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The first-order functional-sensitivity densities 80 ,,(E)/8¥;;(R) from close-coupling calculations are
used for a quantitative probe of the role of structure in crossing diabatic curves used to model nonadia-
batic collisions. Application to the excitation of Ne by He" shows a region of significance for
801,(E)/8V15(R) as a prominent Gaussian-like profile around the crossing point (R *) in accord with the
8(R —R™) idealization of the Landau-Zener-Stueckelberg (LZS) theory. Similarly, the densities
80 1,(E)/8V11(R) and 80 5(E)/8V 5 (R) mimic d8(R —R *)/dR-type behavior with one being the nega-
tive of the other in the neighborhood of R *, in qualitative agreement with the LZS theory. However, all
three sensitivity profiles identify a much broader area of importance for the curves than the loosely
defined avoided-crossing region. Also, although the sensitivities themselves decrease with increasing en-
ergy, the domain of importance of the curves increases. Examination of the functional-sensitivity densi-
ties 80 1,(E)/8V;(R) for the chemi-ionization collision Na+I—Na™ +1" reveals regions of potential-
function importance very different from that predicted by the LZS theory. The chemi-ionization cross
section is about ten times more sensitive to the ionic curve than the covalent curve. Also, the domain of
sensitivity of the ionic curve is larger compared to that of the covalent curve. The density
80 ,(E)/8V1,(R) for chemi-ionization shows that the area of maximum potential significance is not at
the crossing point itself but the regions bracketing it on both sides. Also, the dominant sign dependence
of the coupling sensitivity is unexpectedly negative. The results offer other observations about the
domain of validity of the intuitive pictures rooted in the LZS theory. The significance of these results to
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the inversion of inelastic cross-section data is briefly discussed.

PACS number(s): 34.50.Pi, 34.20.Cf

I. INTRODUCTION

As a simple prototype of chemical reactions, the
chemi-ionization reaction Na+I—Na*+I~ has re-
ceived intense experimental and theoretical interest
[1-3]. The dynamics of chemi-ionizations is controlled
by the underlying potential-energy curves and coupling
matrix elements. A quantitative knowledge of those re-
gions of the curves controlling the dynamics is therefore
of clear importance.

This dynamical dependence on the functional form of
the underlying potential-energy curve(s) or surface(s)
V(R) may be examined through a first-order functional
expansion of the collision cross section o([V]),

So

SV (R)

where R denotes generic coordinate space variables.

The first-order functional-sensitivity density (deriva-
tive) 80 /8V (R) serves the role of a weight function in
Eq. (1). Those regions of R where 60 /6V (R) is large im-
ply regions of importance and the cross section is sensi-
tive to changes in the potential(s) in this region. On the
other hand, regions with small o /6 V(R) denote areas of
the potential with little significance in the determination
of the cross section. Additionally, the sign dependence

So=o([V+8V])—a([V])= [dR SV(R), (1
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gives us a sense of how o will respond to an increase or
decrease in V' (R). While such an investigation may also
be done using the brute-force method of varying V(R)
and repeating the calculations for the cross section many
times, direct calculation of the functional sensitivities
80 /6V (R) in the close-coupling approach requires only a
minor extension and expense beyond the cross-section
calculation [4] alone. This approach has been applied to
determine regions of potential-energy curves critical to
diverse dynamical processes [5].

In an earlier paper [6] we have employed the exponen-
tial distorted-wave (EDW) approximation to calculate the
functional sensitivity densities 80 ,(E)/8V;;(R) for the
collisional excitation He™ +Ne(2p®)—He* +Ne(2p>3s).
The results obtained from this investigation showed the
inadequacy of intuitive pictures of nonadiabatic collisions
rooted in the Landau-Zener-Stueckelberg (LZS) -theory
[7]. The LZS theory continues to be used extensively for
modeling nonadiabatic transitions using the crossing of
the potential-energy curves corresponding to the partici-
pating states [1-3,8]. Although our earlier analysis [6]
showed the limitations of the LZS theory, qualitatively
correct behavior was found for the critical importance of
the curve crossing point (R*), the idealized LZS
8(R —R *)-type behavior for 80 ,(E)/8V,(R), and the
+d8(R —R*)/dR-type behavior for 8o ,(E)/8V (R)
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and 80 ,(E)/8V,,(R). The area of importance of all the
potential-energy curves was, however, found to be much
larger than the loosely defined avoided crossing region.

