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We discuss in some detail the self-similar potentials of Shabat [Inverse Prob. S, 303 (1992)]
and Spiridonov [Phys. Rev. Lett. 69, 298 (1992)] which are refiectionless and have an infinite
number of bound states. We demonstrate that these self-similar potentials are in fact shape-invariant
potentials within the formalism of supersymmetric quantum mechanics. In particular, using a scaling
Ansatz for the change of parameters, we obtain a large class of new, reAectionless, shape-invariant
potentials of which the Shabat-Spiridonov ones are a special case. These new potentials can be
viewed as q deformations of the single-soliton solution corresponding to the Rosen-Morse potential.
Explicit expressions for the energy eigenvalues, eigenfunctions, and transmission coefBcients for these
potentials are obtained. We show that these potentials can also be obtained numerically. Included as
an intriguing case is a shape-invariant double-well potential whose supersymmetric partner potential
is only a single well. Our class of exactly solvable Hamiltonians is further enlarged by examining
two new directions: (i) changes of parameters which are diferent from the previously studied cases
of translation and scaling and (ii) extending the usual concept of shape invariance in one step to a
multistep situation. These extensions can be viewed as q deformations of the harmonic oscillator or
multisoliton solutions corresponding to the Rosen-Morse potential.

PACS number(s): 03.65.Ge, 11.3Q.Pb

I. INTRODUCTION

Recently Shabat [1] and Spiridonov [2] have discussed
potentials which are re8ectionless and have an infinite
number of bound states. In addition, these potentials
have the remarkable property of being self-similar and
can be looked upon as q deformations of the single-
soliton solution corresponding to the Rosen-Morse po-
tential. Normally, in quantum Lie algebras one takes
the underlying space to be noncommutative and the de-
formation parameter q measures deviation from normal
analysis. In contrast, an interesting feature of Shabat
[1] and Spiridonov's work [2] is that they have consid-
ered the same problem in a commutative space with the
q deformation arising from the specific nature of the po-
tential. Spiridonov [3] has also considered the def'orma-
tion of parasupersymmetric quantum mechanics [4] and
obtained potentials which can be regarded as a q defor-
mation of the two-soliton solution corresponding to the
Rosen-Morse potential.

Another interesting advance of recent years has been
in supersymmetric quantum mechanics [5] where new in-
sight into exactly solvable potentials has been obtained

through the concept of shape invariance. It has been
shown [6] that for supersymmetric partner potentials
V~(x, ap) satisfying the properties of shape invariance
and unbroken supersymmetry, one can write down the
energy eigenvalues algebraically. Subsequently it was
shown that both the eigenfunctions [7] and the scatter-
ing matrix [8] can also be obtained algebraically for these
potentials. The shape-invariance condition is given by

V+(x, ap) = V (x, aq) + R(ap),

where ap is a set of parameters, aq ——f (ap) is an arbitrary
function describing the change of parameters, and the re-
mainder R(ap) is independent of x. Certain solutions to
the shape-invariance condition are known [9] including
essentially all the standard problems discussed in quan-
turn mechanics textbooks. In all these cases ai and ao
have been related by a translation (aq ——ap+ ct'). Careful
analyses with this Ansatz have failed to yield any addi-
tional shape-invariant potentials [10]. Indeed it has been
suggested [ll] that there are no other shape-invariant po-
tentials. Although a rigorous proof has never been given,
no counter examples have so far been found either.
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In this paper we show that the Shabat-Spiridonov
(SS) self-similar potentials can be understood within the
framework of shape invariance. In particular, we show
that by using a scaling Ansatz (ai ——qap) for the change
of parameter ao, a large class of new shape-invariant po-
tentials which are reflectionless and possess an infinite
number of bound states can be obtained [12]. [This is
slightly misleading in that a reparametrization of the
form az ——qao can be recast as az ——az + o. merely by
taking logarithms. However, since the choice of param-
eter is usually an integral part of constructing a shape-
invariant potential, it is in practice part of the Ansatz.
For instance, in Sec. III, we will construct potentials by
expanding in ao, a procedure whose legitimacy and. out-
come are clearly dependent on our choice of parameter
(and hence reparametrization). Note that, although the
construction is noninvariant, the resulting potentials will
still be invariant under redefinitions of ap. ] Our poten-
tials contain the self-similar potentials of Shabat [1] and
Spiridonov [2] but are considerably more general.

The plan of the paper is the following. In Sec. II, we
discuss in some detail the self-similar potentials of Sha-
bat and. Spiridonov (SS). An unfortunate feature of these
potentials is that they are not known in analytical form
for all x and we therefore give graphs of these potentials
for some values of the deformation parameter, which we
denote by p (0 ( p ( 1).

In Sec. III we briefly discuss the shape-invariance con-
dition within the formalism of supersymmetric quantum
mechanics. Using a scaling Ansatz (ai ——qao), we obtain
a large class of new re8ectionless shape-invariant poten-
tials. Explicit expressions for the eigenvalues, eigenfunc-
tions, and transmission coefBcients for these potentials
are derived. These potentials can be viewed as q defor-
mations of a one-dimensional harmonic oscillator or of
the single-soliton solution corresponding to the Rosen-
Morse potential. The self-similar potentials of SS [1, 2]
are rederived as a special case.

In Sec. IV we discuss a new technique that essentially
solves the inverse scattering problem for this wider class
numerically and so enables us to calculate these poten-
tials. Examples of the results obtained are discussed.

In Sec. V we give the Taylor-series expansion of the
potentials for large x. By using these re8ectionless poten-
tials as solutions of the Korteweg —de Vries (KdV) equa-
tion, we then estimate the area under them and indicate
how one can also estimate higher moments for these cases
rigorously even though the potentials are not known in
analytical form. Using the ground-state wave function
for these potentials, we also give graphs of a continuous
parameter family of potentials which are strictly isospec-
tral to one of the self-similar potentials.

