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Sternheimer free determination of the Co nuclear quadrupole moment
from hyperfine-structure measurements
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Taking into account results of earlier hyperfine-structure (hfs) measurements, the hfs of altogether 20
fine-structure (fs) levels has been analyzed by the simultaneous parametrization of the one- and two-body
interactions in the atomic hfs for the model space (3d +4s) + (N =7). The values of the one- and two-

body hfs parameters have been determined. The evaluation of the nuclear quadrupole moment of ' Co
including Sternheimer corrections up to second order yielded the value of 0.41(1) b. Moreover, the
values of the magnetic-dipole constants 3 and the electric-quadrupole constants 8 for all levels of the
model space (3d +4s) have been predicted.

PACS number(s); 31.30.os

INTRODUCTION

In a previous paper [1] interpreting the hyperfine struc-
ture (hfs) of high-lying metastable levels of the cobalt
atom, Guthohrlein and Keller stated that the obtained
hfs constants could not be explained satisfactorily within
the framework of the hfs theory given by Sandars and
Beck [2]. The existing differences between measured A
and B constants and values estimated according to the
theory of Sandars and Beck may originate from far
configuration interactions, which their theory neglects.

However, recently an alternative parametrization, of
hfs interactions has been developed by Dembczynski
et al. [3], which takes into account all one- and two-body
contributions to the hfs splitting of electronic levels sepa-
rately and explicitly. With this parametrization the San-
dars and Beck radial parameters a and b' are also
determined more accurately. This is important, especial-
ly in connection with the parameters b ' and b ", which
represent the relativistic effects only. Hence a test of rel-
ativistic effects inAuencing the hfs is also possible. As
major progress this parametrization method offers the
evaluation of a nuclear quadrupole moment free of
Sternheimer corrections [4] up to second order. This pos-
sibility has been tested so far for the " Ti atom only [5].

In our hfs analysis we use the highly accurate results
first obtained by von Ehrenstein, Kopfermann, and
Penselin [6] and later extended to further levels by Childs
and Goodman [7] using the atomic-beam magnetic-
resonance method. Even higher-lying metastable levels
were investigated applying Doppler-free and Doppler-
limited laser spectroscopy by Guthohrlein and co-
workers [1,9], Wenzel [8], Ibrahim-Rud [10], and Baier
[11].

Section I gives some remarks about the necessary fine-
structure analysis. The evaluation of the radial parame-
ters of the hfs interaction is described in Sec. II. In Sec.
III we compare the experimental results with an ab initio
theoretical calculation. Section IV gives a general discus-
sion and determination of the nuclear quadrupole mo-
ment of Co.

I. REMARKS ON FINE-STRUCTURE ANALYSIS
AND INTERMEDIATE-COUPLING

WAVE FUNCTIONS

As we have shown in an earlier paper [12], the accura-
cy of the eigenvector amplitudes has a particularly strong
inhuence on the calculation of the effective one-electron
hfs parameters starting from the experimental 3 and B
constants. Therefore we have tried to take into account
first- and second-order effects on the fine structure (fs) of
the cobalt atom as comprehensively as possible with the
experimental data available at present.

It is known for the 3d elements that the interaction
with distant configurations via Coulomb interaction
affects the hyperfine structure very strongly [13] and it
has also an influence on the fs-term positions as well as
on the spin-orbit splittings of the terms. Therefore the
fine-structure analysis together with calculations of the
eigenvector amplitudes required for hfs interpretation
should take these effects into account.

In previous work concerning 3d elements [5,12—15] the
fine-structure analysis was limited to the model space
(3d +4s) + . In the cobalt atom, just as in the other 3d
elements, the model space (3d +4s) is not well isolated
from the other electronic system configurations because
some of the levels of configurations (3ds5s, 3d 5s4s, and
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3d 4d4s) are situated below the levels iD3/2 5/2 belonging
to the model-space configuration 3d 4s . Therefore in
this work we perform fine-structure analysis using an ex-
tended model space, i.e., the analysis of the following sys-
tem:

3d 4s +3d 4s+3d +3d 5s4s+3d 5s+3d 4d

+3d 4d4s+3d 6s+3d 6s4s

+3d 4d4s +3d 4p

P, =g (3di/C"'if4s)(4s f/C"'iin"'d)

XR (3d4s, 4sn"'d)g(n'"d, 3d)/bE .

For the electron excitation 4s ~n "'d ~3d,

P7 =X (3d IIC'"II3d)(4s II
C" II&'"d)

XR (3d4s, 3dn"'d)g(n"'d, 3d)/bE,

(6)

(7)

The configuration system (3d +4s) forms a subspace
of extended model space and will be referred to below as
"model space, " contrary to the whole system (1), called
"extended model space. " The analysis of the extended
model space allows one to determine quantitatively the
interaction between states of the model space and states
of the remaining configurations belonging to the extended
system. One- and two-electron excitation effects on the
term structure of the subspace (3d +4s) have been taken
into account by the method described in [16].

