details
the reader is referred to Ref. [5]). As the binding energy
F. of the system is equal to ( —X), we get a good approxi-
mation E = —4S'"', and indeed, making use of Eq.
(3.15), we obtain the experimental data of the energies
(within 1 —2%%uo). There is another strong indication thatS'"' is correct and S' ' is incorrect. This is explained in
Sec. VI [before Eq. (6.16)].

From the above discussion it follows that the correct
expression of S, (A, ) should be

s, (x)=s""(x)

We have

=(y, jZ, F, 1t, ) . (3.21)

On the other hand, by Eq. (3.10), S' '(1) becomes

av,s'"'(»=z(6, x ' z (6,)

F, =[P,F]

+[V;F,+2(V;F—;) V, ] . (3.22)

with Z, = —2iP„and two integrations by parts we get
for each electron,

=-', Z„yI "q'", r, dr, . (3.16)

S,(X)= —,
' j"[—(q )'+ 2x 6+x 6']g (x, A, )x dx,

(3.23)

Consider the mean kinetic energy of the system. For
wave functions given by Eq. (2.12), it is

where 6=y (y'/y)' [see Paper I, Eq. (74)]. Putting
g= 1, we easily get S(1),Eq. (3.15).
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IV. THE 1s STATES OF HELIUM, LITHIUM,
AND BERYLLIUM

In this section we summarize the results for helium,
lithium, and beryllium. The differential equation

xg;"+(4+2xy,'. /y; )g +(2y,'/y; —
A,x)g; = —x (2.17)

which is easily derived from the above equation. (For
more details, the reader is referred to Paper I, Sec. IV.)

In the above expansion, Z, is given by Z, = —y,'/y, ; it
turns out to be a slowly varying function of x. Thus, Eq.
(4.1) is not an exactly rigorous asymptotic expansion, but
is believed that the error introduced by this is very small.

The expressions of S for v= —1,0, 1,2 are given in
terms of the functions g;(x, X) by Eqs. (3.1'), (3.6'), (3.23),
and (3.13), respectively. The corresponding expressions
of the S(v)'s are obtained by simply putting g,. = 1. Final-
ly, the i. (v)'s are calculated by Eq. (2.7). The values of
the L (v)'s and the S (v)'s for the ls states of helium, lithi-
um, and beryllium are listed in Table I.

In order to obtain a deeper understanding of the results
represented in this section and Sec. VI, we introduced the
notion of an effective charge Z,ff.

This is done as follows: It is well known that for hy-
drogenlike ions the wave functions for any state are ob-
tained from the hydrogen states by introducing the coor-
dinate r'=Z&r, where Z& is the charge of the nucleus. It
is then an easy matter to prove that for hydrogenlike ions
lnI (v) is related to [lnI (v) ]H of hydrogen by

lnI(v) = [lnI(v)]H +inZ& (4.2)

(For details, the reader is referred to Paper I, Sec. IV.)

The Clementi wave functions, of course, have no resem-
blance to hydrogenlike wave functions. However, for
these states, we can use the above equation by introduc-
ing an effective charge Z,z, defined by

1nZ, ~ =lnI(v) —[lnI(v) ]H . (4.3)

The values of lnI and Z,z, both as functions of v for 1s
states of helium, lithium, and beryllium, are listed in

was solved by computer for all values of A, with an upper
limit of 10 . The upper limits on x were 20, 10, and 3.5
for helium, lithium, and beryllium, respectively. For (i)
xA, ) 10, A, ) 10 and (ii) xA, ) 10, A. )0. 1, the following
asymptotic expansion was used:

2Z, 4Z; 16Z, 96Z;

A, x A, x kx A, x

(4.1)

Table II.
Z ff essentially determines the region which contributes

significantly to the values of lnI(v). A number of re-
marks concerning our results for Z,z are given below.

(i) For any system we should have Z,~ (Z~; our values
of Z,~ satisfy this condition.

(ii) According to Table II, we see that for the same
atom, Z,& increases with increasing v. This is easily ex-
plainable for the two extreme cases: In the calculation of
the total cross section (v= —1), the term which depends
on lnI( —1) is derived from the "outer region" of the
atom, which is essentially the average distance of the 1s
electrons from the nucleus. In other words, one expects a
value of Z,z which, roughly speaking, follows from the
mutual screening of the two electrons. Our results cer-
tainly bear this out.

At the other end (v=2) we have the Lamb shift. It is
well know that the dominating contribution to this effect
is derived from the immediate vicinity of the nucleus (the
effect is proportional to [y(0)] ). This also follows from
the expressions of Z3, Eq. (3.11'), and Sz, Eq. (3.13).
Thus, Z,z should be very close to the charge of the nu-
cleus Z&. This is in complete agreement with our results.

