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Induced mapping in the n-electron space and a transformation of valence-bond structures
to molecular-orbital functions
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A mathematical study of the problem of mappings on the n-electron configurations induced by one-
electron orbital transformations is carried out. The main objective is to design a procedure that uses the
chemical information of valence-bond functions in the determination of a limited number of significant
orthogonal configurations for a molecular-orbital treatment. The example of the He2 ion is given.

PACS number(s): 31.20.Rx, 31.20.Ej

I. INTRODUCTION

In quantum chemistry, the n-electron wave function is
generally constructed from a finite set of one-electron
functions, i.e., the spin orbitals, and expressed in the form
of a linear combination of Slater determinants. The spin
orbitals themselves are usually defined in terms of some
basis sets of atomic orbitals, but they can be subjected in
actual computations to various linear transformations.
For instance, the standard molecular-orbital (MO)
method starts with orthogonal spin orbitals, solutions of
self-consistent-field (SCF) or multiconfiguration self-
consistent-field (MCSCF) treatments, but possibly
modified by means of transformations designed for im-
proving both their physical meaning and the convergency
of the subsequent configuration-interaction (CI) treat-
ment (relocalized MO's, natural MO's, etc.). On the oth-
er hand, the valence-bond (VB) theory expresses the total
wave function directly in terms of chemical components
built from atomic orbitals and, consequently, significant
from a structural point of view provided that their
nonorthogonality properties are preserved [1] (note that
computer algorithms dealing with Hamiltonian matrix
elements between nonorthogonal basis functions have
been recently presented [2]).

The connection of total wave functions expressed in
terms of orthogonal MO's with those expressed in terms
of VB formulas has been known for a long time. First,
the complete equivalence of corresponding full
configuration-interaction and full valence-bond develop-
ments, established by Slater in the case of a two-electron,
two-orbital problem [3], has been generalized to more
complicated systems [4—6]. Second, the study of the VB
content of one (or several) Slater determinants built from
orthogonal MO's has been made possible with the help of
appropriate computer programs [7,8]. In contrast, infor-
mation concerning the backward transformation from
one (or several) given formulas to MO determinants is
lacking.

We have tried to give an answer to the reverse problem
mentioned above, using the exterior algebra as a fruitful
alternative to more traditional formalisms [9]. This pa-
per is organized as follows: the first part studies the gen-

eral problem using exterior algebra concepts, the second
gives some results for the test example of the He&+ ion.
The choice of this three-electron system was first dictated
by the fact that it is the simplest compound for which the
transformation is not a trivial problem. Possible applica-
tions of the He&+ model for understanding more compli-
cated situations are suggested in the last section.

II. THE GENERAL CASE

A. The backward transformation problem

where 6, is the exterior product, and P2 „ is the set of
n-element subsets of integers t 1, . . . , 2m [. A valence-
bond wave function can be expanded in the following
way:

evB=y xlnl
I

(2.2)

(Ql is nothing but an antisymmetrized product of atomic
orbitals as it is used by the usual quantum chemical
theories. )

The problem we are concerned with is to reexpand %'vB

in a well-chosen basis set of orthogonal orbitals
(Pl))

B. Choice of the basis set of orthogonal spin orbitals

There are two requirements that one can think of to
select an orthonormal basis set of spin orbitals. The first
one is to use a basis set that gives an expansion of 0'vB as
compact as possible. The second one is to use a basis set
adapted to the (space and spin) symmetries of the mole-
cule, since we know that this usually leads to more simple
calculations.

Let E be the K-vector space of the one-electron spin or-
bitals (IC denotes the field of real numbers or of complex
number's), (co;), (;&2 a basis set of E consisting of atom-
ic orbitals. The notation 5, "E denotes the space spanned
by the n-electron configurations:

(2.1)
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As shown recently by one of us [9] the algebraic con-
cept of internal space may be used to answer the first re-
quirement. The internal space [4] of a wave function 4
is defined to be the space spanned by the least number of
spin orbitals necessary to expand %. It has been known
for a long time in the field of exterior algebra, though it is
not a trivial result, that such a space does exist and is
unique. To determine the internal space it is convenient
to begin with its orthogonal complement [4] given by

obtain the desired expansion of +vB from Eq. (2.2):

VvB=+ksh "u(@s)=gar4s ~

I I
(2.8)

denoting by a~ the coef5cients of the new expansion of
the VB function.

