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Lower bound on the ground-state energy and one-dimensional N-fermion problem
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We derive an expression for a lower bound of the ground-state energy of X identical fermions. In
principle, this relation can describe any order of multiplicity of many-body forces and represents a gen-
eralization of a Hall inequality. Applying the Hall lower-bound inequality to the Calogero and Suther-
land potentials, we show the great importance of spin states. Furthermore, using a generalized formula,
we obtain a lower bound for a system with three-body forces.

PACS number(s): 03.65.Ge, 05.30.Fk

I. INTRODUCTION

The only one-dimensional quantum-mechanical prob-
lem of X identical particles for several forms of potentials
has been solved exactly [1]. Although almost none of
these potentials is realistic, they can be used for insights
into real physical problems. On the other hand, they
could be employed for the evaluation of di6'erent ap-
proaches to the many-body problem. Here we use them
for judging the "equivalent one-particle problem" [2,3].

Let the Hamiltonian of an N-particle homogeneous
system read

N p2 N

H=g + g Vj(r )
2@i

(i &j)

8 is a transpose of 8, the new momenta
(m. „sr2, . . . , sr~) are given by

m. =B 'p, (4)

E
over first

(N —1) states

e ~EO,

where e are eigenstates of the reduced two-body Hamil-
tonian given by

where 8 ' is the inverse of 8, m. = —

ikey,

and
J

p = —i'AV„.

Hall and Post (HP) [2,3] have obtained the lower-
bound energy

i,j,k

(i &j&k)

V;,i(r;, rk rk;)+ 1
&(p )=(N —1) . b, + NV(V'2p ) —.2 2M' P2 2

where V; is the pair potential, V; k is the three-body po-
tential, etc. , and r (r„r2, . . . , riv) are position vectors
(spin coordinates are not written explicitly).

In the "center mass" of kinetic energy (g, p, =0)
Hamiltonian (1) becomes

N (p. —p. ) N

17J 1,j
(i &j) (i &j)

i,j,k

(i &j&k)

(2)

p=Br . (3)

Matrix 8 is real and nonsingular. It can be shown that if

Let us separate the coordinates of the center of mass in-
troducing a new set of coordinates p (p„p2, ,p~) using
the transformation

which includes only the two-body correlation V;; A, is a
parameter, and Eo is a ground-state energy of system (2)
with only the two-body potential V; . It should be men-
tioned that there is also a similar Dyson-Lenard (DL) in-
equality for the lower bound of the ground-state energy
[4].

In Sec. II we present a generalization of the HP result,
which takes into account three- and many-body forces.
Section III describes the application of the HP results to
Calogero [5—7], Sutherland [8—10], and the confining
[11,12] potentials which have not been studied on this
basis so far. In Sec. IV our result is applied to the calcu-
lation of a lower bound of the ground-state energy which
contains three-body potential as well [13,14]. Some com-
ments are given in Sec. V. An important part of the
proof of our generalized expression is carried out in Ap-
pendix A. In Appendix B the solutions of reduced eigen-
value problems for Calogero, Sutherland, and confining
potentials are presented, respectively. Appendix C de-
scribes the solution of the eigenvalue problem of the
three-body reduced Hamiltonian.
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II. GENERALIZED FORMULA
FOR THE LOWER BOUND

Let us assume that p, is coordinate of the center of
mass. For a trial function y(P2, P~, . . . , pN), which is
normalized and antisymmetric (in particle indices
1,2, . . . , N), we find the expectation value of the Hamil-
tonian (2)

&xlHlx &
=

& x I~. Ix &,

where

wave function Vo(p2, . . . , pN) in terms of normalized
eigenstates C&;(p2, ,p„),

'Po(P2 ''' PN) Xc@(P2''P )+(P +1 '' PN).

(12)

C, are constant coeKcients and 4, are antisymmetric
functions which satisfy the relation

~("+1 . N)+ (P +'1 ''' PN) +i(P +1 ''' PN) '

k!(n —k)!
n!k=2 ' jk=k

j3 —1 j2 —].

gH, ) . . . ,
j2 =2 j) = 1

(13)

the operator 3 is an antisymmetrizer. By assumption 00
is antisymmetric and normalized, i.e. ,

n is a parameter which may be 2,3, . . . , X and k
2p 3p ~ ~ ~ y ny

N(N —1)

A(1, 2, . . . , N)Co=Co,

& @oleo& =1 .

