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Role of potential structure in nonadiabatic collisions with applications
to He++Ne(2p ) = He++Ne(2p'3s) and Na+I: Na++I
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The first-order functional-sensitivity densities 5o.&2(E)/5V;, (R) from close-coupling calculations are
used for a quantitative probe of the role of structure in crossing diabatic curves used to model nonadia-
batic collisions. Application to the excitation of Ne by He+ shows a region of significance for
5o.»(E)/6 V»(R) as a prominent Gaussian-like profile around the crossing point (R ) in accord with the
5(R —R ) idealization of the Landau-Zener-Stueckelberg (LZS) theory. Similarly, the densities
60.»(E)/6V»(R) and 5o.»(E)/5V»(R) mimic d6(R —R *)/dR-type behavior with one being the nega-
tive of the other in the neighborhood of R, in qualitative agreement with the LZS theory. However, all
three sensitivity profiles identify a much broader area of importance for the curves than the loosely
defined avoided-crossing region. Also, although the sensitivities themselves decrease with increasing en-

ergy, the domain of importance of the curves increases. Examination of the functional-sensitivity densi-
ties 5cr»(E)/5 V;, (R) for the chemi-ionization collision Na+ I~Na +I reveals regions of potential-
function importance very different from that predicted by the LZS theory. The chemi-ionization cross
section is about ten times more sensitive to the ionic curve than the covalent curve. Also, the domain of
sensitivity of the ionic curve is larger compared to that of the covalent curve. The density
6o.»(E)/6V»(R) for chemi-ionization shows that the area of maximum potential significance is not at
the crossing point itself but the regions bracketing it on both sides. Also, the dominant sign dependence
of the coupling sensitivity is unexpectedly negative. The results offer other observations about the
domain of validity of the intuitive pictures rooted in the LZS theory. The significance of these results to
the inversion of inelastic cross-section data is briefly discussed.

PACS number(s): 34.50.Pi, 34.20.Cf

I. INTRODUCTION

As a simple prototype of chemical reactions, the
chemi-ionization reaction Na+I —+Na +I has re-
ceived intense experimental and theoretical interest
[1—3]. The dynamics of chemi-ionizations is controlled
by the underlying potential-energy curves and coupling
matrix elements. A quantitative knowledge of those re-
gions of the curves controlling the dynamics is therefore
of clear importance.

This dynamical dependence on the functional form of
the underlying potential-energy curve(s) or surface(s)
V(R) may be examined through a first-order functional
expansion of the collision cross section o.([V]),

5cr=o([V+5V])—o.([V])=J dR 5V(R),

where R denotes generic coordinate space variables.
The first-order functional-sensitivity density (deriva-

tive) 5cr/5V(R) serves the role of a weight function in
Eq. (1). Those regions of R where 5o /5V(R) is large im-

ply regions of importance and the cross section is sensi-
tive to changes in the potential(s) in this region. On the
other hand, regions with small 5cr /5 V(R ) denote areas of
the potential with little significance in the determination
of the cross section. Additionally, the sign dependence

gives us a sense of how o will respond to an increase or
decrease in V(R). While such an investigation may also
be done using the brute-force method of varying V(R)
and repeating the calculations for the cross section many
times, direct calculation of the functional sensitivities
5cr /5V(R) in the close-coupling approach requires only a
minor extension and expense beyond the cross-section
calculation [4] alone. This approach has been applied to
determine regions of potential-energy curves critical to
diverse dynamical processes [5].

In an earlier paper [6] we have employed the exponen-
tial distorted-wave (EDW) approximation to calculate the
functional sensitivity densities 5o,2(E)/5VJ(R) for the
collisional excitation He++Ne(2p )~He++Ne(2p 3s).
The results obtained from this investigation showed the
inadequacy of intuitive pictures of nonadiabatic collisions
rooted in the Landau-Zener-Stueckelberg (LZS) theory
[7]. The LZS theory continues to be used extensively for
modeling nonadiabatic transitions using the crossing of
the potential-energy curves corresponding to the partici-
pating states [1—3,8]. Although our earlier analysis [6]
showed the limitations of the LZS theory, qualitatively
correct behavior was found for the critical importance of
the curve crossing point (R *), the idealized LZS
5(R —R*)-type behavior for 5cr,z(E)/5V, 2(R), and the
+d 5(R —R *)/dR ty pe behavior for 5cr-, z(E) /5 V» (R )
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and 5o &2(E)/5V22(R). The area of importance of all the
potential-energy curves was, however, found to be much
larger than the loosely defined avoided crossing region.