For the remaining two cases (v=0 and 1), the values of
Z,~ are between the above two cases. The physical ex-
planation is less transparent. It is connected to the facts
that So and S& are determined by the finite operators P,
and P, , respectively [see Eqs. (3.2) and (3.21)]. The corre-
sponding average distances are intermediate between the
two discussed above, which are essentially determined by
P, (v= —1) and P, (v=2).

(iii) As to the values of Z,s for different atoms, we see
that for all the four values of v, the difference AZ, z be-
tween two adjacent atoms is almost exactly equal to 1 ~ In
other words, if s(v) is the screening factor, defined by
s (v) =Z& —Z,z, it turns out to be essentially independent
of the charge of the nucleus. The fact that s (2) has some
fluctuations is most probably spurious. It is due to the
fact that the screening factors are very small and thus
very sensitive to very small changes of lnI(v). It is
worthwhile pointing out that in many textbooks on quan-
tum mechanics, a one-parameter wave function of the
form exp( —Zor) is derived for a two-electrons system.
The value of Zo is derived by variational methods to be
Zo Z&

& 6 Thus, the screening factor is 0.3 175 . This
is very different from our results where s(v) changes
from s (

—1)=0.436 to about s (2)=0.0338.
Finally, it should be pointed out that our relatively

simple method yields for the Lamb shift of helium a value
which is smaller by 0.8% than the one computed [6,7] by

TABLE I. L ( v) and S ( v) for 1s states of helium, lithium, and beryllium.

L(v)

Helium

S(v) I.(v)

1s lithium

S(v)

1s beryllium

I- {v) S(v)
—1

0
1

2

0.324 40
1.070 74
6.586 90

260.981 20

0.394 95
1.00
3.815 71

60.254 10

0.269 60
2.027 73

25.156 88
1772.395 0

0.148 94
1.00
9.631 96

343.503 2

0.191 60
2.671 43

58.350 26
6596.769

0.077 65
1.00

18.094 51
1149.014
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TABLE II. lnI(v) and Z,z(v) for 1s states of helium, lithium, and beryllium.

Hydrogen'

lnI ( v) lnI ( v)

Helium

Z,z(v) lnI ( v) Z,g(v)

1s lithium 1s beryllium

lnI ( v)

—1

0
1

2

'Paper II.

—0.073 254
0.096 981
0.570 87
2.984 12

0.8215
1.0707
1.7263
4.3313

1.5642
1.6272
1.7820
1.9613

1.8101
2.0277
2.6118
5.1598

2.5643
2.6257
2.7749
2.9679

2.4675
2.6714
3.2248
5.7413

3.5622
3.6227
3.7696
3.9693

V. THE 2s HYDROGEN STATE

The radial part of the 2s wave function of hydrogen is

p2= —(1 —
—,'x)e1

(5.1)

Thus, Eq. (2.17) is of the form

x (1—
—,'x)g2', +(4—4x + —,'x )g2,

+( —2+ —,'x —A,x+ —,'A,x )gz, = —x(1—
—,'x) . (5.2)

As a first step to solve this equation, we make the substi-
tution

complicated variational methods, yielding lnI =4.366.
This difference is most probably due to the neglect of
correlation effects in our approach. It is very likely that
the errors on the mean excitation energies for v= —1,0, 1

due to the neglect of correlation effects are of the same
order of magnitude, though they may be v dependent.

&(=e F)(x, t, )

=xe "g„(x,A, ) . (5.6)

In Paper I, the function u
&

was introduced by the rela-
tion

(t1 —1)x
gi =e Qj (5 7)

(the same relation holds between u
&

and g&). Therefore,
we get

P, =xe ' u, (x;t, ) . (5.8)

Here u, is one of the two independent solutions of the
Kummer equation. On the other hand, the function V2 is
given by

V2 (p~F2(x;t2), — (5.9)

which becomes, by Eqs. (5.1) and (5.3), for the reduced
equation,

—
( t2 —I/2)x

g2, =e ' uz(x, t2),
where tz =+A, + —,'. The equation of u is of the form

x (1—
—,'x)u ~'+ [4—(2t~+3)x+t2x ]u 2

(5.3)

—t&x
1 ——xe ' u2(x;t2) . (5.9')

+ [ 4t2+ (3t~ —1—)x]u2 = —x (1—
—,'x)e

(5.4)

Referring to Eq. (5.5), this function must be equal to V„
Eq. (5.8), at t2, which yields the relationship

In order to find the solution of this equation, we go back
to the equation mentioned in Sec. II:

(H E2+A, )Vz(r) =zy2 .— (2.10)

As the energies are measured in rydberg units, the above
equation assumes the form

(H + t2 )V2(r) =zy2 . (2.10')

Now let Vz(r;t2) be the solution of the homogeneous (re-
duced) equation

(H + t 22)V,(r; t, ) =0 . (5.5)

We recognize immediately that for the ground state of
hydrogen we get exactly the same equation with t 2 re-
placed by t, =A, + 1. Our problem for the ground state of
hydrogen has been solved explicitly in Paper I. As the
ground-state wave function y& ~ exp( —x), the corre-
sponding V& function is given by

(5.10)

(the same relation holds between u, and u 2). Substituting
the above expression into the reduced equation of Eq.
(5.4) indeed yields the Kummer equation. In other
words, Eq. (5.4) becomes, with the help of Eq. (5.10),

(t2 —
& i2)&xu", +(4—2t2x)u', +(2—4t2)u, = —x (1—

—,'x)e
(5.11)

the lhs being identical to the lhs of the ls equation [Paper
I, Eq. (17)], except for the replacement of t, by t2. The
two fundamental solutions of the homogeneous equation
are

1
U1 1F) 2 ——~4~2t2x

2

1
U2 = U 2;4;2t2x

2
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and the Wronskian is given by

3 1 2t2x

4t', I (2—1/t, ) x' (5.12)

As may be easily verified, u1 is finite everywhere and
behaves like exp[(t —

—,')x] at infinity. Thus, our require-
ments on g and V are indeed satisfied.

From this expression we get u, (0;tz),

+~,F, +BU . (5.13)

To determine the two coefficients 3 and B, we impose the
condition that g (x;A, ) would be finite in the physical re-
gion 0 (x ( ~ and that at infinity it does not diverge ex-
ponentially. The reason for this restriction is as follows:
consider the original equation of F:

Therefore, the solution of Eq. (5.12) is of the general form

3

4t,'I (2 —1 jt, )

x —(t2+ 1/2)x'= —,F, Ue ' (1—
—,'x')x' dx'

x —(t2+ 1/2)x'+U,F,e ' (1—
—,'x')x'"dx'

1
u, (0;tz)= —', t~l 2 — F, (0) .

2

The Laplace transform is given in the literature [8]. We
obtain

1
u i(0;t2 ) =

(2t~ —1)(3tz —1)

1.X 2F1 5 2'4 XP
2

5 1.
(4 —1) zFi 6, 3;5——,xo

2 2

[H, F]V z+AFV z=z

from which we get

FH
I yg & +~ & y, IF yz &

=
& p, I

z
I yz & .

(2.5) (5.18)

where zF, (a, b;c;xo) is the hypergeometric function and
xo =(1—1/2tz)/2.

We now expand u1 in a power series

Now this expression is identical with our fundamental
condition

(E„Z,+X)&
—
q „Flq, &

=
& +„lzl+, &

u, (x;tz)= g a„x"
n=0

and put

a =a("—a"'~n an an

(5.19)

(5.20)

&Hq „IP,& = &q „IHV, &, (5.14)

—( t2+ 1/2)x
Ue ' (1—-'x)x dx .

0 2
(5.15)

which is satisfied if, and only if, Vz vanishes at infinity
and does not diverge at the origin. Thus, if F (or g)
satisfies the above-mentioned conditions, Eq. (5.14) is au-
tornatically secured. Note that our conditions on F are
stricter than is necessary. Now with these conditions in
mind, we find immediately that B =0 and

(1) (1)—a(1)
n+1 n n ~n

where

(5.21)

(n +2)tz —1

(n +1)(n +4) (5.21')

a„'" and a„' ' correspond to the two terms on the rhs of
Eq. (5.11). It is a straightforward matter to show that the
coefficients a„'"are determined by the recursion formula

Consequently, our function u, (x; tz ) is given by

i(x;t2) =,F, 2 —;4;2t~xF, (x)
4t', I (2 —1 jt, ) t2' '

(t, —
—,
')"

(1)—
(n +1)(n +4)(n —1)!

(5.21")

+ U 2 ——;4;2tzx Fz(x),1. .
2

(5.16)
with po '=0. For the coefficients a„' i we get the recur-
sion formula

where

and

oo —(t2+ 1/2)x'
F, (x)= U 2 ——;4;2tzx' e

x

X(1—
—,'x')x' dx (5.17)

g (2) ~ g (2) —~(2)
+1 O.

where

(t 1}ll 2

(2)—
2(n + 1)(n +4)(n —2)!