Assume that u is represented by the matrix
U=(u; . ), (,. (2 in the basis set (P;);, then 5 "u is
represented in the induced basis set (4z )z by the matrix

(2.3) h "U=(det Urz~sjcr, (2.9)

where ~' denotes the interior product, and g a one-
electron spin orbital. The equation means, in terms of
second quantization operators, that the annihilation of g
in + gives zero.

The above relation can be used to build a basis set of
[VvB], the latter is then completed to obtain an ortho-
normal basis set of E, and the complement is precisely a
basis set of ['Pv~]. In the expansion of 0'vB, the elements
of the basis set of [VvB] (external spin orbitals) will not
appear, since by definition +vB decomposes on the ele-
ments of the basis set of [%v~] (internal spin orbitals)
only. Note that if %'vz is an eigenfunction of S and S„
as is normally the case, and if say, eigenvalue(S, ) ~0,
then [10] the internal P-spin orbitals can be chosen to
have the same spatial part as some of the internal a-spin
orbitals. Note also that the occupied natural spin orbitals
(the ones which diagonalize the one-electron density ma-
trix with nonzero eigenvalues) are a particular case of
internal spin orbitals, but it will appear (see Sec. III B)
that this case is not worth considering, because precisely,
the natural P-spin orbitals do not have necessarily the
same spatial parts as the natural o;-spin orbitals.

To fulfill the second requirement, we have to represent
symmetry groups on the internal space, and the usual
group theory can be applied to obtain symmetry-adapted
internal spin orbitals.

Remark. It may be interesting in practical applications
to swap the order in which the requirements are fulfilled.

C. Induced transformation by changing the
one-electron spin orbitals

As a matter of fact, the choice of the orthonormal basis
set corresponds to the choice of a linear transformation v

such that
P;=v(co;) Vi E(1, . . . , 2m j . (2.4)

This being done, we are left with a purely algebraic prob-
lem (in other words, the orthogonality of the basis set
does not play any part); let u be the inverse of U:

co, =u(P;) ViE[1, . . . , 2m j, (2.5)

then setting, by analogy with Eq. (2.1),

where det UJ J is the determinant of the minor
U~ J = (u; ~. );~& ~ ~J of dimension ( n X n ) associated to the
n indices (i and j) defining @~ and @J,which is to be ex-
tracted from the U matrix of dimension (2m X2m).
3 priori, we have to compute C2 determinants per
configuration Q~ in Eq. (2.2). However, use of internal
spin orbitals reduces this number to C where p is the di-
mension of [0'vB]. Now we will show that, as expected,
symmetry properties simplify the problem further.

1. Induced mapping and point group symmetry

Let p: G +GL(E) —be a linear representation of group
[13]G in E, i.e.,

V t, s E G, p(t), p(s) E GL (E),

p(st) =p(s)p(t) .

Then the mapping h "p: G ~GL ( 5 "E) defined by

Vs E 6, ( h "p)(s) = h "p(s) (2.10)

is a linear representation of G in 5, "E. We call it the in-
duced representation of p.

Remark. 5, "p is not in general irreducible, even if p is
so. It decomposes into a direct sum of irreducible repre-
sentations which can be determined by means of charac-
ter theory. Care must be taken, however, of the antisym-
metry of the exterior product; for example in D2& sym-
metry with z as principal axis, the exterior product of de-
generate p orbitals (centered at the symmetry center)
p„hp~ transforms as the B, irreducible representation
(i.e., like a d &, orbital) whereas the tensorial product

p p transforms as the B2 irreducible representation
(i.e., like a d„orbital). In other words, the character of
h, "p is not n times the character of p as it would be in the
case of the tensorial product.

