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Atomic efFects on the ft value for tritium P decay
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The atomic effects on the P-decay ft value of tritium are discussed for three atomic systems:
the tritium atom and the ions T+ and T . The efFect of exchange between bound and continuum
electrons in the decay of the tritium atom is shown to lead to an increase in the phase-space integral
f by 0.15% relative to the f value for T+. This corrects an error in earlier work which suggested
that the inclusion of exchange effects led to a decrease in the f value for this decay. Differences in
atomic-electron screening between the T atom and the T+ ion are shown to lead to a reduction in f
for the T atom by 0.41%, significantly larger than previous estimates of screening effects on f The.
combined atomic effects are shown to lead to a difference in f between T+ and the T atom of 0.30%.
The effect of these changes in f on a recent evaluation of the ratio of the weak-interaction coupling
constants, G~/Gv, is discussed.

PACS number(s): 31.20.Tz, 23.40.Bw, 23.40.Hc, 27.10.+h

I. INTRODUCTION

The tritium atom is the simplest atomic system in
which atomic effects enter the P-decay process. These
atomic effects may modify the P-spectrum intensity, and
thereby the decay constant for emission of P particles,
by changing the energy available for the decay (the end-
point-energy efFect), by changing the screening of the
P-particle wave function by the atomic electrons (the
screening effect) or by modifying processes in which the
P particle exchanges with atomic electrons (the exchange
effect) [1, 2]. The atomic effects in certain regions of the
tritium P spectrum have been extensively investigated in
the context of experiments attempting to measure or set
limits on the mass of the electron antineutrino emitted
in the P-decay process. The distortion due to atomic ef-
fects must be removed before any further distortion due
to antineutrino-mass effects can be inferred. Thus the
region near the maximum P-particle energy (end point)
has been examined in order to set limits on the antineu-
trino mass of the order of tens of eV [3—8] while the low

energy part of the P spectrum (in the region of order 1
keV) has been examined following claims that antineu-
trinos of mass 17 keV may be emitted in a small fraction
of decays [9, 10].

Unfortunately, the atomic effects on the ft value do
not appear to be fully understood yet, even for the sim-
ple case of atomic tritium decay. A calculation of atomic
effects in this decay has been reported in [11]. However,
a number of approximations employed in this work merit
further examination. For instance, in [11] the exchange
effect was found to lead to an inhibition in the decay rate.
However, we have recently shown that exchange between
bound and continuum electrons necessarily leads to an
enhancement of the P spectrum in the final state having

the same electronic configuration as in the initial state
[2]. Furthermore, the expression given in [ll] for the
ratio of bound to continuum decay ignores nonorthog-
onality effects between initial and final states as well as
electron-electron interactions in these states, and also as-
sumes a plane-wave expression for the continuum wave
function. The latter approximation alone is in error by
approximately 50%. Finally, as we show below, the effect
of atomic electron screening of the P-particle wave func-
tion has been significantly underestimated in this earlier
work. Thus, one motivation for the present study of tri-
tium decay has been to clarify the atomic effects in this
simple but important case, using a description of atomic
effects developed for more general many-electron systems
[1 2]

The ft value of tritium is also of interest in connec-
tion with the extraction of the ratio of G~/Gv, the ratio
of axial-vector to vector weak interaction coupling con-
stants, from experimental data on the tritium P spec-
trum. In several recent articles, Budick [11—13] has dis-
cussed the ft value for this decay and used a measure-
ment of the end-point energy for the decay, in combina-
tion with an improved theoretical result for the Gamov-
Teller matrix element, to obtain a value for the ratio
G~/Gv. =l.259 + 0.002. This method of calculating the
ratio of coupling constants requires the phase-space inte-
gral, f, to be defined accurately, to within approximately
0.2'. Since the end-point energy, Eo, of this P decay is
relatively low (Ep=18.6 keV), atomic efFects may infiu-
ence f at a level ranging from a few tenths of a percent
to one percent, depending on the particular atomic state
and thus, given the quoted error in the ratio G~/Gv,
these effects need to be taken account of in the calcula-
tion of f

In this article we thus reexamine atomic effects on the
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decay rate of tritium. Three atomic systems are studied
in detail: the neutral tritium atom and the ions T+ and
T . In each case the atomic effects on bound-state de-
cay, screening, exchange, and the end-point energy are
considered.

II. BOUND-STATE DECAY

Wp ——Wg —Wg + W~ —W~, (2)

where Wq and W~~ are the total energies, including rest
mass contributions, of the initial and final nuclear states
and TV~ and W~ are similarly the total energies of the ini-
tial and anal atomic states of the ion undergoing bound-
state P decay. In Eq. (1), A~ is the decay amplitude

I

In the process of bound-state decay, the final electronic
state contains only bound electrons so that no P particle
emerges from the atom and the antineutrino carries away
all the excess decay energy. It is convenient to express
the bound-state-decay contribution as a ratio of bound
to continuum decays since the nuclear matrix elements
cancel leaving a ratio of purely lepton factors. We have
previously presented [1] a general expression for the ratio
of bound to continuum decay (A~ /A, ) for an allowed P
transition of a general N-electron initial atomic state to
a final (N + 1)-electron state p'. If all quantities are
expressed in relativistic units this ratio is given by