In this work the effects of the one-electron excitation
on the spin-orbit splittings of the terms [electrostatically
correlated spin-orbit interaction (ELSO)] have been com-
pletely taken into account. These effects have exactly the
same origin as those which affect the hyperfine splittings
of the levels. Therefore it is reasonable to parametrize
the above effects by means similar to hyperfine-structure
parametrization [3]. The fine structure of the terms is
affected only by the 3d ~n"'d —+3d electron excitations
(n"'d labeling empty d shells); also, the effect of one-
electron excitation 4s —+ n "'d —+ 3d gives nonzero off-
diagonal matrix elements of spin-orbit interaction be-
tween the states belonging to component configurations
of the model space (3d +4s) [17],hence only equivalents
of hfs parameters a; (i = 1,2, 3,4, 5, 7, 8; a; were defined in

[3] and their physical meaning will be explained in Sec.
II) are necessary to consider ELSO perturbations of the
fine structure. Parameters of ELSO interaction have
been designated as P, and their definitions can be ob-
tained by substitution of [2pips /I] (3d

~
r

~

n"'d ) by
g(n"'d, 3d) in the definitions of a; given in [3]. Thus the
fs parameters P, introduced here are defined as follows:

For the electron excitation 3d ~n"'d ~3d,

Ps =X (3d IIC"'lln"'d)(4s IIC''"II3d)

XR (3d4s, n"'d3d)g(n'"d, 3d)/bE .

The parameters P, , P2, and P3 connected with ELSO
effect within a 3d core are similar to those defined by
Judd, Crosswhite, and Crosswhite [18] for a 4f core. In-
troduction of the P, parameters improves not only the fs
Gt and the accuracy of eigenvector amplitudes but also al-
lows the possibility to compare effects arising from the
same kind of electron excitations and observed indepen-
dently in fine and hyperfine structure of the atom.

We would like to point out that an attribute of the
method we use is the assumption that the orbital 3d and
also the open-n 'l' and the inner-n "l" shell orbitals are
common to all states within the extended model space.
As a consequence we can define, e.g. , one spin-orbit pa-
rameter g( 3d, 3d ) for all configurations of the extended
model space, and we express the strength of spin-orbit in-
teraction in particular configurations using P; parame-
ters. For example, the relations between one-
configuration spin-orbit parameters g„& usually used for
configurations that are members of the model space
(3d +4s) are

(3d(3d ™4sM)= g(3d, 3d)

+ [2/(2l +1)][1 (N +M)]P, —
—[2(2—M)/&2l +1]P4

+ [2/(2l + 1)]P65(M, O), (9)

P, =g (3diiC' 'f/ 3d)( 3dii C' '//n'"d)

XR (3d3d, 3dn'"d)g(n'"d, 3d)/bE,

Pz=g (3d//C' '//3d)(3d/[C' '//n"'d)

XR (3d3d, 3dn"'d)g(n'"d, 3d)/bE,

P3 =/ (3d//C' '[/3d)(3d//C' '([n"'d)

XR (3d3d, 3dn'"d)g(n'"d, 3d)/bE,

P4=+ (3d f/C' 'llrz"'d)(4~IIC"'114')

XR 0(3d4s, n "'d4s)g(n '"d, 3d)/b E,

(2)

where M =0, 1,2.
The level-fitting calculation (fs fit) for 132 energy levels

attributed to the extended model space have been carried
out. With 232 parameters, 55 of which were treated as
free, a very good fit with a mean-square deviation of 4
cm ' has been achieved. The method of energy-matrix
construction for the extended model space and details of
the fine-structure analysis for Co will be presented sepa-
rately [17,19]. Below we give only the values of spin-
orbit and P; parameters, which are necessary for discus-
sion of configuration-interaction effects (see Sec. III). In
Table I are given the experimental level values, calculated
eigenvalues, percentages of first and second components,
and total percentage contribution from the states belong-
ing to model space (3d +4s) . The hfs parametrization
method [3] we use in Sec. II refers explicitly to states of
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TABLE I. Extract from the fs fit for the extended model space relating to the levels of the model space (3d +4s) .

Obs. level
(cm ')

[30]

Calc.
eigenvalue

(cm ')

Largest
eigenvalue
component

(%)

Next-lgst.
eigenvalue
component

(%)