Section VI introduces multistep scaling An8atze for
the change of parameters and hence obtains new shape-
invariant potentials which can be looked upon as q de-
formations of the multisoliton solutions corresponding to
the Rosen-Morse potential.

In Sec. VII we discuss various other Ansatze for can-
nection between parameters aq and a~ and obtain yet
more new shape-invariant potentials. Explicit expres-
sions for the eigenvalues and the eigenfunctions of these

potentials are also given.
Finally, in Sec. VIII, we summarize the results of this

paper and indicate some open problems.

II. SELF-SIMILAR POTENTIALS

Shabat [1] and Spiridonov [2] discussed an infinite
chain of reflectionless Hamiltonians given by (Ii = 2m =
1)

0„=P + V„(x),

with

n = 0, 1, 2, . . . , (2.1)

and.

Vo(x) = W,' —Wp+ Co (2.2)

V„~i (x) = V„(x) + 2W„'(x). (2.3)

The various superpotentials W (x) satisfy the following
set of differential equations:

W„+ W„' = W +~ —W„'+~ + C„+g, n =0, 1, 2, . . . ,

(2.4)

where the C are arbitrary positive constants. It is amus-
ing to note that relations (2.4) arise naturally in the
framework of parasupersymmetric quantum mechanics
[4]. Let us assume at this stage that all W (x) are such
that the functions

(x) oc exp— W„(y)dy (2.5)

are square integrable, and hence correspond to the
ground-state wave function of the Hamiltonian H . In
this case one has the standard situation of unbroken su-
persymmetry and the potential V,+i(x) has one bound
state less than V;(x). Using Eqs. (2.1)—(2.4), it follows
that the eigenvalues of Ho are given by

m
@(p) —)

i=0
m = 0, 1, 2, . . . (2.6)

W;(x) = p*W(p'x), (2.8)

with 0 ( p & 1. Thus there is just one unknown function
W(x). On using i = 0 and 1 in Eqs. (2.8) and (2.4), one
obtains the following finite-dift'erence differential equa-
tion defining W(x):

while the corresponding eigenfunctions are given by

et'~ ~(x) oc (P+ iWp)(P+ iWi) . (P+ iW i)gp (x).
(2 7)

It should be noted here that the Hamiltonian H~ has the
same spectrum as Ho except that the lowest j levels of
Ho are missing.

In general, it is not possible to determine these po-
tentials unless one imposes some extra constraints. SS
specify superpotentials by demanding that all superpo-
tentials W„(x) satisfy the self-similar Ansatz



2788 D. T. BARCI.AY et ah. 48

W2(x) + W'(x) = p W (px) —p W'(px) + Ci, (2.9) W(x) = QCi tanh( QCi x) . (2.18)

where the prime denotes differentiation with respect to
the argument. Equations (2.8) and (2.9) are the key
statements underlying the concept of self-similarity. On
using i = 2, 3, . . . and Eqs. (2.4), (2.8), and (2.9) one then
concludes that

(2.10)

and hence the mth eigenvalue of Hp is given by

Hence the general solution to Eq. (2.9) with 0 & p & 1
can be looked upon as a deformation of the hyperbolic-
tangent function with p acting as the deformation param-
eter. Notice that the number of bound states as given by
(2.13) increases discontinuously from just one at p = 0
to infinity for p ) 0.

It is important to note that the superpotentials
W(x, Ci) which solve the self-similarity condition (2.9)
have the simple scaling property

@(o) C Ci (1 —p' )
(1 —p')

m = 0, 1, 2, e ~ ~ W(x, Ci) = /Cia(QCix), (2.19)

(2.11)

One can choose the arbitrary constant Cp to be zero,
which corresponds to taking Ep ——0. An alternate con-
venient choice is to pick Cp such that

»m E~'~ =0,
mW oo

(2.12)

which gives

p2m

1 —p' (2.13)

One can try to And W(x) by solving the finite-
difFerence difFerential Eq. (2.9) in a Taylor-series form
near x=0; if

W(x) =)
j=p

(2.14)

then

bi(1+ p )+bo(1 —p ) = Ci (2.15)

0+1)(1+p ")
j=12 (2.16)

Normalizability of wave functions is ensured if W(x) is
a continuous function, positive at x ~ oo and negative
at x ~ —oo. This is the case if one chooses bp = 0. In
this case, it follows from (2.16) that all even coefFicients
b~ (j = 0, 2, 4, . . .) are zero and hence W(x) = —W( —x).
In particular one finds

Ci 1 Ci 2 (1 —p4)

(1 + p') » + p' (1 + p')
(2.17)

Some special cases are worth noting. At p = 1 the so-
lution of Eq. (2.9) is the standard one-dimensional har-
monic oscillator with W(x) = Cix j2, while in the limit
p —+ 0, the solution of (2.9) is the one-soliton superpo-
tential corresponding to the Rosen-Morse potential given
by

where E(x) = W(x, 1). Thus for a particular p one only
needs to find W(x, Ci) for any one nontrivial value of
Ci. Knowing W(x), one immediately knows Vo(x) and
the other potentials V (x) can be recursively obtained
from Vo(x) using Eqs. (2.1)—(2.4), (2.8), and (2.10), so
that the whole chain of potentials is known in principle
once Vo(x) is known.

Unfortunately, merely knowing the Taylor series about
x = 0 is not sufFicient if one wants to carry out this
program, since simple arguments show this series (2.17)
to have a radius of convergence R, where

2
—& gC, B&— 1+p'

2 1 —p2' 0&p&1. (2.20)

The lower bound derives from noticing that the series
coefIicients are smaller for 0 & p & 1 than for p = 0,
the latter being essentially the expansion of tanh(QCix)
and known to have radius of convergence 7r /2 (see also
[13j). The upper bound involves realizing that there still
has to be a pole on the imaginary axis when p ) 0: from
(2.17) one sees that along that axis W(ix) = iw(x) inside
any radius of convergence, where m(x) is a real function
satisfying

—~ (x) + ~'(x) = —p ~ (px) —p (u'(px) + Ci, (2.21)

but also that w(x) ) w(px) and w'(x) ) w'(px), so that

'( )(1 + p') ) '(*)(1—p') + C (2.22)

implying that w(x) grows faster than
tan(QCi gl —p xjul + p2) and so has the requisite sin-
gularity.