We attribute this qualitative success to the rather sim-
ple nature of the diabatic curves (as seen in Fig. 1) used to
model the He™ +Ne(2p®)—He™ +Ne(2p>3s) inelastic
transition. Where there are competing features in the
potential-energy curves it is not quite obvious how the
significant regions can be intuited by any simple means
including the LZS theory [e.g., the potential well fol-
lowed by a distant crossing for chemi-ionization col-
lisions M +X M T+ X~ (M is an alkali-metal atom, X
is a halogen) or where fine-structure transitions, as in the
H™ +F system, are mediated by adiabatic curves which
do not cross but have competing features such as wells
and humps [9,10]]. Also, the EDW and other perturba-
tive approximations may not be suitable when coupling
matrix elements are large, which is the case with the sys-
tems mentioned above. Moreover, for systems with
long-range interactions, such as Na* and I, the EDW
method can be quite expensive. It is, therefore, useful to
develop tools for a rigorous and accurate calculation of
the functional sensitivities without any approximation
(except numerical integrations) for the treatment of the
collision dynamics.

Recently, a compact formulation for the computation
of functional-sensitivity densities of dynamical observ-
ables with respect to an arbitrary variation in the interac-
tion potential has been presented [4], which employs the
close-coupling method for calculation of collision cross
sections. In the close-coupling approach to functional-
sensitivity calculations, the wave functions already avail-
able from the scattering matrix-element calculations also
determine the sensitivities. One can therefore have a
rigorous calculation of both sensitivities and cross sec-
tions with just minor extensions to the close-coupling
code.

In this paper, we present an adaptation of this ap-
proach to explore the role of structure in potential-energy
curves and interaction matrix elements used to model
nonadiabatic transitions. The nonadiabatic collisional
excitation He™ +Ne(2p®)—He™' +Ne(2p33s) and ioniza-
tion Na+I—Nat+I~ are used for illustration
[1-3,6,11,12].

In Sec. II, we collect the theoretical and computational
formulas needed for calculation of the close-coupling sen-
sitivities. The results are discussed in Sec. III, and finally
some concluding remarks are offered in Sec. IV.

II. THEORY

The assumption of only two electronic states along
with a partial-wave expansion of the scattering functions
for both states leads to the following coupled radial equa-
tions for the /th partial wave [13]:

L—Fk;——%&V»-(R)—M

/
dR2 i ﬁz ii Rz ui(R)

=28V, (RujR), Lj=12i#] @

where
k,-2=—;%[E — V()]

and V;;(R) is the usual diabatic matrix element between
the electronic wave functions for the two states [14]. In
Eq. (2) p is the collisional reduced mass, R is the internu-
clear distance, and the radial scattering wave functions
for the electronic states 1 and 2 are u}(R) and u}(R), re-
spectively:

Alternatively the radial equations may be written in
matrix form:

2
d I+Q

Rl U=o, 3)

where U is the solution vector, I is an N X N unit matrix,

and Q is an N X N square matrix with elements

I(l+1)
R 2

_2u

LViR) . @)

Q;=%; [kiz—

Numerical solution of the coupled equations proceeds
by discretizing R into M +1 grid points R;
{i=0,...,M} with R, sufficiently far in the nonclassi-
cal region and R,, in the asymptotic region. We have in-
tegrated the coupled equations using the renormalized
Numerov method [4,15] where the ratio matrix for the
regular solutions