1

2

Total from
model space

(%) Calc. gJ Obs. gJ

14 399.28
16 195.68
18 775.01
21 215.90

14 395.11
16 194.24
18 774.96
21 218.74
46 394.30

4.17
1.44
0.05

—2.84

97.3 a 3P
98.2 b (2P) P
62.7 b (2P) P
63.4 a 3P
96 8 b (0S) S

1.3 a,P
0.4g (D, D)P

34.8 a 3P
34.8 b (',P)'P

g (3D D) S
J—3

2

98.8
98.4
98.4
98.8
97.0

2.642
2.668
0.686
0.677
2.002

2.651 0
2.682
0.695
0.680

0.009
0.014
0.009
0.003

1 809.33
5 075.83

14 036.28
15 774.04
16470.60
18 389.57
20 500.71
23 152.57
28 470.51

1 812.24
5 082.61

14036.27
15 775.57
16 458.48
18 390.51
20 498.23
23 147.14
28 462.76
53 918.18

—2.91
—6.78

0.01
—1.53
12.12

—0.94
2.48
5.43
7.75

98.9 a
98.5 b
94.9 a
69.3 b
63.8 b
50.7 b
46.9 a
61.7 a
88.9 c
66.9 a

4F

(3F)4F
(,'P)
(3p)4p
(pD)'D
(P) P
2p
2D

D
2D

0.3 j (,'F)'F
0.4 b (2D) D
3.5 a 3P

25.7 b (&D)2D
28.9 b (2P)
36.4 a,P
39.5 b ('P) P
17.4 a iD
8.2 c 3D

15.9 a 3D

99.2
98.9
98.8
98.6
98.9
98.6
98.8
99.4
97.3
84.0

0.399 7
0.400
1.719
1.475
1.099
1.295
1.277
0.868
0.800
0.801

0.399 4
0.404
1.722
1.476
1.101
1.300
1.284
0.790
0.907

—0.000 3
0.004
0.003
0.001
0.002
0.005
0.007

—0.078
0.107

1 406.84
4 690.18
8 460.81

13 795.52
15 184.04
16 778.16
21 920.09
27 497.06

1 408.22
4 692.59
8 464.94

13 800.24
15 186.18
16 786.47
21 924.20
27 504.66
34 639.33
54 274.86

—1.38
—2.41
—4.13
—4.72
—2.14
—8.31
—4.11
—7.60

99.0 a 3F
98.1 b (2F) F
97.2 b (~F) F
98.2 a 3P
76.1 b (~P) P
74.7 b (pD) D)
68.0 a 3D
88 3 c )D
98.9 a 3F
66.6 a ~D

5
2

0.3j (F)F
0.7 b ('F) F
0.7 b ('F)4F
0.3 j (4D) P

21.8 b (2D) D
22. 1 b (2P) P
21.9

8.8 c 3D
01j (4G)F

18.4 a 3D

99.1

98.9
98.4
98.7
98.6
99.0
99.4
97.3
99.2
86.5

1.028 84
1.028
0.860
1.600
1.511
1.290
1.201
1.200
0.857
1.174

1.028 26
1.027
0.802
1.604
1.515
1.296
1.240
1.200

—0.000 58
—0.001
—0.058

0.004
0.004
0.006
0.039
0.000

816.00
4 142.66
7 442.41

17233.68
23 207.76

814.84
4 140.11
7 438.48

17 232.11
23 208.23
34 933.20

1.156
2.551
3.927
1.570

—0.475

99.1 a F
974b (F)F
96.8 b (2F) F
98.7 a pG
98.4 b ( pG) G
99 1 a 3F

J—7
2

03 j ('F) F
1 5 b (3F)2F
1.5 b (',F)4F
0.7 b (pG) G
0.7 a 3G
0.1 j (4G) F

99.1
98.9
98.4
99.5
99.1

99.2

1.238 43
1.237 13
1.144
0.889
0.889
1.143

1.237 78
1.237 61
1.147
0.883
0.883

—0.000 65
—0.000 53

0.003
—0.006
—0.006

0.00
3 482.82

16467.90
22 475.36
23 184.23

21 780.47

R 3d74S2
b 3d'4s.
'3d'.

3d 5s4s.
'3d Ss.

—3.22
3 475.97

16470.97
22 468.52
23 184.81

21 786.02

3.22
6.85

—3.07
6.84

—0.58

—5.55

98.9 a 3F
98.8 b (2F) F
96.9 a 3G
97.1 ~ H
98.0 b (2G) G

99.5 a 3H

9
2

0.3 j (,'F)'F
0.3 g (3H, D) F
1.9 a 3H
1.7 a 3G
0.6 a 3G

J=—"

0.2j (F)H
'3d'4d
~3d 4d4s.
"3d'6s.
'3d 6s4s.
' 3d64d4s~.

