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Density-functional calculations of electric-dipole polarizabilities for atoms
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Static electric-dipole polarizabilities for closed-shell atoms and positive ions are calculated directly
from the ground-state densities of these systems. Calculations are performed using the variational prin-
ciple for the energy by making an ansatz for the change in the density when the atom is put in an electric
field. Since the energies are calculated from the density, the kinetic and the exchange-correlation ener-
gies have to be approximated. The exchange-correlation energy is taken within the local-density approx-
imation. To calculate the changes in the ground-state energies accurately, we suggest the use of a
kinetic-energy functional of the density which is particularly suited for such situations where the
changes in the energy are of importance.

PACS number(s): 31.20.Sy, 31.20.Lr, 31.10.+z

In this paper we present an alternative approach based
on density-functional theory [1] to calculate electric-
dipole polarizabilities of atoms and ions. In this ap-
proach only the ground-state density of the system of in-
terest is required as an input for calculating this quantity.
As such our approach is different, and numerically easier,
than the usual single-particle orbital theory methods.
Whereas these methods obtain the changes in the
ground-state density and energy by erst calculating the
perturbed orbitals, we calculate the induced density
directly using the variational principle for the energy.
However, if the density is used for calculating energies,
the kinetic energy and the exchange-correlation energies
can be treated only approximately. We treat the ex-
change and correlation within the local-density approxi-
mation (LDA) [1]. The kinetic energy, on the other
hand, is a major component of the total energy, and
therefore one has to be more judicious in choosing which
of the many available functionals to use. We will discuss
this later in the paper. In the following we begin with a
brief review of the perturbation theory approach to cal-
culating the electric-dipole polarizabilities within the
single-particle picture of the LDA Kohn-Sham approach
[1]. For details the reader is referred to the book by
Mahan and Subbaswamy [2]. We then discuss our
method and demonstrate its accuracy by applying it to
spherically symmetric atoms and positive ions within the
LDA [1] for the exchange and correlation. The results
obtained compare well with those obtained [2] by the
time-dependent local-density-approximation (TDLDA)
calculations. We conclude with a discussion of the possi-
ble extension of the method to calculating higher-order
polariz abilities.

In the Kohn-Sham formalism, a system of X interact-
ing electrons in an external potential V,„,(r) is replaced
by a system of N noninteracting fermions moving in a lo-
cal effective potential comprising the Hartree potential
and the exchange-correlation potential. The single-
particle orbitals of these noninteracting particles are ob-
tained by solving the Kohn-Sham equation (atomic units
are used throughout the paper)

VH(r)= f P, dr'H (2)

and the exchange-correlation potential is given as

5E„,[p]
V„,(r) =

where E„,[p] is the exchange-correlation energy func-
tional. Since the exact expression for this functional is
not known, one usually makes the LDA for the exchange
and correlation. In this approximation the exchange-
correlation energy is calculated by treating each point in
the electron gas as homogeneous with the local density.
The total ground-state energy is calculated as the sum

T, [p]+fp(r) V,„,(r)+EH [p]+E„,[p), (4)

where

is the noninteracting kinetic energy and

is the Hartree energy. The exchange energy within the
local-density approximation is given in terms of the den-
sity as

where

LDA[p] fp(r)Ehom(r)d (7a)

shorn d p1/3(r)

[ —
—,'V + V,„,(r)+ VH(r)+ V„,(r)]P;(r) =E;P,(r),

where VH(r) is the Hartree potential and V„,(r) is the
exchange-correlation potential. The orbitals y;(r) them-
selves have no meaning but lead to the ground-state den-
sity p(r) of the interacting electronic system via
p(r)=g;lp;(r)l . The Hartree potential is obtained from
the density by
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(r)=c (1+x )ln 1+—+ ——xhorn 3 1 x q 1

x 2 3
(Sb)

with c = —0.0333, x =r, /2, 3 =11.4, and where
r, = [3/4mp(r)]' is the local r, value.