If p and p' are conjugate representations in E then h "p
and R, "p' are conjugate representations in 5, "E, since for
all s EG

(2.6)

the linear mapping 5, "u defined by

6 "u(C&r)=u(P; )h . Au(P; )=Qz VIHP2 „(2.7)

p'(s) = u p(s) u

implies

h "p'(s) = h "u h "p(s)( h "u )

(2.1 1)

(2.12)

is called the induced mapping [11,12] by u and must be
made explicit in the basis set of the @z's, if we want to

In practice that means that if a multiconfiguration N
transforms a certain way under the mappings 6 "p(s)
(typically as a basis vector of an irreducible subrepresen-
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tation which can be degenerate or not), then 0= h "u(4)
transforms the same way under the mappings h "p'(s).
Consequently, if we start with a valence-bond function
'EIIvB which transforms like a given irreducible representa-
tion (irrep. ), the 41 s which transform like the other ir-

reps. of the group will not appear in the expansion and
there is no need to compute the corresponding deter-
minants.

2. Induced mapping and spin symmetry

We now investigate some properties of the mappings
h, "u induced by mappings u which act on the spatial part
of the spin orbitals only.

Assume there are n electrons, m a-spin orbitals (P;);,
and m P spin orbitals (P;); with the same spatial part as
the (P, ), . The most general transformation of orbitals
will be a mapping which decomposes into an n-spin and a
P-spin part,

h "u (Sz(4) )

=gu(P))h hu(s~(P;))h ' ' hu(P„),

S~( h "u(N))

=gu(P, )h hs~(u($;))h . hu(P„) .

Therefore P "u and S& commute if and only if u and s&
commute.

Notice that a matrix of the form given in Eq. (2.15)
commutes with all matrices of the form

aI bI
cI dI

where I is the m Xm identity submatrix. Thus u com-
mutes with s„,s,s„whose matrix representations are, re-
spectively (fi = 1),

u =u +ut',

and satisfies the relationship

(2.13) 0 1I

—,'I 0

0 0

0 ——'I
2

u(P, )=u(P);, (2.14)

meaning that u commutes with the operation of a-P spin
exchange. As a result, u and u ~ have the same matrix
representation in the basis (P, ), and (P, );, respectively.
Denote by U the matrix of u in the basis (P, ), , (P; );; then
U has the form

0
0 (2.15)

A =(a; ), (;1( (2.16)

i.e.,

u ((h; ) =g a; J.P) .
J

(2.17)

Equation (2.13) implies that h "u (and so does the matrix
h "U) decomposes on the eigenspaces of S,:

h "u =
n +n~=n

~n „a@~n~„P (2.18)

Setting

4=(h) h h P„,
we get

which means that h, "u commutes with S, and that h, nU

is block diagonal. In fact, it also commutes with S„and
S . Let y denote x, y, or z, Sz and sz the components of
the spin operator in 5, nE and E, respectively,

S~(g, h . h(h„)=g(h, h . hsy(P;)h . hg„.

Consequently 5, "u commute with S„, S, and S, and
since

S =S +S +Sx y z

with S as well. In practice this means that only the NI's
or linear combinations of the NI s which are eigenfunc-
tions of S, and S with the same eigenvalues as VvB will

appear in the expansion of the latter. As a result, only
the matrix elements (2.9) belonging to a given block of
R, "U are of interest and in addition it is not necessary to
calculate all of them. In fact, regardless of the point
group symmetry, the number of matrix elements to be
computed is given by the Weyl's dimension formula [14],
nevertheless, as in the case of an MCSCF calculation, the
number of orbitals is not the dimension of the orbital
basis set m, but the number of internal orbitals [provided
that we have chosen the internal I3-spin orbitals with
the same spatial part as internal a-spin orbitals for
eigenvalue(S, ) ~0]. This is what makes the transforma-
tion computationally feasible.

To conclude this section we note that the transforma-
tion of several VB functions to an expansion over the
same @I s is possible; it is only necessary to consider the
internal space of the set of the VB functions defined as
the sum of the internal spaces of each function. This
might increase the size of the internal space, but in the
case of degenerate VB functions the internal spaces will
only differ by some degenerate spin orbitals, since gH [4]
implies p(s)gP [( h "p)(s)%'].