99.2
98.9
99.5
99.5
99.1

99.5

1.333 57
1.333 98
1.108
0.914
1.110

1.091

1.332 89
1.333 43
1.109
0.921
1.098

1.100

—0.000 68
—0.000 55

0.001
0.007

—0.012

0.009
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the model space (3d +4s) + . For these reasons, we de-
cided to truncate (and, of course, to renormalize) the
eigenvectors to states of the model space. Another
method for achieving such truncated eigenvectors is sim-
ply to carry out the fs fit with the levels of only the model
space by varying the parameters associated with that sys-
tem. However, the number of known levels is not
sufficient to consider all predicted fs interactions.
Neglecting one of these interactions and reducing the
number of free parameters in the fs fit can cause a sys-
tematic error in the calculated eigenvector amplitudes.
In order to avoid such a situation we used the fact that
the positions of the missing levels 3d 4s I'5/27/2 and
3d 4s S1/2, which are practically "pure" model-space
levels (see Table I), are very well predicted by fs fits per-
formed for the extended model space. Hence we can take
the predicted positions of these levels as "known" into
the model-space fs-fit calculations. This cannot be done
for the other missing levels 3d 4s 1D3/25/2 which are
only 84%%uo and 86.5%%uo, model-space levels, respectively. It
should be mentioned that the predicted positions of these
levels, obtained in the model-space fs fit, are placed 625
and 549 cm ' below the positions calculated in the case
of extended model space (see Table I). Some results of
the extended-model-space calculation are also given in
Table II. In this way, two sets of the eigenvectors for the
model space have been obtained. Comparison of these
two sets: (a) truncated and renormalized, and (b) from re-
peated fs fits for the model space (3d +4s) with assumed
positions of the levels 3d 4s I'5/27/2 and 3d 4s S»2,
shows that no essential differences appear. Likewise, the
values of hfs parameters evaluated independently using
these two eigenvector sets were approximately the same.
Thus in the remainder of this work we discuss only the
results obtained in model space, as only in this case is it
possible to compare electron-excitation effects observed
on fine and hyperfine structure simultaneously, because of
their suitable definitions. This will be discussed in more

TABLE II. Values of spin-dependent parameters obtained in
fs-fitting procedures (in cm ').

detail in the following paragraph.
Table II shows that the two sets of the values of pa-

rameters g and P, calculated in model space and in ex-
tended model space differ from each other. These
discrepancies are due to different definitions in both
cases. For example, in the definition of P; the sum run-
ning over n "' starts with n "'=5 for the extended model
space and with n'"=4 in the case of the model space. It
is worth pointing out that the values of the single-
configuration parameters g(3d 4s ) usually used
can be recalculated by means of Eq. (9) from the above
two sets of parameters, and the values of
g(3d + 4s ) are almost the same. We assumed that
this agreement is a test of quality of our approach and
that it indicates a good accuracy of eigenvectors obtained
in this work.

In spite of the fact that the orbit-orbit, spin —other or-
bit, and spin-spin interactions are very weak, the values
of the Marvin integrals M and M fitted by us are close
to the theoretical ones [20].

II. EVALUATION OF hfs PARAMETERS

In order to evaluate hfs radial parameters the parame-
trization method for the hfs analysis of 3d-shell atoms,
presented previously [3], has been used. The parametriz-
ation method considers each of the one- and two-body hfs
interactions as a product of an angular and a radial part.
The angular part can be calculated exactly. If precise
wave functions in the intermediate coupling scheme are
available, the radial part is determined in a semiempirical
manner as described below.

For each contribution the radial part is common for all
states of the model space whereas the corresponding an-
gular parts depend on the individual fine structure state
[3]. The hfs constants A and B for each fs state can be
expressed as a sum of products called "theoretical expres-
sions" and are defined as [3]:

g'(3d, 3d)
g(3d 4s~)

N( 3d '4s)
g(3d9)
M{3d4$ )

(3d 4$)
M(3d )

(3d 4$ )

{3d 4$)
M'(3d')
P,
P2
P3
P4
P5
P7
Ps

fs-fitting
Extended

model space

878(6)
500(4)
447{3)
386(3)

1.77(8)
1.47
1.16
0.86(9)
0.70
0.54

154(3)
74(6)
50

=0 assumed
—22(2)

70{28)
136(19)

procedure

Model space

927(8)
504( 11)
448(9)
379(8)

1.63(32)
1.37
1.09
0.96(22)
0.80
0.65

171(6)
62{7)
41

=0 assumed
—30(8)

14(58)
94(37)

Hartree-Fock
calculations [19]

534.58
480.13
428.98

1.93
1.65
1.37
1.05
0.89
0.74

Kk, nl
Kk =01, 12, 10

nl = 3d, 4s

11

a„",(P)a„',"+g a, (g)a, , (10)

B(g)=
Kk, nl

Kk =02, 13, 11
nl =3d

8

peak(y)b
x'k+ y p ( q)b

where a„l and b„l are hfs one-body radial parameters and
a„'i ( i') and P„&(P) are their corresponding angular
coefficients in the intermediate coupling (IC) scheme, the
"real" fine-structure state g are written in a Sl. base. The
terms a;(p)a, and p;(g)b; represent the contributions of
the two-body hfs interactions and an index i marks the
radial parameters and angular coefficients corresponding
to the following excitations:
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Index i Excitation

1, . . . , 5
6

7,8
9
10
11

and

open 3d shell~empty n"'d shell~open 3d shell
closed n "s shell~open 3d shell —+closed n "s shell

4s shell —+empty n"'d shell~open 3d shell
open 4s shell~empty n'"s shell~open 4s shell

closed n "s shell~open 4s shell~closed n "s shell
closed 4s shell —+empty n"'s shell~open 3d shell,

two-electron excitation: closed n "s shell —+open 3d shell
and closed 4s shell —+open n "s shell

The angular coefficients a„&(g),a, (itj) and p„&(g),p, (g)
are calculated with a computer program that is based on
the formulas given in Ref. [3] and they are available from
the authors. The radial parameters a&, a, , b,&, and b,.