A~ ~Wp A~
2

A, 2f
Here A~~ is the decay constant for bound-state decay to
the electronic state p', A, is the continuum decay con-
stant, f is the phase-space integral for the continuum
decay of the neutral atom, and Wp is the energy of the
antineutrino emitted in the bound-state decay of the ion.
This energy is given by

for the bound-state decay of the ion, defined explicitly in
[1]. For tritium decay, creation into s orbitals only need
be considered because the components of the orbital ra-
dial wave functions associated with creation into orbitals
with l P 0 are negligible in comparison. For decay of the
bare tritium nucleus the dominant p' states are thus of
the form He+ nsi. The decay amplitudes to these states
are

A„,i = [P„,(R)/R],
where P„,(R) is the large component of the radial wave
function for a final-state s orbital evaluated at the nuclear
radius R. The calculation of the phase-space integral
requires the sH-sHe nuclear mass difference to be defined
precisely. In this work this quantity has been taken to
be 18.259 eV [14], yielding a phase-space integral equal
to 2.86 x 10 s. The one-electron final-bound-state wave
functions are well-known analytic functions. Substituting
into Eq. (1) and summing over all ns final states yields
a value for the total ratio of bound to continuum decays,
Ab/A„of 1.08%, in good agreement with the value of
1.1% obtained by Tikhonov and Chukreev [15] and 1.03%
obtained by Budick [11].

For decay of a neutral tritium atom with the configu-
ration ls, the dominant final atomic states are the He
ls2 state and the states of the form He lsinsi. For the
He ls state, the decay amplitude is

Ai, ~ ——~(He ls~T ls) [Pi,(R)/R],

where the quantity (He ls
~

T ls) denotes a one-
electron overlap between an initial-state ls orbital and
a final-state ls orbital in the neutral He atom. The final-
state configuration ls nsi defines two electron states
having two possible values of the total angular momen-
tum (J=0,1). The decay amplitude obtained by sum-
ming over the contributions from both these J states is

Ai, i„,i = R ((He ls~T ls) P„,(R) —(He ls~T ls)(He ns~T ls)P„,(R)Pi, (R) + (He ns~T ls) Pi, (R)). (5)

TABLE I. Radial wave functions and orbital overlaps involving He~ final-state bound wave
functions. P„,(R) is the large component of the radial wave function for an orbital of He~ i,
evaluated at the nuclear radius, B.

Orbital ns P„,(R)/R (He ns
~

T ls) (He~ ~ ns
~

T ls)

ls
2s
3s
4s
Gs

6s
7s
8s
9s
10s

5.6167
0.9102
0.4674
0.2946
0.2069
0.1555
0.1222
0.0994
0.0828
0.0704

+0.84093
-0.36557
-0.14054
-0.08204
-0.05582
-0.04125
-0.03213
-0.02596
-0.02144
-0.01825

+0.66150
-0.69521
-0.37489
-0.28643
-0.23626
-0.20310
-0.17925
-0.16112
-0.14642
-0.13509
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TABLE II. Ratios of bound to continuum decay, A~I/A„
for the most important final atomic final states, p', produced
by bound-state decay of the tritium atom in its ground state,
1s . The direct and exchange terms and decay amplitudes
are defined in the text. The total amplitude is obtained by
summing over all the final states described in the text and thus
includes small contributions from excited states not shown in
the table.

State

1s
1s 2s
1s 3s
1s'4s'
1s'5s'
1s 6s
1s 7s
1s'8s'
1s'9s'
1s 10s

2s
2s 3s

Direct
term
(a.u.)

11.1553
0.5858
0.1544
0.0614
0.0303
0.0171
0.0106
0.0070
0.0048
0.0035
0.0533
0.0292

Exchange
term
(a.u. )

5.788
0.9334
0.3264
0.1528
0.0840
0.0511
0.0334
0.0231
0.0166

-0.0055

Amplitude
A~ (a.u. )
11.1553
6.3740
1.0878
0.3878
0.1831
0.1011
0.0617
0.0404
0.0279
0.0201
0.0553
0.0237

A~~/A,

(%)
0.315
0.180
0.031
0.011
0.005
0.003
0.002
0.001
0.001
0.001
0.002
0.001

Total 0.554

In this study, the Oxford Dirac-Fock computer pro-
gram, GRAsp [16], has been used to compute the wave
functions for the initial and final states and hence
the decay amplitudes. The final states considered
were He 1s y18 28

y &1s 10s y28 y2s 38
y y2s 10s

and 3s2. Values of the radial wave functions evaluated
at the nuclear radius, P~, (R), and the orbital overlaps
(He( ) ns