R,=WU!_H7'ul (m=1,...,M) (5)

is propagated to the asymptotic region and then matched
to

Ry=[Sy-1—Cu_KI[ESy—CuK]l™", (6)

where & and @ are diagonal matrices of regular and ir-
regular Riccati-Bessel functions as defined in Ref. [4]. (In
Ref. [4], & is denoted as Si and € is denoted as Co.) The
scattering matrix for each / may be obtained from the
reactance matrix K

S'=(1+iK)1—iKH™! (7

and the outgoing (+) and incoming (—) solutions for
each partial wave have the form

UL,+t=U",[1FiK'T7". ®)

The total inelastic cross section o ,(E) is given by

0

abz—kl% 110(21 +DIS LI, )
whereby
isﬁé@-=—”—z(zz+1n{e [sﬁg@]w—) (10)
8V,;(R) k24 = 8V;(R)

It has been shown [4] that

5S,_2(E) o
8V, (R) =—2mi(2,E—|R,i){jRILE+) (11

where (2,E —|R,i) denotes the complex conjugate of the
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ith component of the incoming (—) wave in channel 2
and {j,R|1,E+ ) denotes the jth component of the out-
going (+) wave in channel 1.

Let R, be the nth point on the solution. Grid then us-
ing Eqgs. (8) and (11) we have

80 ,(E)
_S—V_-I-%I—{_T:‘;c_g 21‘, (21 +DIm[(S {,)*U 1 ¥(5,2)
ij\fn

XU!TG,1]. (12)

This serves as our working equation for the computation
of sensitivities reported in this paper.

III. RESULTS AND DISCUSSION

The log-normalized functional-sensitivity derivatives
81no,(E)/81nV;;(R) can assess the relative importance
of different potential-energy curves as well as that of
different regions in these curves to the collision cross sec-
tion. Using log-normalized functional-sensitivity densi-
ties, we can easily determine if the cross section is more
sensitive to variations in a particular potential-energy
curve or whether the coupling matrix element is the more
important input. Before applying the log-normalized
close-coupling sensitivity derivatives to complicated
problems beyond the reach of the previously employed
EDW approximation, we reexamine the simple collision-
al excitation of Ne by He', amenable to both ap-
proaches.

The collisional excitation of Ne by He* is modeled by
the crossing of two diabatic curves shown in Fig. 1. The
functional form and modeling parameters (in a.u.) are
those formulated by Olsen and Smith [11(a)], where

V11 (R)=21.1R ~'exp(—R /0.678) , (13)

V5 (R)=(21.1R "' —12.1)exp(—R /0.678)+0.6174 ,
(14)

V(R) (a.u.)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

R(a.u.)

FIG. 1. The diabatic potentials ¥ ;(R) and V,,(R) for col-
lisional excitation of Ne by He'. The curves cross at
R*=2.02a,. The functional forms and the corresponding pa-
rameters for the potentials and the coupling matrix element
V15(R) are from Ref. [11(a)].

V1,(R)=0.170exp(—R /0.667) , (15)

and have been used in previous calculations [6,11,16,17].
The crossing curves used to model the chemi-ionization
Na+I—Nat+1" are plotted in Fig. 2. The functional
form and modeling parameters (in A and eV) given
below;

V1,(R)=[3150+(2.647/R)"]
Xexp(—R /0.435)—1000/R® , (16)
V,,(R)=[2760+(2.398 /R)®]exp(—R /0.3489)
—(e?/R)—(6.839¢%/2R*)—11.3/R®
—(2e2X0.408X6.431)/R7+2.075, (17
V1,(R)=17.08 exp(—R /1.239) (18)

are those formulated by Faist and Levine [12(a)] and used
by others [1,2,12(c)]. Although V,(R) is similar for both
cases, the potentials V;(R) are quite distinct. According-
ly, the regions of potential-function significance will be
found below to be very different.