III. APPLICATION: He&

As an application we consider the He2+ ion and trans-
form a chemically significant VB wave function con-
structed with atomic orbitals to a multiconfiguration
formed of well-chosen orthogonal molecular orbitals.
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This multiconfiguration is compared to the full
configuration-interaction (FCI) wave function and used
to construct a limited configuration interaction (LCI).

A. Weinbaum's wave function

with

X= [2(1—S„'~—S(SS"—S„'~ ))]'

S=(is ~is ), S"=(1,, ~1,, ),

is a good approximation of this state when ls (1, ) is as„
Slater orbital centered on atom A with exponent
z=1.734 (z'=2. 029). We use this wave function as a
starting point for the induced transformation (where the
Slater orbitals have been replaced by their STO-6G [16]
counterparts). The orbital ls. can be seen as the orbital

ls of the He+ ion.

B. Choice of the orthogonal basis set and simplifications

In the case of the Weinbaum wave function it is easy to
check that the only atomic spin orbitals satisfying Eq.
(2.3) are 1, , 1,, and that the internal space is spanned

B

by the remaining spin orbitals &s &s &s &s '&s' '&s

Now making use of the symmetry properties of the
molecule, only one choice for P-spin orbitals is relevant,
namely,

(ls„+ls )

&2(i+S) '

( ls„—ls, )

&2(1—S)
which belong to the internal space, and

(3.1)

(3.2)

The He2+ ion has D h symmetry and the ground state
transforms as the X„+ irreducible representation. Wein-
baum [15]has found that the wave function

=—( ls h 1, h ls —ls h 1, h ls ),=1

TABLE I. This scheme lists for He&+ how the properties of
the induced transformation can simplify its computation.

Number of coefBcients to be calculated:
C,'=56

S, 6 "u= 5, "u S,
C4C4 =24

use of internal orbitals $

C4Cq = 12
p'=upu '~ h "p'= h "u h "p h "u

—,'C,'C,'=6
S2 P &u=P &u

4

of 4, because they do not belong to its internal space.
Moreover, since 4 transforms as X„+ in the represen-

tation in the basis set induced by the atomic orbitals, it
must transform as X„+ for the conjugate representation in
the basis set induced by the orthogonal orbitals. Taking
into account that eigenvalue(S, ) = —,', only the six follow-

ing X„+ configurations will appear in the expansion:

~ )
—og Dog Dog

42=o.
g h o.

g h o.'„,

@3=o.„ho „R,o.'„,

44 =o g R, o.„h, o.z,

C5 —og R, og R, og

c,=v, n, ~,'w~'„.

Finally since %' is an eigenfunction of S, and S com-
mutes with the induced mapping, the configurations in
the expansion must form some eigenfunctions of S (see
Sec. IIC2). @„N2,43 are already such eigenfunctions,
but it can be seen that the three remaining functions will
constitute an eigenfunction of S if and only if 44 and @5
have coefficients of opposite sign in the expansion and the
coefficient of 46 is 0. This further reduces to four the
number of coefficients to be determined. Table I summa-
rizes the process followed to simplify the calculation of
the induced mapping.

Io'

—(S' „+S„' )(1 +1 )+(1+S)(1,+1, )
A B

+2(1+S)[(1+S)(1+S")—(S„'~ +S„'~ ) ]

(3.3)

C. Results

1. Analytical result

(SAR SAB)(is ls )+(1
2

+2( 1 —S)[(1—S)(1—S")
—(S„'g —S„'ii ) ] b) b 0

The inversion of Eqs. (3.1)—(3.4) gives the matrix U of
the transformation. The submatrix A of Eq. (2.15) is

(3.4) b, —b ) 0 0
which span the orthogonal complement. Since we are
dealing with an orbital transformation, we must choose
o„,crs, cr'„,o.' as the a-spin orbitals (note that o. and os
are not natural a-spin orbitals). The functions o ~ and
o '„cannot appear in the configurations of the expansion with

A=
C)

C)

c

C
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1+eS
2

N4 —@5%'„=a,@,+a24&2+a34&3+a4
2

S~~ SS~~
1 —S)[1—S,', —S(SS"—S„', )