We attribute this qualitative success to the rather sim-
ple nature of the diabatic curves (as seen in Fig. 1) used to
model the He++Ne(2p )~He++ Ne(2p 3s) inelastic
transition. Where there are competing features in the
potential-energy curves it is not quite obvious how the
significant regions can be intuited by any simple means
including the LZS theory [e.g., the potential well fol-
lowed by a distant crossing for chemi-ionization col-
lisions M +X~M++X (M is an alkali-metal atom, X
is a halogen) or where fine-structure transitions, as in the
H++F system, are mediated by adiabatic curves which
do not cross but have competing features such as wells
and humps [9,10]]. Also, the EDW and other perturba-
tive approximations may not be suitable when coupling
matrix elements are large, which is the case with the sys-
tems mentioned above. Moreover, for systems with
long-range interactions, such as Na+ and I, the EDW
method can be quite expensive. It is, therefore, useful to
develop tools for a rigorous and accurate calculation of
the functional sensitivities without any approximation
(except numerical integrations) for the treatment of the
collision dynamics.

Recently, a compact formulation for the computation
of functional-sensitivity densities of dynamical observ-
ables with respect to an arbitrary variation in the interac-
tion potential has been presented [4], which employs the
close-coupling method for calculation of collision cross
sections. In the close-coupling approach to functional-
sensitivity calculations, the wave functions already avail-
able from the scattering matrix-element calculations also
determine the sensitivities. One can therefore have a
rigorous calculation of both sensitivities and cross sec-
tions with just minor extensions to the close-coupling
code.

In this paper, we present an adaptation of this ap-
proach to explore the role of structure in potential-energy
curves and interaction matrix elements used to model
nonadiabatic transitions. The nonadiabatic collisional
excitation He++Ne(2p )~He++Ne(2p 3s) and ioniza-
tion Na+ I—+Na+ +I are used for illustration
[1—3,6, 11,12].

In Sec. II, we collect the theoretical and computational
formulas needed for calculation of the close-coupling sen-
sitivities. The results are discussed in Sec. III, and finally
some concluding remarks are offered in Sec. IV.

II. THEORY

where

k; = [E—
Vl, (~)]2p

and VJ(R) is the usual diabatic matrix element between
the electronic wave functions for the two states [14]. In
Eq. (2) p is the collisional reduced mass, R is the internu-
clear distance, and the radial scattering wave functions
for the electronic states 1 and 2 are u', (R) and u z(R), re-
spectively.

Alternatively the radial equations may be written in
matrix form:

d2 I+0 U=O,
dR

(3)

where U is the solution vector, I is an N XX unit matrix,
and Q is an N X N square matrix with elements

l(l+1) V;(R). (4)

R M
= [+M-1—~ M-1+ ][~M—

~M+ ] (6)

where g and C are diagonal matrices of regular and ir-
regular Riccati-Bessel functions as defined in Ref. [4]. (In
Ref. [4], 4 is denoted as Si and C is denoted as Co.) The
scattering matrix for each I may be obtained from the
reactance matrix K

S'= (1+iK')( 1 iX ')—
and the outgoing (+) and incoming ( —) solutions for
each partial wave have the form

U' +=U' [1+iX ']

The total inelastic cross section o,2(E) is given by

, &(»+1)IS~»l',
k& i=o

Numerical solution of the coupled equations proceeds
by discretizing R into M + 1 grid points R,.
[i =0, . . . , M ] with Ro sufficiently far in the nonclassi-
cal region and RM in the asymptotic region. We have in-
tegrated the coupled equations using the renormalized
Numerov method [4,15] where the ratio matrix for the
regular solutions

R =(U l) 'U (m =1, . . . , M)

is propagated to the asymptotic region and then matched
to

The assumption of only two electronic states along
with a partial-wave expansion of the scattering functions
for both states leads to the following coupled radial equa-
tions for the lth partial wave [13]:

d +k2 2P V (R) l(l+1) ul(R)
dR I R

whereby

5o,2(E) 5S ',2(E)

5V;, R g (2l + 1)Re [S ', 2(E) ] 5V; R

It has been shown [4] that

5Sl 2(E)
2vri (2,E —IR, i—)(j,R I I,E+ )

(10)

V,"(R)u.(R), i j =1,2 i' (2)
2p

where (2,E—IR,i ) denotes the complex conjugate of the
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TABLE I. Total excitation cross sections for He++ Ne. All values are in atomic units.