Now if the system is put in a weak external electric
field 8 in the z direction, the external potential changes
to V,„,(r)+6'r cos8. This induces a change in the orbit-
als and therefore in the density. The change in the densi-
ty also makes VH(r) and V, (r) difFerent from the origi-
nal problem. As such the new Kohn Sham equation is

[ —
—,
' V + V,„,(r)+ 6'r cos8+ VH(r)+5VH(r)

with do = —
—,'(3/ir)' . For the correlation energy we use

the Gunnarsson-Lundquist [3] formula in which the
correlation energy is given as [1]

E, [p]= Jp(r)s,"' (r)dr, (&a)

where

simplest possible change in this density is that the elec-
tronic distribution shifts rigidly in the direction opposite
to that of the field so that

p'(r) =p(r)+ah'. Vp

to the first order in e. Here a is a constant which gives
the amount by which the density shifts. Thus we see that
in this case the induced density is proportional to the gra-
dient of the density. As such we may expect that in the
general case too, the induced density would have a factor
proportional to the gradient of the density. The question
is whether it can be represented by a simple form such as
that of Eq. (13). As we discuss below, the induced density
can indeed be assumed, at least for spherical systems, to
be a simple function involving the gradient of the density.
This is indicated by the calculation for the hydrogen
atom [4]. To the first order in @, the induced density in
the hydrogen atom is given as

p'" (r) =p'(r) —p(r)

+ V„,(r)+5V„,(r)](P;+5/;) =(s;+5m;)(P;+5/, ), = —(2r +r ) 6'p(r )cos9 . (14)

where 5VH(r) and 5V„,(r) are the changes in the Hartree
and the exchange-correlation potentials, respectively.
This equation is to be solved self-consistently up to the
desired order to obtain the new perturbed orbitals
y;(r)+5@;(r), which lead to the new density p'(r) and
energy E'.

The new ground state energy E' can be written as a
power series in 8 with the zeroth order being the unper-
turbed energy. For systems for which the first-order
change in the energy vanishes (systems of interest in this
paper), it is given to 0 ( 6 ) as

However, for the hydrogen atom, p(r) is proportional to
~ Vp( r)

~
so that (14) can be rewritten

p'(r)=p(r)+(ar +br )6 Vp(r). ,

where a and b are two constants. Now Eq. (15) has an in-
terpretation similar to that of Eq. (13). It represents a
distortion in the density as if locally the density contours
are being shifted in the direction of the field by
(ar +br ). On these physical grounds, we now assume
that for any spherical system in general the new density
can be written as Eq. (15) with (ar +br ) replaced by a
more general distortion function b, (r) so that

E'=E —
—,'a6'2, (10) p'(r) =p(r)+6(r)A. VP(r) . (16)

p, = z p'r —pr dr (12)

is the induced dipole moment.
The purpose of present work is to calculate u directly

from the density without getting involved with the orbit-
als. The question then naturally arises whether we can
easily calculate or approximately represent the induced
density in terms of the known ground-state density when
the system is put in an external field. Furthermore, in or-
der for the differences in the total energy to be obtained
accurately, we need a kinetic-energy functional of the
density which gives the change in the kinetic energy ac-
curately when the density is changed. In the following
we first discuss how to obtain the induced density accu-
rately in terms of the ground-state density.

Let us consider a distribution of electrons described by
the density p(r). When subjected to an electric field, this
distribution changes to a new one given by p'(r). The

where o; is the static electric-dipole polarizability. It is
related to the change in the density by

a=p, /6,
where

T, [p]=Tw[p]+f (N)Trp[p],

where

(17)

The function h(r) is to be so chosen that the integral of
the induced density vanishes. For spherically symmetric
systems considered in the paper, this is guaranteed with a
function that depends only on r. We also assume that the
next-order correction to the density is negligible.

Now the procedure is to calculate the change in the to-
tal energy in terms of b, (r) and minimize this change with
respect to variations in it. The difference in the two
ground-state energies thus obtained leads to o. via Eq.
(10). This brings us to the question of obtaining the ener-

gy changes accurately which we now discuss.
Changes in the external energy, Hartree energy, and

the exchange-correlation energies (within LDA) can be
calculated directly from their expressions above in terms
of the density. For kinetic energy, however, there exist
many functionals [1] which give the total kinetic energy
in terms of the ground-state densities quite accurately.
The question arises as to which of these functionals be
used to give the change in the kinetic energy accurately.
For this purpose we use the functional [5]
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T~[p]=—f drl~p(r)l'
8 p(r)

is the von-Weizacker functional and

(18)

&rF [S ]=cofV'"(r)« (19)

with co= —,
' (3m )

~ is the Thomas-Fermi kinetic energy.
In this functional the von-Weizsacker term is used as the
zeroth-order term, and thus it is different from the gra-
dient expansion [6] based functionals for the kinetic ener-
gy. The factor [7]

f(N)= 1 ——2 Aq1— + (20)

is used with the optimized parameters 3& =1.314 and
Hz=0. 0021 [8]. This kinetic-energy functional is used
because Tz (T~F) represent accurately the changes in
the kinetic energy of a homogeneous electron gas in the
limit of it being put in a rapidly (slowly) varying perturb-
ing field [9,10]. Thus an optimized combination of the
two can be expected to give accurately the change in ki-
netic energy of a system when it is subjected to a perturb-
ing Geld. Furthermore the functional is exact in the limit
of one- (in spin-polarized form) and two-electron systems.