(5.22)

(5.22')

+ 1/2)Fz(x)= f,F, 2 —;4;2t,x' e
2

X (1—
—,'x')x'"dx . (5.17')

with p"'=p"'=0
Equation (5.21) has been solved by mathematical in-

duction. We get
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a'"=(a Q )a"'
n n —1 0 0

n 2

+ yt k +k+( + —)+t —i
(1) . . . (1)

k=1
(5.23)

where ao", according to Eqs. (5.18) and (5.20), is given by

(i) 2Fi(5 2'4 1/t2'x())
a,"'=

(2t, —1)(3t,—1)
(5.24)

Finally, simple but lengthy algebra and use of the Gauss
series for the hypergeometric function yield the expres-
sion for a„"':

a (1)—
an

(2t2x() )" xo(n +4)
n 2F((l, n +4;n +3—I/tz, 'xo)+ 2F, (2, n +5;n +4—1/tz ,xo)'

2tz(n+2 —1/t2)n! ' ' ' ' n+3 —1/t2
(5.25)

Next, we evaluate a„' '. Obviously it is given by the same kind of formula as Eq. (5.23) with a o
' and p(k" replaced by

ao ' and (t3(k ), respectively. The expression of ao ' follows from Eqs. (5.18) and (5.20):

2F, (6, 3;5—1/t2;x() )

2 (2t2 —1)(3t2 —l)(4t2 —1)

Also, the evaluation of a„' ' is lengthy and tedious. We find

(5.26)

a"'=an
(2t2xo) n (n +4)n(n —l)2F, (2, n+4;n +3—1/t2;xo)+2xo 2F, (2, n+5;n+4 —1/t2;xo)

4t2(n +2—1/t2)n! ' ' '
n +3—1/t2

(n +4)(n +5)+2xo zF((3,n+6;n+5 —1/tz, xo) (5.27)

Our next task is to derive the integral representation of our function ui(x, t2), Eq. (5.19). To accomplish this, use is
made of the integral representation [9] of the hypergeometric functions,

b —12F(abcx)= y '(1 —y)' '( —xy) 'dy,
I bIc bo— (5.28)

which is valid for c )b )0. As the functions in question do not satisfy these conditions, we apply the transformation
[10]

2F, (a, b;c;x)=(1—x) 2F, [b, c —a;c;x/(x —1)] . (5.29)

By Eqs. (5.25) and (5.27) the expansion coefficients of the function ui are composed of five single terms. Let us call
them a„'i', a„'2', a„'i', a„'z', and a„'3", the first two correspond to the two terms of Eq. (5.25), and the last three correspond
to the three terms of Eq. (5.27). We thus get five terms which comprise the function u i (x; t2 ). Each one of them is eval-
uated with the help of Eqs. (5.28) and (5.29). We reproduce here the five integral representations without going into
algebraic details:

(i) u", , '(x, t2)= g a„",'x"
n=0

X 1 2—1/t2
&

1+1/&2 ( &&
—1/2)~p

2+i/ y '[2t2 —(tz —
—,')y] 'e '

dy .
(t2+ —,

'
)

(5.30)

(ii) u ',"(x, t ) = g a„"'x"
n=0

2

(5.31)

(iii) u'„'(x, t, )= g a„','x"
n=0

X i 3 —i/t2 )+(/t~ (t~ —(/2)xy

2(t, + —,')
(5.32)
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( iv ) u ()2) (x, t ~ ) = g a„'2'x "
n=0

2

(5.33)

(v) u'ii'(x, tz)= g a„'3'x"
n=0

1 1 1 —1/t2 (
1+1/t2

y [2t (t2 —
—,
' )y]

2(t, + —,')

X(1—y) [(t2 —
—,') x y +10(tz —

—,')xy+20]e '
dy .

The above expressions yield the function u1,

u)(x;t2)=uI$ +ui/ u)) u)2 uI3

This follows from Eqs. (5.19) and (5.20). We now define the function g) (x; t2 ) by

g, =(1—x/2)gz, ,

which becomes, according to Eqs. (5.3) and (5.10),
—{t2 —1/2)x

g1 =e Q1

The integral representation of g1 then follows immediately. We get, after some simple rearrangements,

(t + 1
) 2g (x t) g()) +g(2) +g(3)4+ 1/t

where

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

gI (x;t2)=2f y [2t2 —(t2 ——')y] (1—y)(2t2 —4+Sy)e ' dy, (5.39)

(5.40)

(5.41)

One interesting feature of the above expression is that
it diverges when A, ~O. More specifically, the function
g1" for k=e « 1 is given by

g', "(x;X=e)=
3

+ 15
2

——'x (5.42)