are fitted to the experimentally determined hfs constants
A and 8 using the theoretical expressions (10) and (11).
For such linear-equation systems all parameters can be
deduced, if there is a sufTicient number of linearly in-
dependent equations. Moreover, the two-body hfs contri-
butions are N- and SL-dependent and hence only hfs
measurements including different SL terms allow one to
estimate these contributions. The desirable condition to
evaluate all one- and two-body radial parameters is only
fulfilled if experimental 2 and B constants are known for
the levels belonging to at least ten different SL terms of
all three configurations of the model space (3d +4s)
The above requirement can be weakened for an atomic
system with strong spin-orbit and interconfiguration mix-
ing of fine-structure states, as in that case the admixtures
from other states may be significant. In our hfs analysis
we use the very accurate results first obtained by von
Ehrenstein, Kopfermann, and Penselin [6] and later ex-
tended to further levels by Childs and Goodmann [7] us-
ing the atomic-beam magnetic-resonance method. Even
higher-lying metastable levels were investigated applying
Doppler-free and Doppler-limited laser spectroscopy by
Guthohrlein and co-workers Wenzel [8], Ibrahim-Rud
[10], and Baier [11]. The total number of measured
magnetic-dipole hfs constants 3 and electric-quadrupole
hfs constants B are 20 and 17, respectively. Moreover,
the accuracies of the hfs constants measured using the
method mentioned above are very different (see Table
III).

It should also be pointed out that the accuracies of the
angular coefficients appearing in theoretical expressions
(10) and (11) are strongly dependent on the precision of
the eigenvector amplitudes. The states 3d 4s FJ are
quite close to pure SL coupling; hence in this case the
inaccuracies of relevant eigenvectors obtained from
fs fits have negligible inhuence on the quality of corres-
ponding theoretical expressions [3]. Taking the above
into account, we have weighted the theoretical ex-
pressions in the hfs fit in the following way:
A(3d 4s F~)= 3 (a'",a;) was weighted by a factor of
1000, A (3d 4s F9&27&2 ~&i)= A (a'",a, ) by a factor of
100, and the other expressions by a factor of 1. The same
weighing procedure was repeated with corresponding B
expressions.

As one can see from Table III, there are 20 and 17
equations for the magnetic-dipole and electric-
quadrupole hfs constants, respectively. These constants
were measured for levels belonging to eight terms only.
Thus, according to criteria mentioned above, this was not
enough to avoid all linear dependencies in both A- and
B-equation systems. For this reason additional assump-
tions, which are taken from Hartree-Fock calculations
[21] or from fine-structure analysis (see Sec. I), had to be
included in our hfs-fitting procedure.

The two-body hfs parameters a, and a4 or b, and b4
describe the same electron excitation: 3d ~n"'d —+3d,
first in the core 3d involving only 3d electrons and
second in the mixed configuration 3d 4s involving 3d
and 4s electrons. The radial integrals arising from these
parameters are of rank 0; thus the relevant angular
coefficients ai, a& and Pi, P4 are SL independent. The
coe%cients mentioned above show dependence only on N
and M, where N is the number of 3d electrons and 2 —M
defines the number of 4s electrons. It causes a linear
dependence between the parameters a 3d, a 3d, a „and a4

01 12

or between b 3d, b „and b4, so that they cannot be simul-
taneously evaluated without additional assumptions.
Sometimes the assumption can be deduced from
Hartree-Fock calculations but, as in the case of Co, the
relevant data are not available; thus the values of radial
parameters a4 and b4 have been set equal to 0. As a
consequence the parameters a3d, a3d, a', and b3d, b', ob-
tained from fitting the procedure to the experimental
data should be interpreted as

a3d =a3d —2(%+1)(2l +1) ' a&,

a =g —2(~+ 1)(2t + 1) g

b
02'

b 02 2(+ + 1 )(2j + 1 )
—1/2b

a', =a, —(2l +1)' a~,

b', =bi —(2l+1)' b~,

(12)

(13)

(14)

(16)

The above relations can be derived from [3].
The angular coeKcients a9 and F10 occurring in terms

of expressions (10), in which electron excitations
4s~n'"s~4s and n "s~4s~n "s are described, differ
by sign only. Therefore, if the relation estimated theoret-
ically from Hartree-Fock calculations would not have
been used, only a mixed parameter a9 10 ——a9 —a10 could
be determined from the experimental data.
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a3d =95.4128gI(r ) ", ~k =01,12, 10, (17)

The results of hfs fits performed with the above as-
sumptions are given in Table III. This table shows also
the predicted values of hfs constants A and 8 for all not-
yet-investigated levels of the model space (3d +4s) . The
radial integrals have been obtained from the hfs parame-
ters using the following relations [3,22]:

b (IC)=234. 9624Q ( r )

b, =234.9624Qt, , i =1, . . . , 8,
(23)

where gI=1.317 [23], I'' is a relativistic correction fac-
tor [22], Q is the nuclear quadrupole moment (here 0.41
b; see Sec. IV), all parameters are in MHz, and all radial
integrals ((r ) and t, ) are in atomic units.