Before going to the application of the method dis-
cussed above, we wish to note that, in the past, similar
variational procedures, although in terms of the orbitals,
have been applied [11] to calculate the dipole and quad-
rupole polarizabilities of atoms and ions. Although these
calculations are quite easy for one- and two-electron
atoms and ions, they become rather complicated as the
number of electrons increases. Not only does the number
of variational parameters increase with the orbitals, in-

elusion of self-consistency also becomes quite difticult
[12]. On the other hand, if the density is used instead of
orbitals, the number of parameters remains the same ir-
respective of the number of orbitals needed to describe
the system.

We now apply the method above to spherically sym-
metric atoms and positive ions. For the choice of 4(r),
we have again taken the cue from the hydrogen-atom
problem and chosen it to be a polynomial of the form
ar +br + . The change in the energy in presence of
an external field is minimized with respect to the parame-
ters a, b. . . . If the variational procedure outlined above
is to be meaningful, the value of the dipole polarizability
must converge as the number of parameters is increased.
This is indeed seen to be the case.

In Table I the values of a obtained by employing two,
three, and four parameters in the function b, (r) for vari-
ous atoms and ions are shown. The unperturbed
ground-state density employed is that obtained by solving
the Kohn-Sham equation with the Gunnarsson-
Lundquist exchange-correlation energy functional. Also
shown are the values obtained with the perturbation
theory approach of TDLDA and the experimental polari-
zabilities. As is clearly shown, the values of a obtained
converge to a particular value as the number of parame-
ters is increased. Thus a three-parameter calculation is
sufhcient for the calculations as the inclusion of the
fourth parameter does not change a much. The values
thus obtained for a are quite accurate in comparison to
the TDLDA values. Furthermore the large variation of
polarizabilities from one atom to the other is correctly
reproduced. For the helium atom, for which the kinetic-
energy functional is exact, the polarizability is most accu-
rate. For most of the other atoms, the estimate is within
10% of the TDLDA values. This points to the correct-

TABLE I. Values of static dipole polarizabilities (in atomic units) as calculated with di6'erent num-
ber of parameters. Values obtained within time-dependent local-density approximation (TDLDA) and
experimental polarizabilities are also given.

Atom or ion

He
Ne
Na
Mg +

Ar
K+
Ca +

CU
Zn2+

Kr
Rb+

2+

Ag+
Cd +

Xe

'Reference [2].
bReference [12].
'Reference [13].

ar +br

1.63
2.91
1.26
0.66
8.45
4.56
2.77
2.56
1.49
7.43
4.67
3.23
3.67
2.54
9.27

ar+br +cr'

1.63
3.28
1.30
0.66

11.27
5.44
3.13
5.17
2.28

16.17
8.58
5.34
7.48
4.36

25.26

ar+br +cr'+dr

1.63
3.29
1.31
0.66

11.44
5.60
3.25
5.17
2.29

16.35
8.83
5.58
7.50
4.36

25.28

TDLDA'

1.66
2.99
1.07
0.51

11.80
5.70
3.34
7.68
2.85

17.70
9.41
5.95
9.93
5.30

28.77

Expt.

1.35'
2.66'
1.00'
0 49'

11.08'
5 47'
3.26'

16.75'
9.25
5.67'

27.29'
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ness of the ansatz for the form of induced density and the
accuracy of the kinetic-energy functional used. There is a
possibility that the factor f (N) in Eq. (19) may be
different [1] for the positive ions. This is indicated by the
deviation of a calculated with the present method from
the TDLDA numbers for the positive ions.

We conclude that a physical picture which represents
the induced density in the presence of an external field as
a local shift of the density leads to accurate estimates of
the electric-dipole polarizabilities of atoms. This ap-
proach is also intuitively appealing. Numerically, the
present method is comparatively easier to apply. Thus it
may prove useful for quick and accurate estimates of po-
larizabilities. Of course, to get the exact results within

the LDA, one must solve the TDLDA equation.
For the future work, we wish to investigate the possi-

bility of extending the present approach to calculate
higher-order polarizabilities of simple systems. This
should be possible by expanding the density further to in-
clude higher-order corrections to the density. Also we
would like to investigate if this approach can be applied
easily to more complex systems which are not spherically
symmetric.

I thank Selvakumar Nair for discussions and com-
ments on the manuscript. I also thank Dr. Kailash Rus-
tagi for encouragement.
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