(1—S)(1—S")—(S„',—S„',)'
a2=

(1—S)[1—SA'8 —S (SS"—SA'A ) ]

(1 —S)[( 1 —S)(1—S")
—(S„'~—S„'it ) ]

a3 =
2 1 —S„'~—S(SS"—S~~ )

a&=

a4=
(1—S)[(1+S)(1+S")—(S„'~ +S~~ )~]

2[1—S' —S (SS"—S„'„)]

2. Numerical result

In order to evaluate the quality of the wave function
, a FCI calculation using the GAMEss [17] computer

program has been performed in the same one-electron or-
thogonal basis set. The FCI involves the ten following
multiconfigurations:

S„'~ +@Sea
&2(1+eS)

[( I +eS )( 1+eS")
—(S~~ +eS~it ) ]

'i
d. = &2(1+eS )

where e& I
—1, +1].

Then making use of Eq. (2.9) the following expansion is
obtained:

TABLE II. Equilibrium geometries and energies.

Quantity FCI Weinbaum Derived from experiment

r, (A)
E (a.u. )

1.112
—4.94

1.097
—4.93

1 081 ' 1 090
—5.00

'K. P. Huber and G. Herzberg, Constants of Diatomic Molecules
(Van Nostrand Reinhold, New York, 1979).
W. Wei.zel, Bandenspektren (Akademische Verlagsgesellschaft,

Leipzig, 1931),pp. 255 and 270.

sion of + contains and only contains the four most im-
portant configuration state functions of the FCI wave
function with the right order for their relative weights. A
LCI using 'll„+z, 43, 44, and %s (the latter being simply
the other eigenfunction of S that can be built with the
orbitals of %'~) has also been performed. The LCI wave
function turns out to be very similar to %' (see Table
III), its energy is —4.93 a.u. as for the Weinbaum origi-
nal wave function, and this is close to the FCI result.

IV. CONCLUSION

The transformation of valence-bond structures into
molecular-orbital functions amenable to large-scale
configuration-interaction treatments has been addressed.
Among the various choices of MO, the internal orbitals
of the VB function are the most relevant since they lead
to the most compact expansion. The symmetry proper-
ties of the induced mapping prove to have some practical
interest for its effective calculation, since they allow con-
siderable reduction of the computational effort. The
present development can be seen, so to speak, as the re-
ciprocal transformation of the decomposition of electron-
ic configurations (determinants) in terms of products of
atomic functions usually assimilated to valence-bond
structures.

%4=

( 2o s A cr „Ao s
—o s A o „Ao s

—o.
s A o „A trs ),

6

~,=~„r ~'„r r'„,
%7=O.„R,og R, o '

%8=O.
~ AP ~ R, o'„,

os@,o g o gR, o~
P9=o-g A

2

1—(2o g A o s A o '„—o s A o s A o '„—o. A tr '
A o '„) .

6
0

The optimization of geometry gives r, =1.112 A and
E=4.94 a.u. (see Table II), and the corresponding
coefficients of the FCI wave function are listed in Table
III. In parallel, we give the coefficients of the expansion
of 4 at the same geometry. It is striking that the expan-

TABLE III. Expansion coefficients of different wave functions.

Coefficient of

4'4

+io

FCI '

+0.991 599
+0.041 991
+0.038 819
+0.105 811
—0.016982
—0.017 585
—0.024 873
—0.005 646
—0.031 892
—0.000 428

LCI

+0.992 526
+0.042 222
+0.038 940
+0.106 229
—0.017 566

0
0
0
0
0

+0.993 054
+0.061 806
+0.038 106
+0.092 582

0
0
0
0
0
0

'Full configuration interaction.
Limited configuration interaction.