The ground-state energy is

(14)

H' ' ~, ':&j j ~ j k:3 4
1 2 k 1 2 k

(9) (15)

A lower bound on the ground-state energy Eo can be ob-
tained in the following way. Assuming that after intro-
ducing new coordinates p and momenta m. , the Hamil-
tonian is transformed into

Inequality for the coefficients C; can be determined using
the Shwartz inequality and Hermiticity, the projection
property, and decomposition of 3:

~n ~~(P2 & Pn ) & (10)
A(n, n+I, . . . , N)

and that also the eigenvalue problem

~(P2 ' ' P )@ (P2 . P ) ~ @(P2 P'
can be solved. Let us expand unknown ground-state

I

1
n, n +1 PnN],

where P I is the exchange operator in individual particle
indices j and I, namely

I&, I'= I&@;+;I+o& I'=
I &@;+;I& (n, n+ I, . . . , N)+o& I2

=I& ~ «, n+ I, . . . , »~, ~, l~o&12

~
& A (n, n +1, . . . , N)C&, %';~ A(n, n +1, . . . , N)4&;4; &

&C, e, ~[1—P„„„— I„„]e,e, &—
X —n+1

1
[1—[N —(n +1)]5],X —n+1

where

f f@*(p2* p")'P*(p. +1 pN»n, .+1C'&(P2 p. )+;(pn+1 PN)dp2dp3 dpN .

It can be shown that 5 is a non-negative number for transformation (4) which satisfies

n n+1Pn Pn+1& n n+1Pn+1 Pn& n n+1Pl Pl& I+
&

+

Now 5 becomes

f f ' p2 p» l p&&+1» PN l p2» p&& 1&p&&+1 l p&&&p&&+2» PN p2 p3 PN

= f f [+,*(P2 . p. )'p;(p. p. +2 . pN)dp. ]

X [4, (p2&. . . , Pn»pn )%,*(pn+1,p„+2&. . . , pN)dp„+1]dp2 dp„ ldp„+2 dpN 0 . (19)
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Hence from (16) it follows that

(20)

The Sutherland potential is

N 2 2

';~ sin a(x; —x )

Combining this relation with (15) we find (Appendix A)

1

X —n+1
N —n+1

e;~EO ', (21)
In this case the exact ground-state energy is given by
[1,8]

the summation is taken over the first N —n+1 energy
states of the n-body reduced Hamiltonian (11). Notice
that relation (21) describes n-body correlations. For n =2
it reproduces Hall result [3] and for n ~N we come back
to the original N-body problem as well.

III. SOME APPLICATIONS OF THE HP FORMULA

As already mentioned, there are several exactly solv-
able one-dimensional N-body systems in which particles
interact through pair potentials. From these systems we
consider two of them, those with Calogero and those with
Sutherland pair interaction, respectively. They are
chosen because of their discrete spectrum.

The Calogero potential has the form

g2 2 2 4 2

Eo= N(N 1) —1+ + 1+
12m g2

A complete spectrum of the two-body reduced Hamil-
tonian with this potential is obtained in Appendix B as
well, and a lower bound on the ground-state energy Eo
reads

1V —1
EI = (N —4)(N —2)

mk 34

1/2
2 X N+—'(N —4) 1+ 1+

2 f2

N N

V; =
—,
' g —,'ma~ (x; —x ) +—'g

j j j J (x(' xj )

The exact ground-state energy is [7]
1/2

(22)
81 mug
2 A2

' 1/2
2m kg . . (27)

Eo= —,'A'co(N —1)&2N N+2+N 1+™ (23)
The ratio ED/El from (23) and (24) is (the C index
represents Calogero)

The lower bound on Eo that we found here is (Appendix
B)

N 1+ 1+ g
1/2

1/2

EL =Ace(N —1) + 1
2i, 9

1/2
1 2mgAX

(24)

ELC

&Y

N —4 1 2m'.g N
(28)

and from (26) and (27) (the S index represents Sutherland)

ELS

1/2
27k,N (N + 1 ) 2mg + 1+ 4mg

4 fi fi

X (N 4)(N —2)+ (—N —4) 1+ 1—+
2

1/2 1/2 —1

81 rnkg X 2m' X
fi

(29)

ELC
1+ 1+4

In the limit iV ~ ~
1/2

(30)

potential case [3], the inequality (5) is not satisfied if spin
states are not taken into account.