~

T ls) are shown in Table I. For convenience
in the following discussion, the first term in bold paren-
theses in Eq. (5) will be called the direct term while the
second and third terms in bold parentheses in Eq. (5)
will be referred to as exchange terms since they involve
exchange of an ns electron with a 1s electron. It should
be noted that these exchange terms which involve two
bound electrons are different from the exchange terms
discussed below in Sec. IV, which involve one bound
and one continuum electron. Values for the direct and
exchange terms together with the associated decay am-
plitudes and bound to continuum decay ratios are shown
in Table II for the most important of these states. The
1s2 final state is seen to give the largest single contribu-
tion to the bound-state decay but the contribution from
excited states is of comparable magnitude. Furthermore,
the exchange terms in bound-state decay to excited fi-
nal states are seen to make a significant contribution
to the decay amplitude for these states. Such exchange
terms would be zero if there was perfect orbital orthog-
onality between initial- and final-state orbitals. Sum-
ming over all the final states gives Ag/A, =0.55%. This
may be compared with two previous calculations of the
bound to continuum decay ratio in tritium, one by Sherk
[17] giving Ab/A, =0.56% and one by Baheall [18] giving
At, /A, =0.69%. The apparent agreement with Sherk's re-

suit is due to a fortuitous cancellation of large errors in
the latter work. Thus Sherk's calculation neglected the
lack of orthogonality between initial and final states and
also ignored decays to excited atomic states which have
been shown to constitute more than 40% of all bound-
state decays. Furthermore, Sherk's approach assumed a
plane-wave form for the continuum electron wave func-
tion which enters the phase-space integral, leading to an
underestimate of f by approximately 50%. Bahcall's cal-
culation included orbital nonorthogonality effects and de-
cay to excited final states, but ignored the final-state in-
teraction between the two bound electrons so that the
electron wave functions were assumed to be orbitals of
the one-electron atom He+.

Now we consider the bound-state decay of the ion T
Such decay would lead to a He ion. No bound states,
containing only 8 electrons, are known to exist for this
ion. A metastable ion with the configuration lsi2s 2p
has been observed experimentally [19], but the presence
of the p electron means that it would be produced with
extremely small probability in P decay of the T ion in its
ground state Is~. In decay of the T atom, creation into
continuum p final states occurs in only approximately
0.005% of all continuum P decays. In view of this it
would seem that bound-state decay of T to final states
containing p electrons should also have a low probability
compared with the bound-state decay to s states in the
T atom. Therefore we conclude that Ag/A ( 0.01% for
T . This conclusion is different from that arrived at by
Budick [ll], who estimated Ai, /A, =0.47% in T . This
latter calculation did not consider explicit wave functions
for T final states. Instead, the bound-state decay rate
in T was calculated from an approximate expression
derived originally [17] to calculate the bound-state decay
rate of the tritium atom and which would seem to have
no validity for the T ion.

III. SCREENING

The screening efFect of the atomic electrons on the P
spectrum has been discussed by a number of authors
[20—22, 1]. According to Rose [20] the effect of the atomic
electron distribution in the final state can be taken ac-
count of by evaluating the Fermi function at a shifted
energy (W —V, ) where the quantity V„ the screening
potential for a final state, is equal to the magnitude of
the interaction between a unit charge at the origin and
the charge distribution due to the atomic electrons in a
given final electronic state. This approximation for the
screening effect, which is based on the WKB approxi-
mation, tends to become less valid as the nuclear charge
increases. However, comparison of screening effects cal-
culated with continuum wave functions evaluated by fit-
ting to Hartree-Fock atomic potentials [21] with screen-
ing effects obtained using the WKB approximation in-
dicates that, for a low-Z decay such as that of tritium,
the WKB method works well and reproduces the screen-
ing effects on the phase-space integral to within the ac-
curacy required here (approximately two significant fig-
ures). Hence in the following the Rose WKB method is
used to evaluate the screening effects on the phase-space
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integrals.
It is convenient to consider an average final-state

screening potential, obtained by weighting the screen-
ing potentials for each final state in proportion to the
probability of production of each final state [23, 1, 24].
This average final-state screening potential for decay of
an N-electron initial state is then given by

(6)

where p defines the inital state of the N atomic electrons.
For decay of the tritium atom, the final p states are one-
electron He nsi states and the screening potentials are
easy to compute for each state from the hydrogenic wave
functions. This yields V, =41.7 eV, in agreement with the
value obtained by Budick. Evaluation of the phase-space
integral with this value of V, yields the result that the
effeet of screening leads to a fractional change, 6f/f, in
the phase-space integral of —0.41% . In this and subse-
quent sections the values of the fractional changes, 6,f/ f,
are defined to be positive if the associated atomic effect
increases the f value relative to that for the T+ ion.
The magnitude of this result for the T atom is signifi-
cantly larger than the value of 4f/f = 0 22Fo —obt. ained
by Budick [11].The latter result was based on a numeri-

cal result 7 &v
———0.0055% per eV obtained previously] Bf

s

by Bergkvist [23]. It would thus seem that Bergkvist's
partial differential with respect to U, implies screening
effects which are too low by a factor of about 2. This
conclusion is supported by a calculation by Alder, Bauer,
and Raff [25], who obtained a result of 4f/f = 0.275Fo-
based on a final-state screening potential of 27.21 eV.
Scaling this result for V,=41.7 eV yields a screening ef-
fect of b,f/f= 0 42% in —rea. sonable agreement with the
result obtained above.

For decay of the ion T, the dominant p states are
states of the neutral He atom with configurations ls~
and 1sinsi Value. s of the screening potentials, V, (p),
for various final states, calculated using wave functions
obtained with the Oxford Dirac-Fock program are shown
in Table III, together with values of the squared over-
laps (He p~ T 1s) . The ground final state ls2 gives the
largest single contribution to the sum over p in Eq. (6).
However, contributions from the 1s 2s~ and 2s states
are non-negligible. The average final-state screening po-
tential is found to be 37.8 eV. Evaluating the phase-space
integral with this value of V, yields b.f/f = —0.45% for

I

TABLE III. Screening potentials V, (p) for the dominant
final states produced in continuum P decay of the T ion.
Each atomic state, p, is a two-electron state of He~ ~ and
is produced with a probability given by the squared overlap
(N, p~N, p) .