In the absence of a solution to (2.9) in terms of elemen-
tary functions for all p, one must resort to some sort of
numerical determination other than by trying to sum the
Taylor series. The most direct approach relies on notic-
ing that since px & x, if one already knows W(x) in an
interval, then one knows the right hand side of (2.9) in a
larger interval. This allows us to treat the right hand side
as an already known function of x and thus integrate up
the equation using a (fourth order) Runge-Kutta method.
To start this process off, the Taylor series was summed
to 75 terms on an interval well inside the radius of con-
vergence. The superpotentials thus obtained have been
checked both by comparing them to the summed series
throughout the region where the latter is still valid and by
direct numerical integration of the Schrodinger equation
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P, .O more general class of potentials to which the methods of
that section will also apply.

W(x)

1.5

1.0

0.5

0.0
0 10

III. SHAPE INVARIANCE %'ITH
SCALING ANSATZ

A fresh impetus to the study of exactly solvable prob-
lems in nonrelativistic quantum mechanics was provided
by Gendenshtein [6] with the introduction of shape-
invariant partner potentials within the framework of su-
persymmetric quantum mechanics. To set our notations,
we give a quick review of both supersymmetric quantum
mechanics and shape invariance [9]. The partner Hamil-
tonians H~ are given by

FIG. 1. Self-similar superpotentials W(z) for various val-
ues of the deformation parameter p. The Taylor series are
summed for x ( 0.4 and the functions extrapolated from there
by numerically solving the self-similarity condition, Eq. (2.9).
The curve labeled H. O. (harmonic oscillator) corresponds to
the p = 1 limit.

with the spectra checked against (2.13). In both cases
the degree of agreement is extremely high. Examples of
the kind of superpotentials and potentials obtained are
shown in Figs. 1 and 2. Note that, having independently
calculated these functions, we see no evidence of the os-
cillations in them reported in [13].

Aside from its practical utility, the insight underlying
the numerical determination also strengthens confidence
that (2.9) actually has a solution. Because any solution
in a finite interval can be analytically continued to arbi-
trarily large x, the question of existence clearly reduces to
establishing it in a neighborhood around x = 0. But this
is precisely the place where a convergent Taylor series is
known to exist and this is suKcient.

Additional analytic properties of these potentials will
be described in Sec. V, but first we wish to introduce our

H = A+A,

where (fi = 2m = 1)

H+ ——AA+, (3 1)

d
A = —+ W(x),dx

dA+ = ——W(x),
dx

(3.2)

so that the two partner potentials V~ (x) can be expressed
in terms of the superpotential W(x) thus

V~(z) = W (x) + W'(z). (3.3)

E(-) E(+) (3 4)

Here, for convention's sake, we always consider the situ-
ation of unbroken SUSY and so the ground-state energy
of II is zero. The corresponding eigenfunction go (x)
[which satisfies Ago (x) = 0] turns out to be

(3.5)

From here it follows that all the energy eigenvalues of
H~ are positive semidefinite. Further, it turns out that
in case supersymmetry (SUSY) is unbroken the ground-
state energy of one of the two Hamiltonians is zero and
all other energy eigenvalues of H~ are paired

One can also show that because of SUSY the eigenfunc-
tions and scattering amplitudes of the two partner Hamil-
tonians are also related,

V (x)

~ I. (—)
(+) +n+l

E(+)

A+q(+l

E(+)
(3.6)

B (k) = . B (k+), (3.7)

T (k) = +
. T+(k), (3.8)

10

FIG. 2. Self-similar potentials V (z) (symmetric about
x = 0) corresponding to the superpotentials graphed in Fig.
1. The curve labeled H.O. (harmonic oscillator) corresponds
to the p = 1 limit.

where k = (F —W2)i~2 and k' = (E —W ) ~ with
W~ = W(x = Boo).

If the pair of SUSY partner potentials V~(z) defined
by Eq. (3.3) difFer only via the parameters that appear in
them, then they are said to be shape invariant [6]; that
is, if the partner potentials V~(z, ao) satisfy the condi-
tion (1.1). In terms of the superpotential W, this shape-
invariance condition reads
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W (x, ap) + W'(x, ap)

= W (x, ai) —W'(x, ai) + R(ap). (3.9)

This set of linear differential equations is easily solvable
in succession to give a general solution of Eq. (3.9). Let
us first consider the special case

The common x dependence in V and V+ allows a full
determination of energy eigenvalues [6], eigenfunctions
[7], and scattering matrices [8] algebraically. One finds

gp(x) = 0, (3.18)

which implies Rp ——0. The general solution of (3.16) is
then

Z, '(a, ) =0, (3.10) gi(x) = ridix,

= A+ (x, ap) A+ (x, ai) A+ (x, a„,)g~~
l (x, a„).

(3.11)

a1 = qao& (3.12)

where 0 ( q ( 1, a choice motivated by recent interest
in q-deformed Lie algebras. Our approach includes the
self-similar potentials discussed in the preceding section
as a special case.

Consider an expansion of the superpotential of the
form

It is still a challenging open problem to identify and
classify all the solutions to the shape-invariance condi-
tion (3.9). Certain solutions to it are known [9] and they
include essentially all exactly solvable problems discussed
in standard texts on quantum mechanics. For all these,
a1 and ao are related by a translation. Careful analy-
sis with this Ansatz has failed to uncover any additional
shape-invariant potentials [10] and in fact it has been sug-
gested that there are no others [ll]. We shall now show
that this is not the case since a large number of new
shape-invariant potentials can result from a new scaling
Ansatz

n —1

g„(x) = d„dx r„—) g, (x)g„. ,(x), n = 2, 3, . . .