a' (IC)=95.4128g, (r ),'c,
2

a' =95.4128—a4s
r=0

95 128grt, , i =1, . . . , 8,
a,. =-', 95.4128grt, , i =9, 10, 11,
6 "=234.9624Q ( r ) ", ak =02, 13, 11,

(18)

(19)

(20)

(21)

(22)

III. COMPARISON OF THE EXPERIMENTAL
RESULTS WITH THEORETICAL CALCULATIONS

Usually the hfs parameters are discussed for each
configuration separately. Using the relations given in [3]
the corresponding parameters for each configuration
(hereafter called configuration parameters) can be ob-
tained from model-space parameters (Table IV) as fol-
lows:

TABLE III. Comparison of the experimental hfs constants A,„p„B,„pt and the values A„&„B„„recalculated from the model-
space parameters. The constants are given in MHz. Numbers in brackets denote reference numbers.

State ~ expt X 100%~ expt
Bexpt 8„1, X 100%o

Bexpt

3d 4s
3d 4s
3d 4s
3d 4s
3d ( F)4$
3d 8(3F)4
3d (2F)4s
3d ('F)4s
3d 4s
3d 4s
3d 4s
3d'(,'F)4s
3d (2F)4s
3d (2P)4$
3d ('P)4s
3d8{',P)4$
3d (2D)4s
3d ('D)4s
3d ( P)4$
3d (2P)4s
3d 4s
3d 4s
3d 4s
3d 4s
3d 4s
3d 4s
3d 4s
3d 4s
3d (2G)4s
3d ( G)4
3d'
3d'
3d 4s
3d 4s
3d'(Q)4s
3d 4s
36 4s

43F
4
Fs/2

4F
4F
4
F3/2
F5/2

4

4
F9/2

4
3P1/2
4
3P3/2

3P5/2
2
F5/2

2
F7/2

4P 1 /2
4
P3/2
P5/2

2D
2
D5/2

2
P1/2

2
P3/2

2 G
2
3 G9/2
2
3P1/2
2
3P3/2
2
3H9/2

3H11/2
2
3D3/2
2Ds/
2
G7/2

2
G9/2

2
D3/2

21D5/2
2
Fs/2

2F7
2
~1/2

1D3/2
21D5/2

1042.981(1) [7]
613.349(3) [7]
490.567(2) [7]
450.283(1) [7]
303(2) [9]
562. 183(3) [7]
668.919(3) [7]
828.799(4) [7]—710.8(9} [8]

178.9(3) [1]
1108.8(1.3) [10]
391.5(1.4} [10]

1727.1(1.0) [11]
457.9(3) [1]

1124.8(7) [I]

1387.5(1.0) [10]
592.7(1.9) [10]
332.0(1.5) [1]
839.4(4) [1]
611.9(1.3) [10]

1042.980
613.356
490.556
450.288
304
562.167
668.936
828.806
720.0
323
167.1

1117.7
393.8

1707
430.3

1110.2
341

1364.7
586.2
331.5
831.5
595.8
444
162
771
670
913
552
238

1077
1020
315
721
666

4353
1117
497

0.0001
—0.0012

0.0022
—0.0011

0.4
0.0029

—0.0026
—0.0009

1.3

6.6
—0.8
—0.6

1.2
6.0
1.3

1.7
1.1
0.2
0.9
2.6

67.618(20) [7]
67.541(50) [7]
94.501(36) [7]

139.230(30) [7]—82(40) [9]—54.806(250) [7]—79.221(200) [7]—118.751(300) [7]

67.629
67.49
94.54

139.224
—56
—54.64
—78.836

—119.10

—90(4) [1]
144(9) [I]

127(15) [10]

101(10) [1]—97(3) [1]—84(15) [10]

—80
159

18
127

75
—85
—89.0

77
—404
—431

169
148

—468
—509
—147
—204
—101
—142

146
—170(14) [1] —187—93(20) [10] —96

—106(27) [10] —114

—0.017
0.08

—0.04
0.004

32
0.31
0.5

—0.3

—10
—3.2

26
13

—6
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TABLE IV. The hfs parameters of the model space and the value of their corresponding radial in-

tegrals. The uncertainties given in parentheses are the standard deviations.