Final state

ls
s'2s'

ls 3s
ls'4s'
ls'5s'
ls 6s
ls'7s'
ls 8s
ls'9s'
ls'los'

2s
2s 3s
2s'4s'
2s'5s'

3s

(NpfNp)

0.19147
0.21149
0.00227
0.00143
0.00070
0.00039
0.00024
0.00016
0.00011
0.00008
0.23359
0.00250
0.00158
0.00077
0.00003

V (V)
(eV)

108.07
61.837
57.349
55.856
55.188
54.826
54.612
54.474
54.380
54.314
15.605
11.117
9.625
8.953
6.629

(NEIN~)'V (~)
(eV)

20.692
13.078
0.130
0.080
0.039
0.021
0.013
0.008
0.006
0.004
3.645
0.028
0.015
0.007
0.000

T, close to the value for the T atom. By consider-
ing just one final state and assuming a simple product
of hydrogenic wave functions to describe the helium or-
bitals, Budick [11] obtained a value of 63 eV for V, and
b,f/f = —0.35%. This latter result again assumed the
numerical relation given in [23] involving the partial dif-
ferential of f with respect to V, which has been shown
to give results which are a factor of 2 too low.

IV. EXCHANGE

The nonorthogonality of initial- and final-state wave
functions allows electrons to be shaken off in the decay
process. It is thus possible for a final state containing a
continuum electron to arise by creation of the electron in
a bound orbital with simultaneous shakeoff of a bound
electron into the continuum. Such a process is termed
exchange decay in contrast to the direct decay process in
which a P electron is created directly into a continuum
orbital. In the T+ ion, such exchange effects are absent
since there are no atomic electrons. For the tritium atom,
the intensity of the P spectrum at an energy E, including
exchange, can be written [2]

= K- —[Ee —E] [(He A~T ls) P~, (R) —(He A[T ls)(He Es~T ls)P@,(R)P~(R)+ (He Es~T 1s) P~(R)],
p A

where W = E+tnc~ is the total p-particle energy, p is the
P momentum, Ee is the average end-point energy, and K
is a constant. The contribution from final states con-
taining an Ep electron is of the order of 0.005% of the
total intensity and has been neglected for convenience.
The summation integration in Eq. (7) arises from con-

sidering the contributions to the P-decay rate from all
possible two-electron final states of the form AEs. Thus
the summation includes terms in which A is a bound ns
orbital (n=1,2, ...) and also terms where A is a contin-
uum orbital, in which case the integration is over the en-
ergy of this second continuum electron. In the following,
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shell exchange factors discussed in [2] since in the latter
work the focus was on exchange in medium- and high-
Z decays in which only one final state of the s and p
electrons dominates. This state has the same s and p
occupation numbers as in the initial state and is pro-
duced with greater than 99.9% probability in decays of
medium- and high-Z atoms, and thus exchange in final
states with excited s and p electrons is negligible. How-
ever, this single configuration of the s and p electrons
gives rise to a number of nonzero exchange terms involv-
ing different s (or p) subshells since, for medium- and
high-Z atoms, there will, in general, be a number of such
subshells which are occupied in the initial state. In the
present case of tritium decay, in which the nuclear charge
is low, the final p states which contain an excited s elec-
tron are produced in approximately 30%%uo of decays and
it is therefore necessary to explicitly take into account
exchange efFects in these excited states. However, there
is only one (ls) electron in the irutial state and thus for
each excited state there is only a single exchange term.

It is convenient to define exchange contributions to the
phase-space integral, f,"„' and f;ont, through

these two contributions will be considered separately. In
Eq. (7) (He A~T ls) is an overlap integral between a ls
orbital of tritium and an orbital A of the helium atom in
a final state having the configuration AiEs . Exchange
in final states ArEPr is ignored since these final states
give only a very minor contribution to the total decay
rate for tritium decay.

If exchange eKects are ignored then the terms in Eq.
(7) which involve the quantity P~(R) vanish. Then using
orbital closure [1] yields the standard result for the P
intensity calculated ignoring exchange efFects (indicated
by the superscript NE)

= KPEs (R)—[Eo —E] (8)

Combining Eqs. (7) and (8), the phase-space integral
including exchange can be written

I ) .n.".'(E)+X.-."'(E) IdE. (9)

Here i7As(E) represents the distortion of the p spectrum
at the energy E due to exchange in the ns final state and
is given by ( E dINE

vg„'(E) dE dE
i

Z=O
fAS

rl,"„'(E)= —(He Es~T ls)(He ns~T ls) P„,(R)
PEs R

+ (He Es~T ls)
PE, R

(13)

(10) and

Eo dlNE Eo dINE
y,"„"t(E)dE

~

dE
E=O lEodEjfcontIn Eq. (9) y',n"t(E) yields the modification to the phase-

space integral due to the presence of a second contin-
uum electron in final states of the form E'sEs in which
there are two continuum electrons with energies E and
E'. From Eq. (7), y,'„"t(E) is given by

(14)

The quantity f,"„' represents the fractional change in the
phase-space integral for the decay as a result of inclusion
of exchange efFects in the final states ns Es . The quan-
tity f;o"t represents the fractional change in the phase-
space integral as a result of inclusion of exchange eKects
in all final states of the kind E'siEsi containing two
continuum electrons.