Pi dirl
n —1

dn
P = —

(2 )
).PP
i=1

and so

n = 2, 3, . . . (3.20)

W(x, ao) = ) .P'apx * ' = ~aoI" (knox)
i=1

(3.21)

(3.19)

where without any loss of generality we have assumed
all the constants of integration to be zero. The shape-
invariance condition thus essentially fixes the g (x) [and
hence W(x, ap) via (3.13)] once R(ap) is specified, i.e. ,
once the set of r are chosen. Implicit constraints on this
choice are that the resulting ground-state wave function
(3.5) be normalizable and, so that the spectrum (3.10) is
sensibly ordered, that R(q ap) ) 0.

The simplest case is ri ) 0 (positivity required to en-
sure normalizable wave functions) and r = 0, n & 2.
Here (3.19) takes on a particularly simple form g (x) =
P x with

W(x, ao) = ) g, (x)ao. .

j=0
(3.13) For a1 ——qao this now gives

Using Eqs. (3.12) and (3.13) in the shape-invariance con-
dition (3.9), writing R(ap) in the form

R(ap) = ) R, ap,
j=O

and equating powers of ao yields

W(x, a, ) = ~qW(~qx, ao), (3.22)

w'(-, ")+ w'(*, -.)

dW= qw'(~qx, ao) —q (~qx, ao) + aor, (1 —q).
d~qx

hence in this special case the shape-invariance condition
(3.9) becomes

2go(x) = Rp, g', (x) + 2d, gp(x)gi(x) = r, di, (3.15) (3.23)

(3.16)

where

B„
(1 —q")'

(1 —q")
d n 1 ) 2 ) 3) ~ ~ ~ ~+ qn

(3.17)

n —1

g„' (*) + 2d.go(*)g-(*) = r-d- —d ) g~(x)g- '(x)—Comparing this to (2.9), one thus sees that the case
r = 0, n & 2 corresponds to the self-similar W of Sha-
bat and Spiridonov provided one writes p = diriao and
q = p . In fact, if instead of choosing r = 0, n & 2, any
one r (say r~) is taken to be nonzero and qi is replaced
by p then one again obtains the self-similar potentials.
In these instances the results obtained from shape in-
variance and self-similarity are entirely equivalent and
the Shabat-Spiridonov self-similarity condition turns out
to be a special case of the shape-invariance one (3.9).
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However, it is necessary to emphasize here that shape
invariance is a much more general concept than self-
similarity. For example, if we choose more than one r to
be nonzero, then shape-invariant potentials are obtained
which are not self-similar. As an illustration, consider
r = 0, n ) 3. Using Eq. (3.16) one can readily calculate
all the g (x), of which the first three are

while the (unnormalized) ground-state wave function is

vPp (x, ap) = exp ——(I'i + I'2)(—)

2
4

+—(d2I'i + 2dsl'il 2 + d4I'2)

gi(x) = d, r, x, g2(x) = d2r, x —,d, r,—d,x,1 2 2 3 +(-)(x') . (3.26)

gs(x) = —
&

d irdi72' d2sx+ is di pi d2dsx

(3.24)

Notice that in this case W(x) contains only odd powers of
x. This makes the potentials Vy(x) symmetric in x and
also guarantees unbroken SUSY. It is convenient to define
the combinations I'~ = dqrqap ——P and I'2 = d2r2az.
Then, the energy eigenvalues follow immediately from
Eqs. (3.10) and (3.14) (0 & q & 1):

The excited wave functions can be recursively calculated
using Eq. (3.11), though usually it is more convenient to
use the relation

)(x, ap) = A+(x, ap)Q„ i(x, ai). (3.27)

We can also calculate the transmission coefBcient of
this symmetric potential (k = k') using relation (3.8)
and the fact that for this shape-invariant potential [8]

Z(-), ~ (1+q)(1 —q")
~ (1+q')(1 —q'")

(1 —q) (1 —q') T~(k, ap) = T (k, ai ——qap). (3.28)

n = 0, 1, 2, . . . (3.25) Repeated application of Eqs. (3.8) and (3.28) gives

[

[ik + W(oo, ap)] [ik + W(oo, ai)] [ik + W(oo, a„ i)]
(3.29)

where

W(oo, a, ) = E —E, (3.30)

ik —W(oo, a,.)
T (k, ap) =

ik+ W(oo, a, )

(3.31)

The above discussion keeping only ri, r2 g 0 can read-
ily be generalized to an arbitrary number of nonzero
r~. The energy eigenvalues for this case are given by
(I'' =—%reap)

E(-)( ) )-q (1+q')(1 —q"')
(1 —q&)

Now, as n —+ oo, a = q ap —+ 0 (0 & q & 1) and, since
we have taken gp(x) = 0, one gets W(x, a ) i 0. This
corresponds to a free particle, for which the transmis-
sion coefBcient is unity; as a result the reQection coe%-
cient R (x, ap) vanishes and the transmission coeflicient
is given by

The limit q ~ 0 is particularly simple and again
yields the one-soliton Rosen-Morse potential with TV =
o. tanh nx. Thus results corresponding to diferent
choices of R can be regarded as multiparameter defor-
mations of this potential.