A. He"+Ne

We present only a brief treatment of the nonadiabatic
transition He'+Ne(2p®)—He' +Ne(2p>3s) as it was
studied earlier using the more approximate but qualita-
tively correct EDW method. Apart from providing in-
sights for this system, the close-coupling sensitivity
profiles for He™ +Ne can provide a good reference to
better appreciate the significance of the Na-1I results.
The close-coupling cross sections are compared with
those from other theoretical approaches in Table I. The
perturbative approaches are known to often overestimate
total inelastic cross sections as found here. The log-
normalized functional sensitivities are plotted in Figs. 3
and 4.

0.25 | Na + [

0.15 |

Nat (sg) + 17 (Isy)

Vii(R) (a.u.)

©
[=}
o
T

~0.05 | Na (’s; ;o)) + 1 (%Pg )

1 L 1 1 Il 1 1 1

2.5 5.0 7.5 10.0 125 15.0 175 200 225 250

R(a.u.)

FIG. 2. Diabatic potential-energy curves for Na+1. The
functional form and parameters are those from Ref. [12(a)]. The
crossing point R * is at 13.2a,.
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TABLE I. Total excitation cross sections for He* +Ne. All values are in atomic units.
Cross section
Present EDW DW UWKB
Energy calculation (Ref. [6]) [Ref. [11(a)]] [Ref. [11(d)]]

0.919 0.785 0.820 0.874
1.000 0.822 0.842 0.873
1.500 0.785 0.818 0.844
2.000 0.746 0.765 0.779
2.600 0.675 0.709 0.719
2.606 0.672 0.706 0.729

Just as in the earlier EDW analysis [6], clear qualita-
tive similarity exists between the Gaussian-like profile for
80 ,(E)/8V,(R) in Fig. 3 centered at the crossing point
R* and the idealized LZS 8(R —R *)-type behavior; in
addition, the behavior in Fig. 4 of 80 ,(E)/
8V 11 (R)=—380,(E)/8V,(R) near R~R* and their
derivativelike slope is again reflective of the idealized
+d8(R —R *)/dR result from the LZS theory. Thus the
magnitude of ¥,(R) and slopes of V{(R) and V,,(R)
near the crossing point are key physical variables [6].
The fact that the region of importance for all three curves
Vi1(R), V5(R), and V,(R) is much larger than the
loosely defined avoided crossing region clearly demon-
strates the need to go beyond the LZS theory. Quantita-
tive comparisons may be made by calculating the static
width (Ax;) and dynamic width (Ax,)

Axs=2V12/‘F1'——F2I > (19)
08 L T T T T T T T T
i Het + Ne
0.6 E = 0919 au
0.4
0.3
&
o2
[=]
g
S oo
=
g -02
o
o
‘s -os
0.4
-0.6 L 1 1 Ly 1 L 1 1 1
12 14 16 1.8 20 22 24 26 28
R(a.u.)
FIG. 3. Log-normalized sensitivity profiles &lno,(E)/

SInV;(R) and 8Ino,(E)/8InV,,(R) at E=0.919 a.u. for
He*+Ne. The correlated +d8(R —R*)/dR qualitative
behavior for V;(R) and V,,(R) sensitivities in the vicinity of
R*( ﬂ ) is consistent with the LZS theory. The magnitude of
these sensitivities is almost the same and the domain of impor-
tance is much larger than the dynamic width of the transition
region Ax, (the interval between the two | arrows) prescribed
by the LZS theory. The static width Ax; is much too small to
be displayed.