This result is easily derived from the above integral repre-
sentations, or, alternatively, from the expressions of ao,
Eqs. (5.20), (5.24), and (5.26), plus the corresponding re-
cursion formulas of g1. This divergence has a simple
physical background: consider the equation

(E~ Ez, +A)(np —g, 2s)=(np( 2s)x,
1 —x/2

(5.44)

limi, 2p g, 2s = 2px 2s
A, =O 1 —x/2

(5.45)

where the above expressions are the radial parts of the
matrix elements. Obviously, the rhs has some finite
value. Due to the degeneracy of the 2s-2p states, we must
have

(&„,—&„+&)&tip lFl» & =(tip l~l» &

or, as

F=xP1g2,

=xP,g, /(1 —x /2),

(2.6)

(5.43)

This is possible only if g, diverges like 1/k for A, ~O. In
conjunction with Eq. (5.42), it is immediately verified that
this is indeed numerically correct. Furthermore, by a
similar argument, we get, for n )2,

np 2s =0 .

we have However, this is nothing but the orthogonality condition
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of the 2p and np states, because [x /( 1 —x /2) ] l
2s &"12p &.

Next we consider the expressions of S (2(, ) of Eq. (2.8).
They are easily evaluated with the help of the formulas
derived in the Appendix of Paper I.

(i) v= —1. We have

S,(A, ) = (OlzF 0&

(1—x/2)g, e x dx .6

Direct
numerical
calculation

—1.445 7
—0.578 52

2.811 75

Analytical
calculation

—1.445 5
—0.577 68

2.812 8

Computer
calculation

—1.4443
—0.5778

2.8127

TABLE III. 1nI(v) for the 2s hydrogen state.

This integral diverges for X~O because of the divergence
of g', ", Eq. (5.42). The reason is simply the fact that
L( —1), Eq. (2.2) diverges for hydrogen because of the
2s-2p degeneracy.

(ii) v=O. We have
xg", +(4—x)g', —

A,xg, = —x(1—x/2) . (5.49)

differential equation for g, (x, A, ). It is easily derived ei-
ther from Eqs. (5.2) and (5.36), or from Eqs. (5.11) and
(5.37). We obtain

So(A, ) =2i (Olp, F lo &

,
' f —(1—x/4)g, (x, k)e x dx .

(iii) v= l. We have

(5.46)

Note that the lhs of the above equation is not identical
with the corresponding expression of the ls case [Paper I,
Eq. (15)], in spite of the fact that the corresponding
homogeneous equations for the functions u, Eqs. (5.11)
and (17) of Paper I are identical. To obtain identical
equations for the functions g, one has to take the relation

S, (2)=2(0 F 0)

' f (—1 —x/2)g, (x, A, )e x dx, (5.47)

S~(2)= —2 0 (V~F+2VF Vi 0),az

where V = —2/r. Note that in the above two expressions
the divergent terms for A, ~O disappear because the cor-
responding integrals are equal to zero.

(iv) v=2. We have

g, (x, A, )
gz, (x, A)= e

1 —x/2

instead of Eq. (5.36). This follows from comparison of
Eqs. (5.6) and (5.9').

VI. LITHIUM AND BERYLLIUM

We calculate first the mean excitation energies for the
2s states of lithium and beryllium. We start again with
our fundamental equation discussed in Sec. II,

which becomes, after a lengthy calculation,

Sz(A, )=2g, (O, A, ) ——,
' f (1—x/4)g, (x, l, )e dx .

0

Xg + 4+2X g + 2 A,X g= X (2.17)

(5.48)

Again, it is easily verified that the 1/A. term of g&, Eq.
(5.42), does not contribute to the above expression.

To obtain the values of S(v), we have to put g =1, i.e.,
g, =1—x/2. We get S(0)=1, S(1)=—,', and S(2)=—', .
Finally, the numerical values of the sum L (v) are deter-
mined according to Eq. (2.7).

We have lnI ( v) calculated by three different methods.
(i) Direct numerical calculation [11].
(ii) Analytical calculation: g, (x;tz) was calculated ac-

cording to the integral representation (5.38)—(5.41). The
integrations over y and A. were performed numerically.

(iii) Computer calculation: The differential equation
for g& was solved by computer. The calculation is given
below. The rest of the calculation was as in (ii).

For more details concerning these calculations the
reader is referred to Paper II. The results are listed in
Table III. We see that three methods yield almost identi-
cal results.