Finally, let us consider the solution to the shape-
invariance condition (3.9) in the case where Rp is
nonzero, so that gp(x) = 2Bpx from (3.15) rather than
being zero. One can again solve the set of linear diKeren-
tial Eqs. (3.16) in succession using this gp(x) and hence
obtain gi(x), g2(x), . . . . Further, the spectrum can be
immediately found using Eqs. (3.10) and (3.14); for ex-
ample, in the case of an arbitrary number of nonzero B~
(in addition. to Rp), the spectrum is given by

(1+q') (1 —q"')E„=nBp+ g I'~
(1 —q') )

2

which is the spectrum of a q-deformed harmonic oscillator
[14]. It should be noted here that, unlike the usual q
oscillator where the space is noncommutative, but the
potential is normal (ip x ), in our approach the space is
commutative, but the potential is deformed, giving rise
to such a multiparameter deformed oscillator spectrum.

n = 0, 1, 2, . . . . (3.32)

Not only are these potentials also symmetric and reHec-
tionless, T is again given by Eq. (3.31) since it was de-
rived using only a = q ap and the fact that V (x) is
symmetric, without any assumption being made regard-
ing the coefFicients r

IV. NUMERICAL RESULTS

W(x, ap) = ~apI'"(v apx), (4.1)

Explicit determination of the SS potentials (described
in Sec. II) crucially depended on the scaling property
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S(x, a) = W(x, a) + W(x, qa), (4.2a)

D(x, a):—W(x, a) —W(x, qa), (4.2b)

for ai ——qao, the shape-invariance condition (3.9) be-
comes

dS = —S(x, a)D(x, a) + R(a),

where R(a) is a known function. Now if one knows
W(x, a) for x & X, a & A, an Euler step (since D
is only known in x & X, there is not enough informa-
tion available for that to be a Runge-Kutta one) will
give S(X + h, a), again for a & A. One must now in-
vert (4.2a) to convert this knowledge of S(X+6, a) into
information about W(X + h, a). Iterated use of (4.2a)
relates W(X+ h, a) to W(X + 6, q a) and n known val-
ues of S. For some sufficiently large n, W(X + h, q a)
can be calculated using the Taylor series (3.13) and so
one can indeed determine W(X + li, a) for all a & A.
Breaking the (x, a) plane up into a grid and using some
suitable interpolation method for the points in between,
one can iterate this Euler step up through x and so ob-
tain W(x, a) numerically for values of x and a limited by
computing constraints only. The only inputs are B(a)
and the series approximations for small x and a.

A program to implement this scheme has been devel-
oped and its results for the special SS case were shown
to agree very well with the earlier (more accurate, but
overly specialized) program. As an example of the new
potentials this permits us to consider the potential corre-
sponding to rq ——1, r2 ———1 with all other r = 0. Pro-
vided a & 1/(1+ q) the spectrum given by (3.25) is well
ordered. In Fig. 3 we display the potential calculated for
q = 0.3 and o, = 0.75, along with its partner potential
and the exact spectrum found from (3.25). (These eigen-
values have also been checked numerically. ) Note that for
this choice of parameters, V (x) is a double-well poten-

displayed by the solutions, which allowed W'(x, ao) to
be related to W(~qx, ao) instead of merely W(x, ai) =
W(x, qno). However, such scaling is not a property of the
solutions in Sec. III when more than one r is nonzero,
as can be seen from the series expansion (3.24). When
only ri and r2 are nonzero, there is a generalization of the
form W(x, ao) = griaoF(griaox, r2ao/ri) which relates
the behavior at x to that of another problem [that corre-
sponding to calculating W(x, ao) with a different r2] at
~qx. By forming a ladder of these potentials (in which r2
is tending to zero and hence the problem towards the spe-
cial SS case), it should be possible to determine W(x, ap)
using this fact. However, we chose to devote this section
to a method that emphasizes W(x, a) as a function of
both x and a and which more readily generalizes to ar-
bitrary r

Intuitively one would still expect the series (3.13) to
be convergent for either x or a suKciently small. Thus in
the (x, a) plane we can assume that W(x, a) is calculable
to arbitrary accuracy close to either axis and the problem
reduces to continuing this knowledge out into the plane.
Defining sum and difference functions

0.2

0.1

V, (x)

—0.1

I I I I I I I I I I I I I I I I I I I I I I i i I I i I

-30 -20 -10 0 10 20 30

FIG. 3. A double-well potential V (x) (solid line) and
its shape-invariant, single-well supersymmetric partner V+(x)
(dotted line). The exact spectra are also displayed. Parame-
ter values are rI ——1, r2 ———1, q = 0.3, and a = 0.75.

W(x, a) = S(x, a) —S(x, qa)

+S(x, q a) —S(x, q n) + (4 4)

which is convergent provided W(x, a) ~ 0 as o, ~ 0.
More useful numerically is the fact that, because it is
alternating, this series can be truncated with a rigorous
bound on the error and without needing to calculate some
W(X + li, q n) by use of a Taylor series. Neither is the
reliance on ai ——qao terribly restrictive: one can always
redefine the parameters to obtain this. The only crucial
constraint is that the method applies exclusively to sym-
metric potentials holding infinitely many bound states
and corresponding to a chain of Hamiltonians (H, H+,
etc.) which tends asymptotically towards a free-particle
one [i.e. , W(x, a ) —+ 0 as n —+ oo]. Otherwise the sole
input is R(a) (expressed in terms of the appropriately de-
fined a), which in general should be deducible from any
desired (possible) spectrum.

V. ANALYTIC RESULTS

Although undeniably useful, simply being able to cal-
culate W is an unsatisfactory state of affairs unless there
is also a body of complementary analytic results. This
section therefore brings together several approaches by

tial, whereas its shape-invariant partner V+(x) is a single
well. This situation is unlike the (non-shape-invariant)
examples discussed in Ref. [15] where the SUSY part-
ner of the initial double-well potential has a sharp b-like
spike at its center. Apart from being the first shape-
invariant double well, this example stretches na'ive intu-
ition concerning shape invariance. Furthermore, this ex-
ample barely indicates the variety of behavior available
by altering q, a, and the r in this new class of potentials.

Finally, we note that the basic idea of this section can
be divorced from the details of the Taylor series. The
restriction to symmetric potentials gives W(0, a) = 0, to
be used as a boundary condition for the intial Euler step.
To invert (4.2a) one can use the infinite series
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which such results can be gathered.
In our method of constructing the potentials, the Tay-

lor series about x = 0 played an essential role (as it did
in [1] and [2]). However, to get a better insight into the
potentials, it may be worthwhile to also know the Taylor
series of W(x) around x —+ oo. For simplicity, we now
restrict our attention to the SS family and return to us-
ing the original parameter p = ~q. Substituting t = 1/x
in Eq. (2.9) yields

Vo (x)dx = )
p

—OO

(", )

[V"(*)]'+—
i

(5 7)

(5.8)

W (t) —t W'(t) = p W'
I

—
I
+ t'W'

I

—
I
+ &i.