In this work we have used hydrogenic wave functions to
compute the radial wave functions and overlaps in Eqs.
(10) and (12). In this case the overlaps can be expressed
in a simple analytic form as described in [2]. Figure 1
shows the quantities rg„'(E) (for n = 1, 2, and 3) and
y',"„t(E) in the range 0.5—3 keV, together with the sum
of all these factors, y+ (E), given by

&max
+cont (E) P(E, E') dE',

/ p

with re(E, E') given by

P(E, E') =
~

—(He Es~T ls)(He E's~T ls) PE, (R)
Es

+(H. E.[T 1.) (12)

X..(E) = ).n.".'(E) + &.-."'(E). (15)

The ls state exchange factor is positive over the whole
spectrum, whereas all the excited bound states give nega-
tive exchange factors. The values for the 1s, 2s, and 3s ex-
change factors and continuum exchange factors at 1 keV
are +0.174'%%uo, —0.036%%uo, —0.005%, and —0.011'%%uo and may
be compared with the values of +0.19%%uo, —0.04'%%uo, 0.00%,
and —0.04'%%uo implied in Table I of [9]. Figure 2 shows the
quantity y~+ (E) for the whole energy range from zero to
the end-point energy. Integrating over the P spectrum

The factor of W'/c2p' arises from the density of states of
the continuum electron with total energy W' = E'+ mc
and momentum p'. In Eq. (11) the quantity E „, the
upper limit on the E' integration, arises from the need
to avoid double counting of the states with two contin-
uum electrons and is given by E~n„= E if E ( s Eo and
E~~„=Eo E if E & s Eo. T—hus yce„"'(E) does not rep-
resent the modification to the P intensity at the energy
E due to exchange effects in states with two continuum
electrons since, in the latter case, final states with con-
tinuum electrons with energies E and E' may contribute
to the P intensity at both energies, whereas such states
make only a single contribution to the final-state sum-
mation in f

It should be noted that Eq. (10) differs from the sub-
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FIG. l. Energy dependence of the exchange factors
rg„'(E) (n=1,2,3), g',„"'(E),and g,„(E) in the energy range
0.5—3 kev for decay of T

according to Eqs. (13) and (14) yields the exchange con-
tributions shown in Table IV. The contribution from
exchange in the ls final state dominates but exchange in
other final states, including states with two continuum
electrons, is non-negligible. Summing over all final states
yields a total exchange contribution of 0.153'%%uo, indicat-
ing that the inclusion of exchange enhances the overall
P-decay rate.

Budick [11] has previously calculated the exchange ef-
fect in tritium decay and reported a value of —0.15%
implying that the inclusion of exchange decreases the P
decay rate. This latter result was based on an expression
for exchange effects given by Bahcall [26] that contains
an inconsistency in the evaluation of the overlap between
bound and continuum wave functions [2] which leads to
the exchange factors being negative at all energies. We
have shown previously [2] in the general ease that the
exchange terms must interfere constructively in the final

FIG. 2. Energy dependence of the total exchange factor
x,„(E) for decay of T~ ).

state having the same configuration as the initial state,
which in the case of tritium decay corresponds to the 1s
Final state. Since this final state gives the dominant con-
tribution to the exchange effect, it follows that the total
effect of exchange leads to an enhancement of the P decay
rate. In the case of tritium decay, although the sign is in-
correct, the magnitude of the exchange efFect calculated
by Bahcall's method appears to agree reasonably closely
with the result obtained here, though it should be noted
that in the general case, the magnitudes of the exchange
efFects calculated by the former method are significantly
in error [2].

The calculation of exchange effects in the T
somewhat more complicated than that in the T atom
since there are a number of three-electron final states
possible in the case of T decay. It is shown in the Ap-
pendix that the total exchange factor for T decay can

e written in the form of Eq. (9) with the exchange factor
rt,"„'(E)given by

r),"„'(E)= —2(He Es[T ls)(He ns~T ls) "' + (He Es~T ls)
P@,(R) P@,(R)

(16)

The exchange factor, y,'„"'(E), is given similarly by Eq. (11) with

These expressions are seen to be similar to those given in
Eqs. (10) and (12) for decay of the T atom except that
there is an extra factor of 2 in the first term in the T
exchange factors. The factor of 2 arises because of the
presence of two electrons in the T atom, both of which
may participate in exchange processes as compared with
the single electron in the T atom. It should be noted
that although Eqs. (16) and (17) have a similar form to
Eqs. (10) and (12), the initial and final orbital sets are
necessarily difFerent in T and T decay.