Ax,=v /(2|F,—F,|)'? (20)

of the transition region associated with the LZS theory
[13], where F, and F, are the slopes of the diabatic po-
tentials ¥ ;(R) and V»,(R), v is the relative velocity, and
all the quantities are evaluated at the crossing point R *.
The width of the effective transition zone is defined as the
larger of the two quantities Ax; and Ax,. For the cases
considered here, Ax, <<Ax,, e.g., for the collisional exci-
tation of Ne by He™ at E =2.606 a.u., Ax;=0.019 a.u.,
while Ax; =0.18 a.u. It is the dynamic width which con-
trols the extent of the LZS transition region. This width
is marked in Figs. 3, 4, and 6-8 and clearly demon-
strates that the region of significance of these curves is
much larger than that predicted by the LZS theory.

The use of log-normalized functional derivatives allows
a comparison of the relative importance of the various
curves and it is clear from Fig. 3 that both the potential-
energy curves are equally important, over the same

107 8lno | H(E)/61nV | 5 (R)

1.5 1.8 2.1 2.4 2.7 3.0 3.3
R(a.u.)
FIG. 4. Log-normalized sensitivity profile &lno,(E)/

8InV,;(R) for He*+Ne at different total energies. The
Gaussian-type feature centered at R *( ]J ) mimics the idealized
LZS 8(R —R™) behavior. The interval between the two | ar-
rows is the dynamic width Ax, calculated at E =2.606 a.u. The
domain of sensitivity extends far beyond the transition region
specified by the LZS theory and underscores the need to aug-
ment the intuitive pictures rooted in the LZS theory.
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FIG. 5. Plot of partial cross sections o},=(2/ +1)|S},]? as a
function of / for E =2.606 a.u. The plot is in agreement with
those from Refs. [11(a)] and [11(b)]. Taking R=1/k, we esti-
mate the domain of sensitivity to be 0.6-2.4 a.u. in reasonable
agreement with that seen in sensitivity plots (Figs. 3 and 4).
Taking [*=~k,R* we get [* =314, in excellent agreement with
the [ value for the maximum in the o, profile.

domain of R values centered at R *. Comparison of Figs.
3 and 4 reveals that the collision cross section is about an
order of magnitude more sensitive to the potential-energy
curves than to the coupling matrix element, in accord
with the weak-coupling between the two states. This
weak dependence on coupling also explains why the
EDW approximation is so successful in this case. The
success of a reported semiclassical inversion procedure
[17] in inverting the differential inelastic cross section for
He*+Ne to obtain the coupling matrix element, we
speculate, may also be attributed to this serendipity. In
the case of systems with strong coupling, we expect that
the more general inversion procedure based on
functional-sensitivity coefficients [18] will be necessary.

In Fig. 5, we have plotted the partial cross sections
aly=(21 +1)|S%,|? as a function of ! for He™ +Ne at
E=2.606 a.u. The plot is in general agreement with
those from Refs. [11(a)] and [11(b)]. Taking / ~k,R, the
regions of importance in o, vs I profile of Fig. 5 may be
approximately translated into internuclear distances of
significance to the collision cross-section. With this es-
timation procedure we get the domain of sensitivity to be
approximately 0.6—-2.4 a.u., in reasonable agreement with
that seen in the sensitivity plots (Figs. 3 and 4). Taking
I'~k,R*, we get I*=314, in excellent agreement with
the / value for the maximum in the o}, profile.

B. Na+1I

The chemi-ionization cross sections at energies of in-
terest to our functional sensitivity analysis of
Na+I—Nat+1" are collected in Table II. These com-
pare favorably with the results of an earlier close-

TABLE II. Total ionization cross sections for Na+1. All
values are in atomic units.