&p)
(5.1)

where

V*(x) = —2k; sech k;x, (5.9)
We assume, in the absence of evidence to the contrary,
that the simple Taylor series is the appropriate expan-
sion. On substituting

with k; = kpp* and kp2 ——Ci/(1 —p2). Using Eq. (5.9)
it is straightforward to evaluate the right hand sides of
Eqs. (5.6)—(5.8) and we find

W(t) = )
j=o

in this equation one obtains

(5 2) —4kp
Vp(x)dx = —4) k; =

i=p
(5.10)

ao = &i/(1 —p') ai ——0 (5.3)
(5.11)

2 —2

+m&j—m)
2Qp m=2

Thus we find that as x m +oo

(5.4)

W(x) = Cg o,2

(1 —p')
a2 51+pl 1

ap (1 —pp xs

(5.5)

OC)

Vp(x)dx = )
i=p

Vi'~(x) d*, (5 6)

where a2 is an arbitrary constant. This arbitrariness is
due to the fact that W(0) = 0 has not been imposed
while deriving (5.5). In fact it is not easy to do so since
the series (5.5) is valid for large x.

It has already been established that we are dealing with
refIectionless, symmetric potentials for which the infinite
spectra of eigenvalues are known exactly in closed form.
This type of problem has already been well studied, but
the standard inverse scattering method [16] has proved
too cumbersome to be of much practical use in deriv-
ing these potentials in this nontrivial context. However,
certain well-known, related results can be used to quite
strongly constrain the potentials: the point is, being re-
Qectionless, these can be regarded as a solution of the
KdV equation at time t = 0 [17]. Now it is known that
such a solution as t ~ Woo will break up into an in-
finite number of solitons of the form 2k, sech k,x. On
using the fact that KdV solitons obey an infinite number
of conservation laws corresponding to mass, momentum,
energy, etc. , one can immediately obtain constraints on
the refIectionless potentials by using the known solutions
at t ~ Woo. For example, the first three conservation
laws are

V„(x, A) = V„(x) —2, in[I„(x) + A], (5.13)

where V (x) can easily be obtained using Eqs. (2.1)—(2.3),
(2.8), and (2.14)—(2.17), A is any arbitrary parameter
(A)0or A( —1), and

I-(*) = I&o"'(~)l'+. (5.14)

Here Qo~"l is as given by Eq. (2.5) which can be explicitly
obtained by using Eqs. (2.8) and (2.14)—(2.17). As an
illustration, we give graphs of the Vp(x, A) obtained from
the SS potential with p = 0.5 for various values of A

in Fig. 4. Large values of A correspond to the original
SS potential [see Fig. 4(a)]. As A takes on values closer
to zero, the potential gradually breaks into two pieces
[Figs. 4(b) and 4(c)], one corresponding to the E = 0

(5.12)

thereby providing strong constraints on the potential
Vp(x).

All deforrnations of potentials considered so far have
been such that the spectra obtained are q (or p) depen-
dendent. Before ending this section, it is worth remark-
ing that, as with any potential, there are also distortions
of the V (x), with deformation parameter A, which leave
the spectra unchanged. Using the techniques of super-
symmetric quantum mechanics, one can construct a large
class of strictly isospectral potentials. For example, using
any one of the W, (x) as given by Eqs. (2.5), (2.8), and
(2.14)—(2.17) one can immediately obtain a one param-
eter family of strictly isospectral refIectionless potentials
V (x, A) by using the formula [18]



2794 D. T. BARCLAY et al. 48

1.0

0.5

0.0

—0.5 X=10

For the above situation, the energy eigenvalues and eigen-
functions of the potential Vp( (x, ap) can be algebraically
calculated as shown below.

Unbroken SUSY implies zero-energy ground states for
the potentials Vp (x, ap) and Vz (x, ap):

—1.0 E(—)O p @(—) p (6.5)

v, (x,z)
0.5

0.0
The degeneracy of energy levels for supersymmetric part-
ner potentials yields

1.0

0.5

0.0

—0.5
I I I I I I I I I I I I I I—1.0-80 -10 G 10

From Eq. (6.1) it follows that

E(+)'(ao) = E( )'(ao) + R(ao).

For the special case n = 0, Eqs. (6.6) and (6.7) give

(6.6)

(6.7)

FIG. 4. Selected members of the one-parameter family of
isospectral potentials Vo(x, A) which includes the self-similar
potential with p = 0.5. Note that a different choice of Cq (i.e.,

rq) has been made compared to Figs. 1 and 2.

E,' '=R(a, ).

Also, the shape-invariance constraint (6.3) gives

E(+)~(a )
—E( )P(a ) + R(a )

(6.8)

(6 9)

Using Eqs. (6.6), (6.7), (6.9), and some algebra, one gets

state only and the other containing the remaining energy
levels [8].

E„+), (ao) = E„,(ag) + R(ap) + R(ao).

These equations can be solved recursively to get

(6.10)

VI. SHAPE INVARIANCE IN MORE THAN
ONE STEP E,'„"= ) [R(a„)+ R(a„)],

V.("(*,-.) = v,'-'(*,-.) + R(-.), (6.1)

Having obtained potentials which are multiparameter
deformations of the one-soliton solution of the Rosen-
Morse potential, an obvious question to ask is if one can
also obtain deformations of the multisoliton solutions.
The answer is yes and as an illustration we now explicitly
obtain multiparameter deformations of the two-soliton
case. The desired deformation is achieved by extending
the usual shape-invariance ideas to the more general con-
cept of shape invariance in two steps.