In addition, let us analyze the confining potential
[11,12]

&o

+LS

1/2
27k. 2mg 4mg

4 g2 g2
(31)

It is important to mention that, in contrast to harmonic

N
V= —,'y g /x; —x /, (32)

giving the discrete spectrum as well. Only the leading
term of the ground-state energy is known exactly [12],
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1/3

28

1/3

[I (
2 )]3N7/3 V
3 m

from the work [12], which is closer to the real value (33).
The value EL is a better estimate of the exact value (33).

' 1/3
f2 2

0 654~7/3 (33)

In Appendix B a lower bound, for large X, is determined,

IV. A PROBLEM WITH THREE-BODY FORCES

In this section we consider the one-dimensional X-body
problem with three-body forces. Assuming that poten-
tials in the Hamiltonian of the system (2) are [13,14]

= '"3"' 2
1/3

L 27/3

1/3
2=0.531

1/3
g2y 2

m

1/3
g2y 2

m

VJ =
—,'K(x; —x )

[(x;—xk )+(x —xl, ) ]

The Hamiltonian (2) now reads

(x;+x —2xk )

(35)

which is consistent with (33). Introducing the value
A, =—', we find EL =1.1447EL, where EL is the value

3 0 AB AB

(I;—I, )

l, j 2m% i,j,k

We choose matrix 8 in the form

(37)

1

v'4X S

1

v's x6

1

v'(N —1)N

1

v'N

1

v'2

1

v'2

1

v'2

1

v'4X S

1

v'sx6

0 — 0
2

1 1 —4
V'4XS v'4XS v'4XS

1 1 1

v'sx6 Vsx6 v'sx6
—5

v's x6
0

1

v'(N —1 )N

1

v'N

0

—(N —1)
V(N —1)N

Using Eq. (4), it is easy to show that

—3
2v'2

1

2v'2

1

2v'2

1

V4xS
1

v's x6

1

v'(N —1)N

1

v'N

1

2v'2

1

2v'2

1

2v'2

1

v'4X S

1

v'sx6

1

2v'2
—3

2V'2

1

2v'2

1

v'4xs
1

v'sx6

1

2v'2

1

2v'2
—3

2v'2

1

v'4X S

1

v's x6

—4 0/4xS
1 —5

v'sx6 v'sx6

1

vN

1 (N —1)—
v (N —1)N v'(N —1)N
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The expectation value (6) now becomes

&x~lH~lx&=(x —X &P P & x)+(x X +; x)+(x X + x)
l) J l, J l) J, k

&Xl(pi —p»'IX &+ &XI-,'N(N —1)I'i2IX&+ &Xl-,'N(N —1)(N —2) I'ip3 IX& .(N —1)
(38)

At this point we denote elements of the second and third
row of matrix B ' by A, ; and y, , respectively, i.e.,

m.,= gP;p;, m3= gy;p; .

I

where k =
—,'(3/4N —7 —1), or

Et = &K—/m (N —1)3/N/A, P3/4N —7

+3/I+2F +1] . (42)
Since in our case g; P; =0 and g; y; =0, it is possible to
define the two quantities

N
A,

—:QP3= —2 g P,.P. ,
l i,j =1

(L (j)
N

& =XX,'= —2 g );1, .
i j =1
(i (j)

From the definition of matrix B ' it follows that
A, =p =

—,'. The average values are

&xl~2lx&=~t&xlpilx& —&xlpi P2lx&]

&xl~3lx& =&M[&xlP&Ix& —&xlpi'P2lx&]

Then from (38) we have

&xlHlx&=N(N —1) [&xl~2lx&+&xl~3lx&]
1

4m A,N

+-,'[&xl«p )+ «p )lx&]