Cross section

Present
Energy calculation Ref. [12(a)]
0.3 157.41 160.0
0.9 240.77 245.0
1.5 267.67 270.0

coupling calculation [12(a)], where for most / values, an
approximate JWKB-based interpolation was used to
compute S!,. The present results are from fully con-
verged close-coupling calculations, insensitive to further
refinements of the mesh or extension of the asymptotic
regime, for each partial wave. For the ionic channel, the
Coulomb potential was effectively screened at large R,
thus permitting the use of the boundary condition in Eq.
(6). The functional-sensitivity derivatives for the chemi-
ionization are displayed in Figs. 6—8. In Fig. 6 we have
plotted to unnormalized functional sensitivity profile
80 ,(E)/8V,(R) for Nal at E =0.3 a.u. The derivative
of a &-function-type feature around R * in Fig. 6 is dis-
torted but apparent. However, to compare the magni-
tudes of sensitivities for different potential-energy curves
and at different energies, the log-normalized profiles are
required. These heighten the importance of the small-R
region of the curve over the V,,(R) well as a result of the
rapid increase in the value of V,;(R) for small R. The
high-frequency oscillations at small R in Fig. 6 are associ-
ated with the effective wave vector
kz(R)Z\/(Z,u/ﬁz)[E—VZZ(R)] being very large there.
In contrast, k;(R) actually decreases as R decreases due
to the repulsive shape of V;(R). The fact that the

7

T T T T T T T T T T T

10 60,,(E)/6V, ,(R)

s 1 1 L it Hll 1 1 L L 1
3 5 7 9 11 13 15 17 19 21 23 25
R(a.u.)

FIG. 6. Functional sensitivity profile 6o ,(E)/8V(R) for
Na+1I at £=0.3 a.u. Only a remnant of the first-derivative-
type feature around R *( ﬂ ) is apparent. The strong oscillations
at small R are due to the dominant influence of V,, upon the
dynamics with V;;. The interval between the two | arrows in
the effective transition region calculated from the LZS theory.
Conclusions from Figs. 3 and 4 apply.
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80 ,(E)/8V;(R) at small R reflects distinct V,,(R)
behavior is a result of the strong coupling ¥V,(R) in the
crossing point region. The nearly symmetric + ringing at
small R in Fig. 6 implies that a smooth variation 8 V(R)
in this region will not significantly reflect this behavior in
the cross section. Hence we can focus on the behavior at
large R in Fig. 6.

In Fig. 7 we have plotted the log-normalized
functional-sensitivity ~ profiles 81no,(E)/8In¥V;(R),
i=12, for Na+1I at E=0.3 a.u. It is clear that the
chemi-ionization cross section is much more sensitive to
the ionic curve ¥,,(R) and also over a much larger range
of internuclear distances compared to the covalent curve
V11(R) in keeping with the strong long-range Coulombic
nature of the interaction V,,(R). That this comparative
importance of ¥,,(R) with respect to ¥ {(R) persists at
other energies as well.

Log-normalized functional-sensitivity profiles
dIno ,(E)/81InV,(R) for Nal at different collisional en-
ergies are plotted in Fig. 8. Instead of the positive
Gaussian-like structure centered at R * expected from the
LZS theory and seen for He* +Ne in Fig. 3, we see a
complex form best described as a dominantly negative
feature centered not quite at the R * for Na-+1. Also, the
domain of sensitivity is much larger than that for
He®™ +Ne in keeping with the much wider strong-
coupling regime for chemi-ionization as opposed to col-
lisional excitation. The sensitivity to coupling decreases
with an increase in collisional energy but remains sub-
stantial over the energy domain considered here. Com-
parison of Figs. 7 and 8 reveals that in the strong-
coupling case of Na-+1I, the sensitivity of the ionization
cross section to the coupling matrix element V,(R) is

1.6

T T T T
Na + 1
120 i E =0.3au .
& i
>::
£ .
g | i N P
3 i Y /. <=
™ ph i i /
- IRt H i 7
2 ‘°4L!ii§: t ! \ L/ B
S iy v
H o 1
!:I [
-0.8 Lili Vi |
i vt
i bt
i b
-1.20 i N
§
-1.6 L l U J, 1 1 1
10 12 14 16 18 20
R(a.u.)
FIG. 7. Log-normalized functional sensitivity profiles

81Ing,(E)/8InV;(R) and 81no5(E)/81nV,,(R) for Na+1 at
E =0.3 a.u. Itis clear that the chemi-ionization cross section
is much more sensitive to the ionic curve V,,(R) and also over a
much larger range of internuclear distances compared to the co-
valent curve V{(R) in keeping with the Coulombic nature of
the interaction ¥, (R). The domain of sensitivity is much larger
than the LZS dynamic width Ax, (the interval between the two
| arrows) centered at the crossing point ( ” ).