Consider the unbroken SUSY case of two superpoten-
tials Wp(x, ap) and Wq(x, ap) such that Vo (x, ap) and(+)

Vz (x, ap) are the same up to an additive constant.

(6.11)

E2„+)~ = ) R(ak) + R(ag) + R(a„).

Wo(* «) = ) g~(x)ao
j=O

(6.12)

The above discussion has been completely general and is
valid for any change of parameters, ay = f (ap). Following
the treatment of Sec. III, we now take the scaling Ansatz
aq ——qao and expand the superpotentials YVo and W~ in
powers of ao,

Shape invariance in two steps means that

V~+) (x, ao) = V( '(*,a, ) + R(ao),

that is,

W,'(x, ao) + W,'(x, ao)

(6.3)

= Wo (x, ag) —Wo(x, ag) + R(ap). (6.4)

or equivalently,

Wo(*, «)+ Wo(* «)
= W&2(x, ao) —W~(x, ao) + R(ao) (6 2)

W, (x, ap) = ) h, (x)a', .
j=O

Further, write R and R in the form

R(ap) = ) R~a'o,
j=O

R(ao) = ) R,.ao.
j=O

(6.14)

g„'+ ) g, g„, =) h, h„, —h' +. R„, . (6.15)

Using these in Eqs. (6.2) and (6.4) and equating powers
of ap yields (n = 0,1,2, . . .)
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h'„+) h, h„, = q") g, g„, —q"g„+ R . (6.16)
gp(x) = hp(x) = 0, (6.17)

This set of linear difFerential equations is easily solvable
in succession. Let us first discuss the special case

which implies that Bp = Bp = 0, and further assume
that B = B = 0, n & 3. In this case one can readily
calculate all g (x) and h (x); the first two of each are

(Rj —Rg) (R2 —R2) x'
gq —— x, g2 ——

2
x+ [(1 —q)(Ri —Ri) —2(1+ q)RgRq],(1 —q)

'
(1 —q') 3(1 —q)'

(R, —qRi)
61 —— X,

(1 —q)
(6.18)

B2x
(1 —q')

X3
[(1 + q)R~ + (1 + q)(1 —q )R~ —2q(l —q)RqRj].31+q 1 —q2

E~ (ap) = R] ap + R2ap,( —)o 2 (6.19)

2

z,'„'(ao) = ) I@a+A~)ao('), —
j=1

(6.20)

It may be noted that both TVp and W1 contain only odd
powers of x so that the potentials Vp and V1 are(+) (+)

all symmetric in x and SUSY is unbroken. The energy
eigenvalues can be obtained from Eqs. (6.8) and (6.11).

VII. SHAPE INVARIANCE WITH A
NONSCALING CHANGE OF PARAMETERS

We have so far obtained new shape-invariant potentials
for aq and ap related by the scaling Ansatz (aq ——qap).
Are there shape-invariant potentials where a1 and ap
are neither related by scaling nor by translation (aq
ap + o'. )'? We now demonstrate the existence of yet other
possibilities by obtaining potentials for a1 ——qap and
az = qap/(1+ pap).

First consider the case when
j(~+1)s'.+i(~~) = ).~~~0( )j=1 a1 ——qap,p (7 1)

(6.21)

For the special case when B2 ——B2 ——0, the spectrum has
been obtained previously by Spiridonov from considera-
tion of self-similar potentials [3]. However, the spectrum
in the general case given by Eqs. (6.20) and (6.21) can-
not be obtained in such a fashion. The energy eigenval-
ues E are now immediately obtained from Eq. (6.9)(—)1

and the energy eigenfunctions and transmission coefB-
cient for these reAectionless potentials can also be found
using Eqs. (3.5), (3.27), (3.30), and (3.31). Further, the
above discussion can be readily generalized to an arbi-
trary number of nonzero Bj,Bj.

The limit q ~ 0 of the above equations is particularly
simple and yields the two-soliton solution of the Rosen-
Morse potential, i.e. ,

Wp ——2 V R tanh v Rx, Wg ——V R tanh V»
(6.22)

provided B = 3B. Thus our results can be regarded as
multiparameter deformations of this potential.

Finally, it is clear that one can easily generalize this
procedure and consider shape invariance with a scaling
Ansatz in 3,4, . . . , p steps and thereby obtain multiparam-
eter deformations of the 3,4, . . . , p soliton Rosen-Morse
solution.

where p could be any integer. Again consider the ex-
pansions of the superpotential W and R(ap) given by
Eqs. (3.13) and (3.14), respectively. On using Eqs. (3.12),
(3.13), and (7.1) in the shape-invariance condition (3.9)
and equating powers of ap one 6.nds two sets of equations:
(i) n = pm, m = 0, 1, 2, . . .,

g,'-(x) + ) .g' (x)g.- '(*)-
m).g. (*)g--.( ) —q g' ( )+R, , (72)

j=p

(ii) n = pm+ q, q = 1, 2. . . , (p —1),

pm+q
/g„+ + g,. (x)g„+~ ~(x) = R„ (7.3)

These sets of equations are easily solved in succession
to produce more solutions of Eq. (3.9). Further, the en-
ergy eigenvalue spectrum can be easily obtained from
Eqs. (3.10), (3.14), and (7.1). For example, in the case
where only B1 and B2 are nonzero the spectrum can be
shown to be (Ep = 0)
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n

g( ) ' ) (q„'.a)i" '
q~f (u —~)

i=1

R2 1 2+(i —1)+ 2]l i) ) (g «)
i=1

A 1 ) 2 ) ~ ~ ~ ~

(7.4)

from (7.4) (for p = 2) is Eo ——0 and

' ) .(«~)' +,' ).(a.V)",
j=1 q

n = 1, 2, . . . . (78)

+i(x) + ).& (*)» +i— (x) = R2 +i (7.6)

and one can thus readily calculate all the g (x). For
example, in the case when only Rq and R2 are nonzero
it is easily shown that the first three g(x)'s are

gi(x) = Rix, g2(x) = (R2 —qRi)x —sR,x,
(7.7)

gs(x) = -', Ri(qRi —R2)x'+ —,', R', x'.