'Weinbaum wave function at FCI geometry with STO-6G orbit-
als.
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He +

Ox

Nitroxide 7t; radicals

H

The case of He2+ shows that such a transformation is
feasible and worth being considered. Now, He&+ is much
more than. a case example. It is the simplest illustration
of a widespread situation where three electrons share two

HCO2 a radical

FIG. 1. Examples of 3-electron —2-center valence-bond struc-
tures.

atoms. Consider for example a homonuclear diatomic
molecule with a hole in the 1s shell. This problem of core
ionization has been studied first with the unrestricted
Hartree-Fock (UHF) method [18] localizing a hole on a
nucleus, then with CI methods [19],which do not exhibit
the same feature but fit the experimental results in a satis-
factory way as well, and give eigenfunctions of S . Simi-
lar situations indeed can be found in a number of free
radicals of either u or ~ symmetry. Among others, we
would like to mention the nitroxide vr radicals RIOR'
where three m. electrons are delocalized over nitrogen and
oxygen. For these systems two dominant VB structures
can be drawn, one covalent, another ionic (Fig. 1), and a
correct balance between these structures is necessary to
account for the spatial distribution of the spin density
[20]. For o. radicals, a puzzling example is HCO2, where
the three o. electrons are shared between the two oxygen
lone pairs (Fig. 1), and large MCSCF CI treatments are
needed for a correct description of this system [21].

From a general point of view, the transformation of
VB functions is of primary importance since it ensures
that, at least, the subsequent MO treatment takes into ac-
count the main VB structures and this is true for the
ground as for excited states, degenerate or not. Starting
with intuitively important VB functions one can obtain in
this way the basic orthogonal configurations to be used as
a multireference space for extensive CI calculations.

[1]P. O. Lowdin, J. Mol. Struct. (Theochem. ) 229, 1 (1991).
[2] J. Verbeck and J. H. Van Lenthe, J. Mol. Struct. (Theo-

chem. ) 229, 115 (1991).
[3]J. C. Slater, Phys. Rev. 41, 255 {1932).
[4] H. C. Longuet-Higgins, Proc. Phys. Soc. 60, 270 (1948).
[5] W. Motlitt, Proc. R. Soc. London Ser. A 202, 534 (1950).
[6] M. Sender and G. Berthier, J. Chim. Phys. 56, 946 (1959).
[7] P. C. Hiberty and C. Leforestier, J. Am. Chem. Soc. 100,

2012 (1978).
[8] J. Lievin, J. Breulet, P. Clercq, and J. Y. Metz, Theor.

Chim. Acta 61, 513 (1982).
[9] P. Cassam-Chenai, J. Math Chem. (to be published); these

de doctorat, Universite de Paris 6, 1992 (unpublished),
available from Atelier national de reproduction des these,
Universite de Grenoble, BP 47X, F-38040 Grenoble Cedex
09, France, Order No. 92 PA06 6078.

[10]P. Cassam-Chenai and G. S. Chandler, Int. J. Quantum
Chem. 46, 593 (1993).

[11]J. E. and M. J. Bertin, Alg'ebre Lineaire et Geometric Clas
sique (Masson, Paris, 1981).

[12] M. Marcus, Finite Dimensional Multilinear Algebra

(Dekker, New York, 1973).
[13]J.-P. Serre, Linear Representations of Finite Groups

(Springer-Verlag, New York, 1977).
[14]J. Paldus, J. Chem. Phys. 61, 5321 (1974).
[15]S. Weinbaum, J. Chem. Phys. 3, 547 {1935).
[16]W. J. Hehre, R. F. Steward, and J. A. Pople, J. Chem.

Phys. 51, 2657 (1969).
[17]M. W. Schmidt, Quantum Chem. Program. Exhange Bull.

7, 115 (1987).
[18]P. S. Bagus and H. F. Schaefer III, J. Chem. Phys. 56, 224

(1972); P. Ficker, J. Chem. Phys. 78, 3339 (1983); Theor.
Chim. Acta 65, 127 (1984).

[19]A. Denis, J. Langlet, and J. P. Malrieu, Theor. Chim. Acta
37, 49 (1975);M. Benard, ibid. 61, 379 (1982).

[20] B. Gillon, P. Becker, and Y. Ellinger, Mol. Phys. 48, 763
(1983); P. J. Brown, A. Capiomont, B. Gillon, and J.
Schweizer, Mol. Phys. 48, 753 (1983).

[21]A. D. McLean, B. H. Lengsfield III, J. Pacansky, and Y.
Ellinger, J. Chem. Phys. 83, 3567 (1985).