01
Q3d

12
Q3d

10
Q3d

10a4,
12

abc
I

a&

Q2

Q3

az
a6
Q7

Q8
I

Q9

Parameter
(MHz)

1152(57)
1180(56)
—86.0(4)
3077(30)

188(209)
195(22)
69(21)
46(14)

—20(20)
—28(9)

90(50)
274(151)
799(25)

—2664( 1030)

Radial integral
(a.u. )

9.2(5)
9.4(5)

—0.684(4)
36.7(4)
2(2)
1.55( 18)
0.55( 18)
0.37(11)

—0.16( 16)
—0.223( 72 )

0.72(40)
2.2( 1.2)
6.4(2)

—21.2( 8.2)

b02
3d
13

brc
b,
b2

b3

b5

b6
b7

b8

Parameter
(MHz)

870.3(4.7)
22. 1( 1.7)

—6.8(3)

31(33)
151.1(1.8)
72.5
48.3

—21.1
—42.3

68.0
128.4

Radial integral
(a.u. )

9.03(5)
0.23(2)

—0.07(3)

0.32(34)
1.57(2)
0.75
0.50

—0.22
—0.44

0.71
1.33

a'"(d + s )=a'"+[2(1 N —M)—/5]a, —[2(2—M)l/5]a4+ —25(M, O)a5,

1~k =01,12 (and in corresponding form for b ", 1~k =02, M =0, 1,2, N =7, (25)

a' (3d 4s )=a' a' (3d +'4s)=a' ——'a3d 3d~ 3d 3d 5 9

a 10(3dN 2+) a 10 + 2(a a ) a 10(3dN+ls) —a 10

(26)

(27)

The configuration radial integrals are given in Table V
together with the results of relativistic Hartree-Fock
(RHF) and relativistic optimized-Hartree-Fock-Slater
(ROHFS) calculations by Lindgren and Rosen [22] and
Olsson and Rosen [24]. Table V also shows experimental
results given by other authors [1,7] who neglected two-
body hfs effects. Generally, we can say that careful fs cal-
culations with precise eigenvectors and taking into ac-
count two-body hfs interaction improved the agreement
between experimental results and theoretical calculations.
As one can see from this table, the ratio
( r ) ' I( r ) ' is quite close to the theoretical predic-
tion. The strong disagreement between theoretical and
experimental values, (r )P, observed earlier has been
removed by taking into account the s-electron excita-
tions: 4s~n"'s~4s and n "s4sn "s (parameters
a9, aio) [3].

A similar situation has already been observed in the
neighboring iron atom [14]. The value of the "core-
polarization" parameter a 3d for the component
configuration 3d 4s cannot be determined within the
framework of its exact definition. The reason is the linear
dependence of one- and two-body operators acting on s
electrons [25]. Therefore only the following parameters
can be determined from hfs-splitting measurements: the
core polarization parameter a 3d for the component
configurations with closed ns shells, the parameter a4„
and the mixed parameter a»0 =a9 —a,0. The use of the
hfs parametrization method [3] allows the extraction of

P)
g(3d, 3d)

, , =0.06(3),
a3d

b2
, =0.084(15),

g 02'

P2
0.067(7),

(28)

(29)

a5 b5
, ,

= —0.02(2), ,
= —0.025(5),

a 3d b3d

P5

g(3d, 3d)

(30)

According to the definitions of these parameters all ratios
given in (28) should be equal. This is also valid for the

configuration interaction effects and therefore the values
of one-body hfs parameters obtained in this way are suit-
ed for studying relativistic effects. The values of radial
integrals ((r ) ', (r )', (r )", and (r )' ) and
especially their ratios (see Table V) confirm theoretical
prediction [22,24].

In order to analyze configuration-interaction effects the
following ratios of corresponding two- and one-body fs
and hfs parameters have been taken:

a] b'i

, , =0.17(2), , =0.174(3),
a3d b3,
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proportions (29) and (30). The above requirements are
fulfilled within experimental accuracy. Hence we can
conclude that electron excitations 3d~n"'d~3d and
4s ~n "'d ~3d affect spin-orbit splitting and magnetic-
dipole and electric quadrupole hyperfine structure in the
same way. Moreover, consistency of ratios (28) and
agreement of experimental results with theoretical calcu-
lations permit one to determine the nuclear quadrupole
moment of Co with high accuracy. It should be also
mentioned that the SL-dependent as well as the N-
dependent contributions to the Sternheimer shielding or

antishielding factors R [26] can be expressed as a func-
tion of the ratios of the b; /b„i parameters.

IV. DETERMINATION OF THE NUCLEAR
QUADRUPOLE MOMENT OF Co

As the one-body parameters a„I,b„I are now free of the
above-mentioned N- and SI -dependent contributions,
separated by the use of an independent set of two-body
parameters, the determination of the nuclear quadrupole
moment from an extended set of one- and two-body hfs

TABLE V. Experimental hfs radial integrals and corresponding theoretical values for the
configuration of the model space (3d +4s) . All values are given in atomic units.

Calc. values [24]
RHF ROHFS Expt.