In this work we have used unscreened hydrogenic
wave functions to evaluate the quantities (He Es~T ls),

(He E's ~T ls), and P~, (R), which involve the continuum
electron wave functions, and used values of (He ns]T ls)
and P„,(R) calculated with the GRAsp code. We have
previously shown in the ease of exchange efFects in decays
o medium- and high-Z decays [2] that the evaluation of
the bound-continuum orbital overlaps with the full nu-
c ear charge is a reasonable approximation and this ap-
proach should be valid for tritium decay where the screen-
ing effects are even less. The bound helium orbitals used
in the evaluation of the orbital overlaps (He ns~T ls),
between a 1s orbital in T and an ns orbital in the He~ &

atom, were evaluated for neutral helium in an extended
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Orbital Exchange contribution
fns fcont

(%%u)

TABLE IV. Summary of the exchange contributions, f,"„'
and f,„",to the phase-space integral for bound ns orbitals
and continuum orbitals involved in the exchange process in
the decay of the T atom and T ion.

state [1]. Using the standard expression for the phase-
space integral, the fractional change in the integral due
to a change AEp in atomic electron binding energy can
be conveniently evaluated using the relation

F(Z, E)pW(Ep —E)dE,
1Af 18f 2

1s
2s
3s

Continuum

Total

+0.202
-0.035
-0.004
-0.001
-0.009

+0.153

+0.301
-0.047
-0.008
-0.004
-0.022

+0.220

(18)
where F(Z, E) is the Fermi function. Numerical evalua-
tion yields a value for the right-hand side of 1.798 x 10
per eV. For tritium decay, the expectation value of the
mean radius of the initial state is easily evaluated using
hydrogenic wave functions, giving an electronic contri-
bution to Ep of 27.21 eV. This yields Af/f = 0.49%,
in good agreement with the value of 0.50%%uo reported by
Budick [11].

For the ion T, the total mean inverse radius of the
ls~ initial state is found to be 37.32 eV, yielding 6f/f
= 0.18%%uo. These results again agree closely with those
reported in [11].

average level calculation and were the same set used in
the calculation of the bound-state decay rate of the tri-
tium atom. The orbital overlaps, calculated in this way,
are shown in Table I. This procedure attempts to provide
the best possible description of the chemically sensitive
bound orbitals while at the same time allowing the com-
putation of the orbital overlaps using a final-state orbital
set in which orthogonality between final-state orbitals is
preserved. The motivation for this approach has been
discussed in more detail in [2].

The exchange contributions for T decay, calculated
using the above procedure, are shown in the third col-
umn of Table IV, from which it can be seen that the
qualitative pattern of the exchange contributions is the
same as in the T atom. The total exchange contribution
for T is +0.22%, which is somewhat larger than for the
T atom. Although the dominant exchange term for T
decay contains an extra factor of 2 as compared to that
in the decay of the T atom, the exchange contributions
for T are less than twice those for the T atom, princi-
pally because of a nonorthogonality effect which leads to
the magnitude of the overlap (He 1s~ T ls) for T decay
being less than that of the equivalent overlap for decay
of the tritium atom, thereby reducing the magnitude of
the dominant 1s exchange factor in T compared to that

V. END-POINT-ENERGY EFFECT

Each P transition between nuclear states is split into
a number of branches as a result of excitation of atomic
electrons which leads to a distribution in final atomic
states, each of which has a slightly different end-point
energy. It is convenient to evaluate the effect of the shake-
up of the atomic electrons by defining an average end-
point energy, Ep, by weighting the end-point energies for
decay to each final state in proportion to the probability
of decay to that atomic state [23]. Then it can be shown
that the average electronic contribution to Eo is given
by the total mean inverse radius for the initial atomic

VI. DISCUSSION

The atomic eff'ects on the bound to continuum decay
ratio, Ab/A„and on the phase-space integral, f, for con-
tinuum decay of tritium are summarized in Table V and
compared with the previous calculation by Budick [11].
These quantities are related to the half-life, t, for a par-
ticular atomic state of tritium by

»(2) G'v
((,)2+R~( )~) f27r3

where fq is given by

f~ =f
I
1+—

I

( Abb

A, p'

(19)

(20)

and (1) and (o) are the Fermi and Gamow-Teller matrix
elements for the decay. It should be noted that when
"ft values" are commonly discussed in the context of
weak interaction coupling constants, strictly speaking it
is the product fqt which is meant rather than the quan-
tity which is the product of the phase-space integral for
the continuum decay, f, and the half-life, t. In most cases
the bound-state decay contribution is very small and fq
equals f to a very good approximation. The case of tri-
tium decay is one decay in which the difference between
fz and f (of order 1'%%uo) may be significant and should be
taken account of in the extraction of estimates of weak
interaction coupling constants from data on the half-life.

For atomic T, the results presented here for the screen-
ing and exchange effects differ significantly from the re-
sults reported in [ll]. Summing all the atomic effects
gives a total difference in fq between T and T+ of 0.30'%%uo

and between T and T+ of 0.64%%uo compared to the values
of 0.22% and 0.38% reported in [11].

In [13], the relationship between the fqt value and the
nuclear matrix elements was used, in combination with a
measurement of the half-life of molecular tritium, to ob-
tain an estimate for the quantity R, (o) where R, is the
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TABLE V. Comparison of atomic efFects on the bound to continuum decay ratio, Aq/A„and
on the phase-space integral, f, for continuum decay in difFerent chemical forms of tritium. The
sign of the fractional change, Df/f, in the phase-space integral f for continuum decay is positive if
the associated atomic effect increases the phase-space integral relative to that for the T+ ion. The
quantity ft, is defined in Eq. (20). ft' represents the fractional change in the total decay constant
as a result of all the atomic efFects on both bound and continuum decay.