Finally, as mentioned in (iii), we are in need of the

where the y, 's are 2s Clementi wave functions. These
functions have one nodal point. Obviously, the functions
g have a divergence at this point. Even for the relatively
simple 2s hydrogen case, the corresponding gz, function
has a pole at the nodal point [see Eq. (5.36)]. In order to
learn how to handle the nonhydrogen 2s states, we have
made use of a two-parameter wave function of the form

—Z&x /2
y, =X(1—

—,'Z, x)e (6.1)

The parameters Z, and Zz were determined so as to yield
the best possible fit to the corresponding Clementi wave
function. (There is more than one method to determine
the Z's. Different methods can give rise to quite different
values of these parameters. This was one of the reasons
that, in the end, we used the proper Clementi functions. )
If we now make the substitution, as we did for the 2s hy-
drogen case,

g, (x, A, )
g(x, A, )=

1 —
—,'Z, x

then together with Eq. (6.1), we obtain the equation
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xg I'+ (4—Zzx)g
&
+ —Ax+, g,

1 —,Zix

= —x(1—
—,'Z, x ), (6.2)

g&(x, A, ) =u (x, A. )e

The above equation then becomes

where A=Z& —Z2. Obviously, if 6=0, we should get
the equation for the 2s hydrogenlike ion', indeed, the
above equation is identical with Eq. (5.49), if we put
Zl Z2 1.

Let us now investigate the above equation more
thoroughly. To do this, it is advantageous to make the
transformation

u2(y, t2)= g a„y "+(y lny ) g b„y", (6.7)
n=0 n=0

the b„'s being the above coefficients of the regular solu-
tion. Putting this expression back into Eq. (6.4) yields
three-term recursion formulas for the a„'s, as the b„'s (for
n )0) are known from the regular solution. One gets
simple connections between the a„'s and the b„'s, the
most important of which is

b =0=
Z ao.

1

(6.8)

We now return to our inhomogeneous equation (6.3).
The solution in terms of the two functions v& and v2 is
readily given by the well-known method of variation of
parameters. We get

xu "+(4—2tzx)u
' — 4t2 —2—

1 —
—,'Z x1

u =xf (x),

(6.3)

u (x; t2 ) =u, u2(x'), dx'(x')

x, f (x')
+u2 u&(x'), dx',

0 W x' (6.9)

where

(t2 —Z2 /2)xf (x)= —(1—
—,'Z, x)e (6.3')

y (1+y)v"+y 4— t2(1+y) u'
1

and tz=+1,+Zz/4. Of course, putting Z, =Z2=1, we
regain Eq. (5.11) of the 2s hydrogen case. The above
equation has one additional pole at xo=2/Z&. Let us
consider the homogeneous equation of Eq. (6.3), and let
u, (x) and u2(x) be the regular and irregular solutions, re-
spectively, in the whole range O~x + ~. For x ))xo, v&

behaves like the regular solution and v2 behaves like the
irregular solution of the Kummer equation (see Paper I,
Sec. III).

We shall now focus on the neighborhood of xo. We
define the variable y =

—,'Z &x
—1; in terms of y, the homo-

geneous equation of Eq. (6.3) becomes

where the conditions of finiteness at x =0 and x~~
have already been incorporated (for details, see again Pa-
per I, Sec. III). We have shown above that at xp, we have
v, (xp)=0 and u2(xp)=ap&0; thus

u (xp) =ap f v, (x'), dx'f (x')
0 W x'

=apI2(xp ) (6.10)

u'(xp) =v', (xp)I, (xp)+u2(xp)Ip(xp) (6.11)

where v2(xp), according to Eqs. (6.7) and (6.8) in the lim-

ity~0, is given by

Hence the solution of Eq. (2.17) at xp is different from
zero. Consider the derivative of u at xo. We have

2
[(4t2 —2)y+h]u =0,

Z]

u2= —,'apb, lny +O(y ),
(6.4)

and by Eq. (6.10), we get, for y ~0,
(6.12)

where the derivatives are with respect to y. Expanding v

in a power series, we find the regular solution =
—,'hu(xp) lny

dx
(6.13)

i(y t )=ygb. y"
n=0

(6.5)

u (y)=v, (y) J dy',W(y')

l ui(y') 1'
(6.6)

where W(y) is the Wronskian of the equation. Now for
~y~ && 1, we get W= (1+y); it is easily verified that the
general form of v2 is

where the b„'s are determined by recursion formulas. The
important conclusion of this result is that the regular
solution of the above equation vanishes at xo. Now the
irregular solution is intimately connected to the regular
solution by the well-known formula [12]

Obviously, the behavior of g, in the neighborhood of x0
is the same as that of u. Thus the conclusion is that the
solution of Eq. (6.2) has a finite value at xp, but its first
derivative diverges logarithmically.