Therefore, the reduced Hamiltonian in the eigenvalue
problem (11) reads

8 0 K&=N(N —1) , +, +—(s»'+s '»
4m AN c)pz gp3 4

(N —2)f 1

(P2+P3)
(39)

The eigenvalue problem is solved in Appendix C. A
lower limit of energy is obtained using the formula (21)

N —2

=N —2 &'"' (40)

The quantity e„i is given in (C14). Performing a summa-
tion over the first (N —2) states, without spin degenera-
cy, we find

The leading term in the large-N limit for the lower bound
of the ground state is EL =(N /4)v'2fK/3

V. DISCUSSION

It is interesting to observe the N dependence of the
ground-state energy of one-dimensional systems, which
have been solved exactly so far. The power of N is
greater than 2. This means that they are not extensive.

Comparing the results, obtained by using the HP for-
mula, with those found by the DL inequality, it is noticed
that the former are closer to exact solutions. This is sim-

ply acceptable if we recognize that the Hall approach is a
kind of "optimization" procedure. For instance, the ra-
tios Eo/EL for HP and DL are 1.155 and 1.414 for har-
monic and 1.075 and 1.23 for confining potentials, respec-
tively.

The lower bound (42), which includes three-body
forces, depends on N, for large N, as N . Although the
exact solution is not known, we argue that the leading
term of the exact solution has the same N dependence.
Again it is found that this system is not extensive.

We emphasize that both inequalities HP and DL are
satisfied for Calogero and Sutherland potentials if only
spin states are included. Since ground-state energies, ob-
tained from antisymmetric wave functions in r space, are
the only ones available, we found "lower bounds" for
these potentials summing over symmetric spin states
(spin —,'). The bounds are definitely below the exact
values. This suggests that the spin states should be in-
cluded in future treatment of one-dimensional systems.
Furthermore, the same energy relation (21) is valid for
boson s.
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EL =alii/K/m VN/A,
4(N —2)

X [—,'k (k +1)(8k + 1)+(N —2)(3+V l+2F )],
(41)

APPENDIX A

In order to prove inequality (21), notice that the sum-
mation in (15) is taken over all states, and from (20) it fol-
lows that



2726 S. KILIC AND K. MIKELIC 48

iC, ['+5,=, 5, &0.

Then from (1S)

N —n+1
(Al)

00 N —n+1
b, =g g —5,X —

El +1

X —X5
„+2 X —n+1

where

1
QO OO

e; —g e;5;
N —n+2 i =1

OO N —n+1—5; e; — g e5i.
N- +2

N —n+1
1 1

N —n+1, N n+1—

=g(1 —1)=0 .

Since b, ~ b.„it follows that b, ~ 0 and from (Al), conse-
quently, the inequality (21).

Let us define a constant g, which satisfies

~N —n+1 —'g 6N —n+2 ~

and a quantity

APPENDIX B

In this appendix Eqs. (24) and (27) are proved first. We
chose the same matrix as Hall [3],

1

vN
1

v'2

1

v'2

1

v'3 x4
1

V'4x S

1

v'S X6

1

v(N —1)N

0

1

v'3 x4
1

v'4X S

1

v'S X6

0

—1

v'2

1

v'3x4
1

v'4X S

1

v'SX6

0

—3

v 3X4
1

v'4X S

1

v'S X6

0

—4 0v'4 XS
1 —5

v'SX6 V'SX6

0

0

0

0

1 (N —1)—
v (N —1)N v (N —1)N

and found

1

v'N
v'2

3
v'2

3

1

v'3 x4
1

v'4X S

1

v'(N —1 )N

1

—2v'2

3
v'2

3

1

V3 x4
1

v'4X S

v'2

3
—2v'2

3

1

v'3 x4
1

v'4X S

0

—3 0v'3 x4
1 —4

V'4XS v'4XS 0

1

vN

0

0

0

0

1 (N —1)—
v'(N —1)N V (N —1)N
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The two-body reduced Hamiltonian

d 1
&(pz) = (N —1) + N—(N —1)V(&2pz),

2m g dp2 for X odd and

. 1/3

(p„+p„)
m n=0

2

V( &2pz) = (3/2pz)'+
4 '

(&2p, )' (82)