This
work

3d 4s
3d'4s
3d'

5.852'
5.301
4.765

5.513
4.984

5.51
5.1"

5.59(7)'
4.92(9)'

5.379
4.822
4.201

3d 4s
3d'4s
3d'

5 994'
5.457
4.962

5.678
5.183

5.96"
5.1b

5.77( 72 )'
6.82(43 )'

5.602
5.045
4.424

( &
—3 )01 y( &

—3 ) 12 3d 4s
3d'4s
3d'

0.976
0.971
0.960

0.971
0.962

0 924"
1.000

0.969'
0.721'

0.960
0.956
0.950

(p
—3&10 3d 4s

3d 4s
3d'

—0,0655'
—0 0730
—0.0940

—0.0769
—0.0942

—0.684
—1.39( 14)"

—0.55( 11 )'
—1.67(27)'

—0.651

—3.231

Xcontact 3d 4s
3d'4s
3d'

—0.67' —0.93 —0.88

—4.70

3d 4s
3d 4s
3d'

35.379 48.958 50(1)' 53(1)' 36.7(4)

(
—3 )02 3d 4s

3d'4s
3d'

5.859'
5.305
4.765

5.518
4.986

5.182
4.642
4.015

(p
—4&13 3d 4s

3d'4s
3d'

0.274'
0.281
0.322

0.299
0.331

0.23
0.23
0.23

(p
—3 &11 3d 4s

3d'4s
3d'

—0.109'
—0.120
—0.150

—0.127
—0.152

—0.07
—0.07
—0.07

3d'4s
3d 4s
3d'

—0.398
—0.427
—0.466

—0.425
—0.459

—0.292"
+0.762b

—0.41'
—1.5'

—0.31(6)
—0.31(6)
—0.31(6)

'From Lindgren and Rosen [22].
Calculated by Lindgren and Rosen [22] from the experimental data of Childs and Goodmann [7].

'Calculated from experimental data [l].
Relativistic part only.

'From Olsson and Rosen [24].
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parameters [3] obtained from experiment is possible:

g

beak

( 1 +Q(vk)1)Fvk

2 ~k
( 1+g(wk)2)~ ~k (31)

F'k and R "k are relativistic correction factors [22], b&&

are the contributions of one-body excitations of closed
shells to empty shells [26], and

P Igl2 b

QE.
(32)

where Q2 is the nuclear quadrupole moment including
Sternheimer corrections up to second order. Using the
most accurate parameters obtained in this work we can
evaluate from a 3d and b 3d [Eq. (31)]

Q, =0.404(15) b

and alternatively from a, and b, [Eq. (32)]

Q~=0.414(15) b .

Q ( Co, 3d 4s; F)=0.380 b,
Q( Co, 3d 4s; F)=0.345 b .

The average values for particular configurations obtained
recently by Guthohrlein and Keller [1]are as follows:

The very small discrepancy between Qi and Q2, below
the experimental limits of error, indicates that one-body
screening effects represented by b,

&&
in (31) play no impor-

tant role in cobalt, as has also been observed for titanium
[5]. Thus we can take the mean Q =0.41( 1) b as the
value of the nuclear quadrupole moment of Co, includ-
ing Sternheimer corrections up to second order. The
values of Q evaluated in this work are greater than the
values obtained previously [1,7]. Q was determined for
the first time by Ehrenstein, Kopfermann, and Penselin
[6] on the basis of very simple evaluations:
Q( Co, 3d 4s; F9&2)=0.404(40) b. Childs and Good-
man [7] using very precise measurements, gave two
different values for the terms 3d 4s F and 3d 4s F:

Q( Co, 3d 4s )=0.343(13) b,
Q( Co, 3d 4s)=0. 351(16) b .

Differences between the values mentioned above can be
explained by the fact that two-body effects on hfs depend
on the SI. term and on the type of configuration. Hence
the Q values determined previously from hfs measure-
ments for one term only or those averaged for the partic-
ular configuration, and neglecting two-body hfs effects,
were not quite correct. Therefore the values mentioned
above cannot be directly compared with these evaluated
in this work, where screening effects have been taken into
account.

The parametrization method used in this work allows
one to estimate quantitatively almost all contributions to
the hfs constants A and 8 [see (10) and (11)]. Using the
radial parameters given in Table IV and calculated angu-
lar coefficients tz„&(g),a;(lfj) and p'„&(g), f3; (p) we can esti-
mate one-body contributions and also in detail two-body
contributions representing particular kinds of electron
excitations. In this way it is possible to interpret the hfs
splitting of the level 3d 4s P3/2 which was discussed in
[1]. Table I shows strong interconfiguration mixing for
this level: the leading percentage amounts to 50.7% for
the state 3d 4s P3&~, with an admixture of 36.8% from
the state 3d 4s P3/p In such cases off-diagonal effects
(excitation: closed 4s shell~empty n"'s shell —+open 3d
shell) are very significant and their contribution to this
hfs 3 constant amounts to u»a], =95 MHz. It is likely
that the contribution of such an effect to the other P3/2
state should be also important, and we have predicted its
value to be —100 MHz. A similar strong two-body
core-polarization effect was observed for the first time in
titanium and vanadium by Johann, Dembczynski, and
Ertmer [13].

Recently, Beck [27] published results of a new ap-
proach to the theoretical calculations of hfs obtained for
the elements with open-subshell d configurations, which
removed large discrepancies between theory and experi-
ment [28,29]. Thus a comparison between results of this
new theoretical approach and our predictions would be
very interesting. We hope that predicted values of the 3
and 8 constants given in Table III can be a stimulus for
further experimental and theoretical hfs investigations in
the cobalt atomic spectrum.
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