As mentioned at the beginning of this section, the ex-
act 2s Clementi wave functions were used to calculate the
2s mean excitation energies. To solve Eq. (2.17) is impos-
sible because g diverges at xo. We should solve an equa-
tion analogous to Eq. (6.2), but to do this by computer is
not feasible because of the irregular behavior of the first
and second derivatives of g& at xp. (It is obvious that any
nonhydrogenic 2s wave function gives rise to behavior at
the nodal point similar to that of the one discussed
above. ) To circumvent this problem, we defined the func-
tion g3 by
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g3(x, A, )
g(x, A)=

p'(x)
(6.14)

TABLE V. lnI(v) and Z,~(v) for 2s states of lithium and
berylhum.

This function has a zero of second order at the nodal
point xo. The differential equation of g3is easily derived
from Eq. (2.17):

xgg3 +(4y —4xp')g3

+ [
—10@' 3xy—"+6x(y' !y) Axy—]g3 = —xy

(6.15)

—1

0
1

2

2s lithium

lnI(v)
—1.8396
—1.4701

0.7712
4.9611

0.988
1.963
2.928

lnI(v)
—1.158 2
—0.71996

1.681 7
5.520 7

1.437
3.095
3.873

2s beryllium

This equation was solved by computer for x ( 12, i.e., the
upper limit was much beyond the nodal point. For
x & 12 and x A, )20, the asymptotic expansion of g&, Eq.
(4.1), was used. It is interesting to point out that in the
limit X=O, the function g is finite, unlike the correspond-
ing hydrogen case [see Eq. (5.42)]. The reason, of course,
is simply the nondegeneracy of the 2s-2p states.

The functions S (A, ), S(v), and L (v) were calculated
by the relevant expressions given explicitly in Sec. III.
This is explained in Sec. IV. The values of Z,s(v) were
evaluated by Eq. (4.3), making use of the 2s hydrogen
data of Table III.

Our results of the L (v)'s and S(v)'s as functions of v
for the 2s states of lithium and beryllium are listed in
Table IV; the corresponding results of lnI(v) and the
effective charge Z,z are listed in Table V.

Of course, no values of Z,~ exist for v = —1, simply be-
cause for hydrogen, lnI( —1) diverges. For v=0, the
dominant region which contributes to the mean excita-
tion energies is the "outer region" (as in the case of the
total cross section) of the atom. In the present case, this
region lies just outside the average distance of the 2s elec-
trons from the nucleus. As these electrons are relatively
far from the nucleus, it is understandable that, for a sys-
tem with one 2s electron only, Z,z should be about equal
to (Z~ —2); thus, for lithium it should be about 1. Final-
ly, for beryllium, due to the mutual screening of the two
2s electrons, Z,z should be between 1 and 2. Our results
are therefore very reasonable. As a matter of fact, from
the point of view of the 2s electrons, the beryllium atom
has a certain similarity to the helium atom. Therefore,
the values of the respective Z,~'s should not be very far
from each other. This is indeed the case. As for the v=2
cases, the results are very similar to the corresponding 1s
cases, as indeed they should be because the underlying
physics is the same (see Sec. IV).

Finally, a remark concerning the v=1 case. In Sec.
III, paragraph (iv), we pointed out that there are two

different values for S'"' and S' '. Furthermore, we
showed there that S'"' is the correct one for v=1. All
the values listed in Tables I, II, IV, and V have been cal-
culated by the expression S'"', Eq. (3.23). But we have
also calculated Z,s by S' '. (The explicit expression is
not given in this paper. ) As we see from Tables II and V,
the values of both lnI(v) and Z,s(v) increase steadily
with increasing v. That for Z,z this makes sense from the
physical point of view has been explained in Sec. IV and
in this section. However, the values of Z,~ calculated by
S' ' for the 2s states violate this rule. We get Z',z

' =0.6
for lithium, and Z',z'—- 1 for beryllium, both are off by
about a factor of 3.

Finally, we evaluate the results of lnI(v) for the atoms
lithium and beryllium. They are defined by

2L ~ is)(v)+ nL (2s)(v)
lnI(v) =

2S"'(v)+nS' ' (v)
(6.16)

where for lithium we have n =1 and for beryllium we
have n =2. The results are listed in Table VI. The values
of L ( v) and S ( v) for the ls and 2s states were taken from
Tables I and IV, respectively.