Cross section

Energy

0.919
1.000
1.500
2.000
2.600
2.606

Present
calculation

0.785
0.822
0.785
0.746
0.675
0.672

EDW
(Ref. [6])

0.820
0.842
0.818
0.765
0.709
0.706

DW
[Ref. [11(a)]]

0.874

0.729

UWKB
[Ref. [11(d)]]

0.873
0.844
0.779
0.719

b,x, =2 V„/IF, —F,I, (19)

I I

He + Ne
+

Just as in the earlier EDW analysis [6], clear qualita-
tive similarity exists between the Gaussian-like profile for
5o-,2(E)/5V, 2(R) in Fig. 3 centered at the crossing point
R ' and the idealized LZS 5(R —R *)-type behavior; in
addition, the behavior in Fig. 4 of 5cr,2(E) /
5V&I(R) = 5o&2—(E)/. 5V22(R) near R =R* and their
derivativelike slope is again rejective of the idealized
+d5(R —R *)/dR result from the LZS theory. Thus the
magnitude of VI2 (R ) and slopes of V& I (R ) and V2z(R )

near the crossing point are key physical variables [6].
The fact that the region of importance for all three curves
V»(R), V&2(R), and V,2(R) is much larger than the
loosely defined avoided crossing region clearly dernon-
strates the need to go beyond the LZS theory. Quantita-
tive comparisons may be made by calculating the static
width (b,x, ) and dynamic width (hxd )

bx„=u/(2IF, F2I )'— (20)

of the transition region associated with the LZS theory
[13], where F, and F2 are the slopes of the diabatic po-
tentials VI&(R) and V22(R), U is the relative velocity, and
all the quantities are evaluated at the crossing point R*.
The width of the effective transition zone is defined as the
larger of the two quantities hx, and bxd. For the cases
considered here, hx, « Axd, e.g., for the collisional exci-
tation of Ne by He+ at E =2.606 a.u. , Ax, =0.019 a.u. ,
while hxd =0.18 a.u. It is the dynamic width which con-
trols the extent of the LZS transition region. This width
is marked in Figs. 3, 4, and 6—8 and clearly demon-
strates that the region of significance of these curves is
much larger than that predicted by the LZS theory.

The use of log-normalized functional derivatives allows
a comparison of the relatiUe importance of the various
curves and it is clear from Fig. 3 that both the potential-
energy curves are equally important, over the same
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FIG. 3. Log-normalized sensitivity profiles 5 lno. »(E) /
61nV»(R) and 51no»(E)/61nV2~(R) at E=0.919 a.u. for
He+ +Ne. The correlated +d 5(R —R *

) /dR qualitative
behavior for V»(R) and V»(R) sensitivities in the vicinity of
R*(

II ) is consistent with the LZS theory. The magnitude of
these sensitivities is almost the same and the domain of impor-
tance is much larger than the dynamic width of the transition
region b,xz (the interval between the two

II arrows) prescribed
by the LZS theory. The static width Ax, is much too small to
be displayed.

R (a.u. )

FIG. 4. Log-normalized sensitivity profile 5 lno. 12(E)/
6 ln V» (R ) for He+ +Ne at different total energies. The
Csaussian-type feature centered at R ( II ) mimics the idealized
LZS 6(R —R*) behavior. The interval between the two $ ar-
rows is the dynamic width Axd calculated at E =2.606 a.u. The
domain of sensitivity extends far beyond the transition region
specified by the LZS theory and underscores the need to aug-
ment the intuitive pictures rooted in the LZS theory.
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TABLE II. Total ionization cross sections for a+ .r a+ I. All
values are in atomic units.

Cross section
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Present
calculation

157.41
240.77
267.67

Ref. [12(a)]
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B. Na+I

The chemi-ionization cross sections at energies o in-
terest to our functional sensitivity analysis of
Na+ I~Na++ I are collected in Table II. These com-
pare favorably with the results of an earlier close-
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various potential-energy curves and coupling matrix ele-
ments mediating a nonadiabatic collision. Although the
results for He++Ne can be understood qualitatively
from the LZS theory, their quantitative details cannot be
ascertained. In contrast for the stronger coupled Na+I
system, identification of which parts of the potentials are
important cannot be intuited a priori. Moreover, while
for the nonadiabatic collisions described by curves which
cross, one can still guess that the region around the
crossing is the most important, no such prior insight can
be had where the mediating curves do not cross (e.g. , the
case of collisional fine-structure transitions [9,10] in F or
where there are multiple crossings [8,19,20]). The fact
that a plot of partial cross section cr', z=(2l +1)~S Iz~ as
a function of I effectively elicits the domain of sensitivity
is of help„but it cannot offer any clues to the relatiUe im-
portance of the underlying curves. We therefore con-
clude that very interesting and possibly counterintuitive

conclusions may result from a careful sensitivity analysis
of fine-structure transitions and multicurve-crossing
problems. This information may be further employed in
an iterative fashion as the kernel of an inversion algo-
rithm to systematically extract potentials from appropri-
ate laboratory data [18]. An algorithm utilizing informa-
tions from both differential and total cross-section sensi-
tivities shall greatly assist in this task. An effort along
these latter lines is underway.
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