Notice that we have chosen go(x) = 0 so that again W(x)
contains only odd powers of x, V~(x) are symmetric in
z, and SUSY is unbroken. The spectrum which follows

The energy eigenfunctions and the transmission coe%-
cient for these reQectionless potentials can be written
down immediately using Eqs. (3.5), (3.27), (3.30), and
(3.31).

As an illustration, let us discuss the case p = 2 explic-
itly. The set of equations which follows from Eqs. (7.2)
and (7.3) is

2m

~'2 (x)+).~~(x)»- '(x)-= ~ ).g'(*)g- '(*)-
j=p j=p

—q g' (x)+R2, (7.5)

27n+1

The q ~ 0 limits of the equations above again corre-
spond to the one-soliton solution of the Rosen-Morse po-
tential, so that our results for a~ ——qap can be regarded
as multiparameter deformations of this potential. Gen-
eralization to the case when an arbitrary number of R~
are nonzero is straightforward. Similarly, one can also
consider shape invariance in multisteps along with the
Ansatz (7.1), thereby obtaining deformations of the mul-
tisoliton solutions.

Finally, consider solutions to the shape-invariance con-
dition (3.9) for

ay
qap

1+pap' (7.9)

where 0 ( q, p ( 1. We also assume that pap (( 1 so
that one can expand (1+gas) in powers of ao. Further,
assume that in Eqs. (3.13) and (3.14)

R(ao) = Riao + R2ao (7.10)

and go(x) = 0 so that W is again an odd function of
x. On using Eqs. (3.13), (3.14), (7.9), and (7.10) in
the shape-invariance condition (3.9), expanding negative
powers of (1 + pao) in powers of oo, and finally equating
powers of ap, one again obtains a set of linear differential
equations. For example, to order ap, the shape-invariance
condition looks like

2

a»i(x) + aoi~i + ~z(x)] = — '
~i(x) + '

I» —~2(x)j+»as+ R.no.1+pap 1 + pap
(7»)

Expanding the denominators in powers of ap and equating terms of order ap and ap yields equations for the functions
gi (x) and» (x) which give

Rgx
gi(x) =

1+q
( pqR, ) (1 —q) x'
& (1+~) ) (1+~)'(1+ ~') 3

(7.12)

The energy spectrum which follows f'rom Eqs. (3.10), (7.9), and (7.10) is Eo ——0 and

1—g~ 1—g~+P p y q j=& 1+pap (~ )

n=12 (7.13)

As usual, gl i and T can be found using Eqs. (3.5),
(3.27), (3.30), and (3.31). Generalization to the case
when arbitrary numbers of the R~ are nonzero is straight-
forward. Similarly, one can also consider shape invariance
in multisteps along with the Ansatz (7.9) and obtain de-
formations of the multisoliton Rosen-Morse solutions.

VIII. SUMMARY AND OPEN PROBLEMS
Until now, the only known shape-invariant potentials

were such that the parameters a~ and ap which appear in
shape-invariance condition (1.1) were related by a trans-
lation. In this paper, we have discovered a wider class of
new shape-invariant potentials for which aq and ap are re-
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lated by scaling, as well as in a variety of other ways. All
these new potentials are refl.ectionless and have an infinite
number of bound states. They can be considered to be q
deformations of the multisoliton solutions corresponding
to the Rosen-Morse potential. We were able to obtain
the energy eigenvalues, eigenfunctions, and transmission
coe%cients for these potentials algebraically. It was also
possible to obtain analytical answers for the moments of
these potentials, which should be useful since these po-
tentials could not be explicitly expressed in a closed ana-
lytic form. The recently discovered self-similar potentials
of Shabat and Spiridonov were shown to be a very spe-
cial case of our shape-invariant potentials. We were also
able to obtain q deformations of the one-dimensional har-
monic oscillator potential. This work has raised several
questions which need to be looked into. Some of these
follow.

(i) Just as we have obtained q deformations of the re-
flectionless Rosen-Morse and harmonic oscillator poten-
tials, can one also obtain deformations of the other sim-
ple shape-invariant potentials'? In particular, can one
obtain deformations of potentials which are not reHec-
tionless, say nonsolitonic Rosen-Morse potentials of the
form U(x) = —A(A + 1)sech x for noninteger values of
A'?

(ii) What are the various potentials satisfying the
shape-invariance condition (3.9)? In this paper, we
have significantly expanded that list but it is clear that
the possibilities are far from exhausted. In fact it ap-
pears that there are an unusually large number of shape-
invariant potentials, for all of which the whole spectrum
can be obtained algebraically. How does one classify all
these potentials? Would such a classification exhaust all
the known exactly solvable ones dicussed by Natanzon
[19]?

(iii) The shape-invariant potentials have been treated
algebraically in this paper. An obvious interesting ques-
tion is whether one can also solve the Schrodinger equa-
tion for these potentials directly. This should be possible,
at least in principle. In that case the next question is if
the Schrodinger equation gets essentially reduced to a
hypergeometric or confluent hypergeometric equation or
not. If not, then one would have generalized the concept
of solvable potentials as introduced by Natanzon [19].

(iv) Now that a host of new shape-invariant potentials
have been discovered, it is worth asking if all the known
exactly solvable potentials of Natanzon can be cast in a
shape-invariant form. In fact one can ask an even more
general question: can any exactly solvable problem in
quantum mechanics (i.e. , for which the Schrodinger equa-
tion need not necessarily reduce to a hypergeometric or
confluent hypergeometric equation) be cast in a shape-
invariant form? In other words, is shape invariance not
only sufhcient but even necessary for exact solvability, as
first conjectured by Gendenshtein [6]?

We hope to answer some of these questions in the fu-
ture.
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