Ion Bound-state
decay ratio~ (%)

Fractional change due to atomic efFect (%)
End point Screening Exchange

f f f
Total

&f~
fe

Author

T+
T
T

1.08
0.55
0.00

0
0.49
0.67

0
-0.41
-0.45

0
0.15
0.22

1.08
0.78
0.44

This work
This work
This work

T+
T
T

1.03
0.69
0.47

0
0.50
0.68

0
-0.22
-0.35

0
-0.15
-0.15

1.03
0.82
0.65

[ll]
[11]
[ll]

ratio of axial-vector to vector coupling constants and (o)
is the Gamow- Teller matrix element. The phase-space in-
tegral for the tritium ion T+ was corrected by 0.32% for
atomic effects in the molecule T2 and this then yielded
R, (o) = 2.098 + 0.003. Using a recent theoretical es-
timate of (cr) = ~3(0.962 + 0.002) yielded R, = 1.259
+ 0.007. This enabled an estimate of the neutron life-
time w„= 897 + 3 s to be derived. However, the atomic
correction used to obtain these latter results included a
contribution from exchange effects which has been shown
above to be of the wrong sign and a screening correction
which is significantly underestimated. In this work we do
not present results for atomic e8'eets in the Tg molecule
since a proper treatment, including the bound-state de-
cay process, requires development of a molecular, rather
than atomic, formalism. However, as a first approxima-
tion, it may be reasonable to assume that the atomic
effects in the Tq molecule are similar to those in the T
atom. If one uses the result obtained here for the atomic
correction to f& in the T atom of 0.78Fo as an estimate
of the atomic correction to f& in T2, then the results ob-
tained using the same method as used in [13]are R, (o ) =
2.092 + 0.003, R, = 1.255 6 0.002, and v„= 901 6 3 s.
These results may be compared with R,=1.261 + 0.004
derived from angular correlation measurements in neu-
tron decay and B, = 1.267 + 0.007 from measurements
of the neutron lifetime [27]. The latter measurements
also yield ~~ = 889.1 + 1.8 s.
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APPENDIX: DERIVATION OF EXPRESSION
FOR THE EXCHANGE CONTRIBUTION

TO T DECAY

In the orbital approximation used throughout this pa-
per to describe atomic electronic structures, the T ini-
tial state is designated ~ls; 0, 0) where the first zero de-
notes that the overall total angular momentum (J) is
zero while the second zero denotes that the z component
(Mq) of the total angular momentum is also zero. This
state is represented by a single Fock-space ket as

mls;0, 0) = mls(~i), ls(—zi)), (Al)

where a ket such as ~a, b) denotes that each of the orbitals
a and b is occupied by a single electron. The notation
B(m~) denotes the orbital belonging to subshell B and
having a z component of its total angular momentum
equal to m~. The three-electron final states containing a
continuum electron with specified kinetic energy E can
be constructed by vector coupling this electron onto two-
electron states having a definite value of zero or one for
the overall total angular momentum of these two elec-
trons. Since only three-electron states having a J value of
2 can be generated by allowed decays from the ~ls; 0, 0)
initial state and moreover only those in which all three
electrons have j =

2 are produced with non-negligible
probability, there are only three types of Bnal state con-
taining a continuum electron of kinetic energy E to be
considered. The first of these, ~B E; z, M~), contain,
besides the continuum electron of kinetic energy E, two
electrons in the s subshell B. The second and third types
of final states, ~(BC)OE; 2, M~) and ~(BC)iE; z, Mg),
have a single electron in each of the subshells B and C
and differ only in the angular momentum (0 or 1) of the
two-electron state produced by vector coupling angular
momenta, both equal to 2, of the individual electrons in
the subshells B and C.
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The reduced matrix elements (ls2; Ollbx lip'; 2) enter-
ing the decay amplitudes (A~ ) are related to Fock-space
matrix elements (ls; 0, 0llbx ~ Ilp'; 2, 2) through

(»', oIlbxllv', —,') = —(»';0, 0llbx, , lie', —,'-,') (A2)

This allows the A& to be evaluated using

Ap = —). (»"0 Ollbx, ~Ill' 2 2)Px(R) (A3)

where the sum over X is over the complete set of all
final-state subshells having j = z. The three types of
final state having Mp equal to 2 can be expanded into
basic Fock-space kets la, b, c) according to

IB'E; —,', —,') = IB(-,'), B(--,'), E(-,')) ( 4)

I(BC).E; —,', —,') = IB(-,'), C(--,'), E(-,')) —IB(--,') C(2) E(2».

l(BC)iE 2 k) = IB(-,), C(i), E(—,')) — IB(-,') C(--,'), E(-,')) + IB(--,'), C(-,') E(-,')) (A6)

Only states in which the label C appears after the label B in the standard ordering of orbitals need to be considered.
Substitution of the states given in Eqs. (A4), (A5), and (A6) into Eq. (A3) followed by standard Fock-space

manipulations in which the creation operators are acted backwards onto the bra shows that the decay amplitudes for
the three types of final p' state are