(81)

where A, = 4, pz = ( 1/3/2)(x
&

—xz ), contains the potential

n=0 n=0

~2/3 2 g2 2
1/3 ' 1/3'

2 A m

(N —2) /2 (N —4) /2
x g p„+ g p„ (89)

or
2 2

V(&2pz) =
sin (3/2ax)

(83) 3~Pn= (n +—')'"
for N even, where for large X

2/3

(810)

for the Calogero and Sutherland cases, respectively. Now
we solve the eigenvalue problem 3~Pn=

2/3

(n + I )2/3
4 (811)

.&(x)P„(x)=e„P„(x). (84)

Equation (84) can be resolved for the potential (82) using
Calogero's result [7] for (N=2). In this particular case
the energy reads

E„=hen(N —1)

Summing (88) or (89), with (810) and (Bl 1), we produce
the bound energy (34).

APPENDIX C

x
2A,

1/2 1/2
1 2mg&
2 g2

+2n, (85)

In this appendix we solve the eigenvalue problem with
the Hamiltonian (39)

where n =0, 1,2,3, . . . . Eigenvalues of Eq. (84) for
Sutherland's potential are formally the same as in Ref. [5]
and we have

d d I'
2

—
2

+nz(x 2+y2)+, m= Eq (x),
dx dp (x +y)

(C 1)

2 2
1/2 2

1)A'a &+ 1 1+2mAg N + 1

mA, 2 fi 2

(86)

where in our case

z EmA, N mA, N(N —2) 4m'E= E .
3A A (N —1)

where I=0,1,2,3, . . . .
Knowing that the above energy spectrum corresponds

to the antisymmetric states in r space, let us suppose that
we deal with the particles of spin —,'. Therefore, spin
states are symmetric and each term has the triplet degen-
eracy. Summing over the first N —1 states, i.e., up to
(N —1)/3, we find Eqs. (24) and (27).

The two-body confining potential in our approach
reads

Introducing the polar coordinates

1x =r cos8= —(x —x )2 1

1
y =r sin6= —(x —x )2 3

we find

(C2)

V(3/2x) = y ix i
.

-V'2

2
(87)

a' 1a +0 r —c.
Br2 r Br

The spectrum of (84) for this potential, exploiting the re-
sults of paper [12], is given by

+
2

1 a'
1+sin28

Pn ~

Pn ~

~2/3
. 1/3

ez„=(N —1)
2 A, m

1/3
2 A'y'

e =(N —1)2n +1 2

'+
1+sin(28)

(C4)

Factorizing P=g(8)y(r) we get two independent equa-
tions:

where n =0, 1,2, . . . , and P„and Pn are the zeros of
derivative of Airy functions for even and odd levels, re-
spectively. Lower bounds are given by (5), i.e., where A is the separation constant. Equations (C4) and
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(C5) can be solved exactly. Furthermore, the solution of
Eq. (C5) is known [13],and the energy eigenvalue is

The complete solution of the Eq. (C8) is

H(z)= AH(5, P, y;z)
E =20(2n ++A+ I ), n =0, 1,2, . . . .

In order to solve (C4) we introduce a new variable

(C6)

where

+Bz ' rH (5+ 1 —y, P+ 1 —y, 2 —y;z), (C10)

z =
—,
'

[ I +sin(26) ],
by which (C4) is transformed into

5=a —2&A, P=a+ —,'&A;

y= —,'+2a .

(Cl 1)

(C12)

dz(1—z)
dz2

1 d
z

2 dz

F A+—(=0 .
Sz 4

(C7) The physical solution includes B=O and a positive sign of
a in (C9). To cut the infinite series of H we impose

Substitution g=z H(z) gives the hypergeometric equa-
tion

d d
z (1—z) + [2a+ —,

' —z (1+2a) ]
dz dz

5= —l, / =0, 1,2, . . .

or equivalently

v'A=21+ —'( I+&I+2F ) .

From relations (C2) and (C6) we find the energy

(C13)

A+ ——a 0=0,2

4
(C8) X —1 fie„i= 0[2(n+I)+ —'(3+&I+2F )],2m',

where n =0, 1,2, 3, . . . , 1=1,3, 5, . . .
(C14)

a= —,'(I+&I+2F ) . for indistinguishable fermions [14].
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