We notice that for the total cross section (v= —1), the
outer electrons dominate, whereas for the Lamb shift
( v =2 ), the inner electrons dominate. This is due to the
fact that for v= —1, the dominant contribution is derived
from the large values of r [there is an effective cutoff for
r &(1; see Eq. (3.1')]; in this region we have q&z, »p„.
This essentially explains the dominance of the 2s state for
v= —l. On the other hand, for v=2, S(2) is proportion-
al to [y(0)]; as

[%„(0)] » [q z, (0)]

it is obvious that the 1s states should dominate. For the
straggling effect (v= 1), this is also true, but to a lesser
extent. Finally, for the stopping power (v=0), the ls and
2s states yield contributions which are both of the same

TABLE IV. I.(v) and S(v) for 2s states of lithium and beryl-
lium. TABLE VI. lnI (v) for the atoms lithium and beryllium.

2s lithium

L (v) S(v) I.(v) S(v)

2s beryllium Lithium

lnI (v)

Beryllium

lnI (v)
—1

0
1

2

—10.878
—1.4701

0.4294
41.755

5.9133
1.00
0.5568
8.4164

—3.253 4
—0.71996

2.247 4
211.25

2.8091
1.00
1.3364

38.265

—1

0
1

2

—1.6645
0.8618
2.560
5.157

—1.0606
0.9757
3.1186
5.734
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order of magnitude. In a subsequent paper we will report
on the calculation of the excitation energies I(v) for the
ground states of all atoms from boron to neon.

VII. SUMMARY

The four logarithmic mean excitation energies
(v= —1,0, 1,2) have been calculated for the 2s states of
hydrogen, and the ground states of helium, lithium, and
beryllium.

(1) The 2s state of hydrogen has been calculated in Sec.
V. It can essentially be reduced to the 1s state, which has
been dealt with in Paper I. The results are summarized
in Table III. Our accuracy is relatively low (4—6 digits).
This could be greatly improved by expanding S (A, ), Eq.
(2.8), in powers of I/A„but this calculation has not yet
been completed. Shimamura [13] has calculated the same
quantities by the Coulomb Green's-function method. His
accuracies are much higher (14 digits) than ours. Our re-
sults coincide completely (within the limits of our digits)
with Shimamura's results.

(2) The logarithmic mean excitation energies for the ls
states of He, Li, and Be have been calculated with the
help of Eq. (2.17). The results are summarized in Tables I
and II. For the Lamb shift (v=2) of helium, we get a re-
sult which is smaller by 0.8% than the one computed
[6,7] by complicated variational methods. This
discrepancy is most probably due to our neglect of corre-
lation effects. As the logarithmic mean excitation ener-
gies for v= —1,0, 1 have been evaluated by exactly the
same method, it is very likely that the corresponding er-
rors are of the same order of magnitude as for the v=2
case, though they may have some v dependence. Other
methods have been employed to calculate these quanti-
ties. We have in mind, in particular, the method [5,14] in
which L (v) is calculated by taking the derivative of S(v)
with respect to v, which is treated as a continuous vari-
able. Upper and lower bounds were calculated from
S(v —1), S(v), and S(v+1). As S(3) diverges, it is im-
possible to calculate by this method an upper bound for
the Lamb shift, and the lower bound turns out to be rath-
er poor. Our v= —1,0, 1 results for helium are in agree-
ment with the results of Ref. [5]. However, our results
are lower by a few percent than the corresponding lower

limits given in Ref. [14] (4%, 5%, and 1.7% for
v = —1,0, 1, respectively). In Ref. [14] the upper-
limit —lower-limit differences are smaller than the corre-
sponding upper-lower limits given in Ref. [5]. The
discrepancies between our results and those of Ref. [14]
are somewhat larger than we should expect from the re-
marks made at the beginning of this paragraph. Of
course, we really do not know how accurate the results of
Ref. [14] are. Our results for the atoms lithium and
beryllium are summarized in Table VI. The discrepan-
cies between our values and the lowest values of Ref. [5]
are 1.6% for lithium (v= —1), 3.6% for lithium (v=O),
and 6.7% for beryllium (v=O). We should point out that
in the last case the upper-limit —lower-limit difference in
Ref. [5] is more than 50%, which should be an indication
that these data are unreliable.

(3) In Sec. IV we introduced the effective charges Z,s.
defined by Eq. (4.3). For the ls states the values of Z,s for
He, Li, and Be are listed in Table II. They have remark-
ably simple features. We found that Z,s=Z~ —s(v),
where Z~ is the charge of the nucleus and s(v) is the
screening factor. The latter is essentially independent of
Z&. The s(v)'s decrease monotonously from 0.43 for
v= —1 to 0.03 for v=2. We have also evaluated the
Z,z's for the ls states of boron and carbon. These data
are in agreement with our present results for the lighter
atoms, but their explicit values are not listed in the
present paper. A11 known data of ours for the 1s states
can be summarized by the simple formula

I(v) =I(v)H[Ziv —s (v)]

where I(v)H are the logarithmic mean excitation energies
of hydrogen.
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