-1.6 1 1 l‘Ui 1 1 1 ) 1 I 1 1

10 11 12 13 14 15 16 17 18 19 20 21 R_2

R(a.u.)

FIG. 8. Log-normalized functional sensitivity profiles
8Ino,(E)/8InV,(R) for Na+1 at different collisional ener-
gies. Instead of a positive Gaussian-like feature centered at
R*( U ), predicted by the LZS theory, we see a complex pattern
of potential significance dominated by a negative feature not
quite at R*. Also, the domain of sensitivity is very wide in
keeping with the much broader strong-coupling regime for
chemi-ionization here. The sensitivity to coupling decreases
with an increase in collisional energy but remains substantial
over the energy domain considered here. The width of the
transition region predicted by the LZS theory (the interval be-
tween the two | arrows) is far too small.

comparable to that for V,,(R) with both these potential-
energy curves being much more important to the col-
lision outcome than the rather flat covalent curve Vii(R).
The partial cross sections o,=(2/ +1)|S %,|? as a func-
tion of / for Na+1 appear qualitatively similar to Fig. 5.
The domain of sensitivity and the maximum in o!, profile
once again correlate excellently with the region of poten-
tial significance and R* obtained from the sensitivity
curves for Nal.

The static width Ax;=0.142 a.u. is about an order of
magnitude larger than that for collisional excitation of
Ne by He™ due to the long range and large strength of
the Coulombic coupling. The dynamic width Ax, at
E=0.3 a.u. is 0.85 a.u. and again controls the range of
the effective LZS transition region marked in Figs. 6-8.
The quantitative inadequacy of the intuitive pictures
rooted in the simple LZS theory is obvious.

The V;(R) sensitivity behavior near the crossing re-
gion in Na+1 is radically different from that found in the
He™" +Ne system where quasi-LZS structure was found.
In the stronger coupled Na+1 case extensive mixing has
all but obscured the expected slope dependence on V;(R)
and the detailed way in which the collision draws on
Vii(R) cannot be intuited on any simple grounds. The
same conclusion should be true for other strongly cou-
pled curve-crossing systems.

IV. CONCLUDING REMARKS

In this paper, functional-sensitivity derivatives were
employed to gain insights into comparative importance of
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various potential-energy curves and coupling matrix ele-
ments mediating a nonadiabatic collision. Although the
results for He'+Ne can be understood qualitatively
from the LZS theory, their quantitative details cannot be
ascertained. In contrast for the stronger coupled Na—+1I
system, identification of which parts of the potentials are
important cannot be intuited a priori. Moreover, while
for the nonadiabatic collisions described by curves which
cross, one can still guess that the region around the
crossing is the most important, no such prior insight can
be had where the mediating curves do not cross (e.g., the
case of collisional fine-structure transitions [9,10] in F or
where there are multiple crossings [8,19,20]). The fact
that a plot of partial cross section ol,=(21 +1)|S },|? as
a function of [ effectively elicits the domain of sensitivity
is of help, but it cannot offer any clues to the relative im-
portance of the underlying curves. We therefore con-
clude that very interesting and possibly counterintuitive

conclusions may result from a careful sensitivity analysis
of fine-structure transitions and multicurve-crossing
problems. This information may be further employed in
an iterative fashion as the kernel of an inversion algo-
rithm to systematically extract potentials from appropri-
ate laboratory data [18]. An algorithm utilizing informa-
tions from both differential and total cross-section sensi-
tivities shall greatly assist in this task. An effort along
these latter lines is underway.
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