AB~@ =
2 (Blls) P@(R) —(Blls)(Elis)PB(R) (A7)

1 1
(Bc).E;~ = -I ~2(BI»)(CI»)PB(R) —

I.(BI»)(EI»)Pc(R) + (Cl»)(EI»)PB(R)] I

A(BC)gE;1 4 (Elis) I (Bl »)Pc(R) —(Cl ls) PB (R)]

It is convenient here to sum the last two decay amplitudes to give

(A9)

A(Bc),@.i + A(Bc),B i ——2( 2(Bl.ls) (Clls) P@(R) —2(Blls)(Clls)(Elis) I(Blls)Pc(R) + (Clls)PB(R)] P@(R)

+2(EI»)' (BI»)'Pc(R) + (cl»)'PB(R) —(BI»)(cl»)PB(R)Pc(R) ). (A10)

The result of Eq. (2) of [2] shows that the total intensity (dI) of the P spectrum for particles emitted with kinetic
energies between E and E + dE is given by summing over all possible final states p' containing such a P particle so
that

Here K is a constant while Ep(p) is the end-point energy for decays generating two electrons in subshells B and C in
the final state p'. The sum over p' is generated as a single sum over B to include all final states of the type IB E; 2, ~)
plus a double sum over B and C (greater than B) to include just once all the final states of the types I(BC)pE; 2, 2)
and I(BC)iE; 2, 2). The sums over B and C include not only those over all bound orbitals but also integrations
over the appropriate portion of the continuum thus including all those final states having two or three continuum
electrons. Those terms in Eqs. (A7) and (A10) which involve only the value P@(R) of the continuum wave function
and not the quantities PB(R) and Pc(R) constitute the direct terms since they correspond to the direct creation of
the P particle in the continuum orbital of energy E with the two T ls electrons originally present passing either
both into the final-state subshell B or one passing into B and the second into C. All the remaining terms in Eqs.
(A7) and (A10) involve the quantities PB(R) or Pc(R) and constitute the exchange contribution to the p spectrum.
Substituting the decay amplitudes in Eqs. (A7) and (A10) into Eq. (All) and then replacing the end-point energies

Ep(p) by an average value Ep shows that the direct portion of the spectrum, denoted NE (no-exchange), is given by

dlNE

dE

t'—(Ep —E) ) (Blls) PB(R) + 2) ) (Blls) (clls) PB(R)
C ()B) )

(A12)

Rearrangement of the summations simplifies this into
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drNE X W
dE

=
2 „(Eo—E)').) (BI»)'4'I»)'P'(R)

B C
(A13)

The sums over B and C are, in principle, restricted by energy conservation to include only those states having energies
less than the end-point energy. However, since only a minute fraction of potential final states in Eqs. (A4), (A5),
and (A6) are excluded by this condition, the sums over both B and C in Eq. (A13) can be performed using orbital
closure to produce

K'W
(Ep —E) Pg(R),

whose structure is identical to the result in Eq. (8).
The portion, denoted dI'", of the spectrum arising from exchange is found from Eqs. (A7), (A10), and (All) to

be given by

dI'" K' W — z ( 3
dE 2 p l

—(Ep —E) I

—2(Elis)P@(R) ) &Blls) P~(R)

+) ). &BI»)&&l») [&Bl»)P~(R)+ &&l»)P~(R)I
B C (&B)

+(Elis) ) (Blls) P~(R) + 2) ) (Blls) P~(R)
B B C ()B)

+(&I»)'P'(R) —(BI»)&&I1s)Pa(R) Pc (R) (A15)

which can be rearranged into the form

dI'" K' W — ~ (
dE 2 p

—(Ep —E) I

—2&Elis)P~(R) ) ) &Blls) &Clls)Pg(R)

+ &EI»)') ) &BI»)'Pc(R)+). ). I&BI»)P~(R) —&&l»)P~(R)]'
I

~

B C B C(»)
(A16)

After using orbital closure to remove the unrestricted sums over B, the exchange contribution to the P intensity
reduces to

dIex

dE
K'W
2 p

(Ep —E)' (Ei») ) .Pc(R) I-2&&I»)P~(R) + (EI»)P~(R) 1

+(EI»)') ): [&Bl»)P~(R) —X'l»)P~(R)j'
I

B C (&B)
(A17)

Et then follows by combining this result with Eq. (A14) that the total P intensity dI/dE can be expressed in the form
of Eqs. (9) and (15) with the factor y,„(E)given by

P~(R) P~(R)
x..(E) = ).-2(Ell )&~ll )

'"' +(Ell )

+(Ell)'). ). I(BI1) '"' -&~ll)
P~(R) P@(R) (A18)

The first term in Eq. (A18) gives the dominant contribution since it contains only the first power of the overlap
(Ella) which is small over almost all the spectrum, only becoming significant at extremely low energies. The two
terms in the double summation over B and t are very small because they contain the second power of &Ella) as well
as a product of two overlaps of the kind &Blls) or &Clls). In addition, the terms in this double summation tend to
cancel one another. Hence in the following these terms will be neglected. The quantity y,„(E)can then be written

~..(E) =) ~..(E), (A19)
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where the subshell exchange factor, q+ (E), is given by

P@(R) P@(R)n..(&) = -2(&II )(&[I ) + (&]I )' (A20)
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