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Evaluation of two-photon exchange graphs for highly charged heliumlike ions
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Contributions of one-loop ladder and crossed-ladder graphs to the ground-state energy of heli-
umlike ions are calculated in Furry representation @ED. With the aid of a contour rotation, the
graphs are evaluated to all orders in Zn in the range Z = 10—110. Particular attention is given
to the relation of this work to recent many-body perturbation theory and configuration-interaction
calculations.
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I. INTRODUCTION

Relativistic many-body perturbation theory (MBPT)
has been shown to lead to rapidly convergent solutions to
the many-electron Dirac equation for highly charged he-
liumlike [1] and alkali-metal-like [2] ions. An important
component of these calculations is the second-order en-

ergy E( ) which involves a double sum over intermediate
states. In the relativistic case, the treatment of interme-
diate negative-energy states is problematical. This can
be illustrated for the case of ground-state heliumlike ions,
where the second-order energy is given by
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and a and b represent the two occupied 1s states with
spin projections m = +1/2. If the states i and j are
allowed to range freely over both positive- and negative-
energy states, vanishing energy denominators can result
when one is positive and the other negative. This is re-
lated to the well-known continuum dissolution problem
[3]. In practical calculations this problem is solved by
summing over positive-energy states only, or equivalently,
using the "no-pair" Hamiltonian [3] in which only the
positive-energy components of one- and two-particle op-

when the electron-electron interaction is the perturba-
tion. In Eq (1.1), .the Coulomb matrix element g;s1, ~ is
defined by

erators appear. The effects of negative-energy states do,
however, enter as radiative corrections. To evaluate these
corrections, a fieM theoretic approach must be taken.

There are a number of ways to treat helium starting
from QED. The earliest treatment following the devel-
opment of modern QED was by Brown and Ravenhall
[4]. This work was primarily concerned with justify-
ing the older Breit equation [5], which gave the cor-
rect fine structure of helium only after an ad hoc rule
was imposed on perturbation theory. Brown and Raven-
hall made a contact transformation on the QED wave
function that eliminated the transverse part of the QED
Hamiltonian in lowest approximation. Transforming the
resulting Schrodinger equation to configuration space led
to a well-defined Hamiltonian problem with projection
operators; essentially the no-pair Hamiltonian. In higher
orders, multiple commutators give rise to the Breit inter-
action and QED effects, the latter of which were shown
to enter in order o. a.u. , though they were not explicitly
calculated in [4]. The Brown-Ravenhall contact transfor-
mation was later discussed by Mittleman [6] and applied
to a three-body problem by Zygelman and Mittleman [7].

Following the work of Brown and Ravenhall, fur-
ther progress was made in the framework of the Bethe-
Salpeter (BS) equation [8]. In this method, the poles of
the electron-electron scattering Green's function in an ex-
ternal nuclear Coulomb field are analyzed. The BS equa-
tion was applied to neutral helium by Sucher [9], Araki
[10], Kabir and Salpeter [11],and Douglas and Kroll [12)
with considerable success. However, nonrelativistic ap-
proximations are made in several parts of these calcula-
tions, so that the validity of applying the BS approach to
highly charged ions is questionable. In order to avoid the
need for nonrelativistic approximations, we use the S-
matrix technique [13] here, in which the symmetric form
of the Gell-Mann and Low formula [14], introduced by
Sucher [15], relates energy levels to Feynman diagrams.
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While this method in practice can be applied only to
low-order Feynman diagrams, as opposed to the infinite
set of ladder diagrams automatically included in Bethe-
Salpeter approaches, the 1/Z expansion [16] ensures that
higher order diagrams are suppressed by powers of 1/Z,
so that consideration of only a small number of Feyn-
man diagrams allows precise predictions for the spectra
of highly charged ions. In addition, ions with more than
two electrons can be treated using similar methods.

The S-matrix approach has been applied through sec-
ond order, in which case the only Feynman diagrams are
those shown in Fig. 1 ~ While the evaluation of the graph
of Fig. 1(a), where a photon is exchanged between two
electrons, is straightforward [13],the self-energy and vac-
uum polarization diagrams of Figs. 1(b) and 1(c), respec-
tively, present a more challenging numerical problem that
has received considerable attention recently [17]. Appli-
cations through fourth order, by contrast, have not yet
been carried out. There are four types of fourth-order
diagram shown in Fig. 2. The second-order energy from
MBPT is associated with the diagrams of Figs. 2(a) and
2(b), which we refer to as the ladder (I) and crossed lad-
der (A), respectively. It is these diagrams that will be
calculated in this paper. The remaining diagrams will
not be treated here, but will be discussed in the conclu-
sion.

While the ladder and crossed-ladder diagrams will be
evaluated from @ED here, it is important to discuss their
relation to MBPT calculations. This is because of recent
progress in the solution of the no-pair Hamiltonian prob-
lem with MBPT [1] and configuration-interaction calcu-
lations [18]. By using large relativistic basis sets with
negative-energy states excluded, high-accuracy solutions
to the energy levels of ground state and n = 2 excited
states of helium incorporating the instantaneous Breit in-
teraction are now available. However, @ED effects must
also be included. , and it is important to include them in a
consistent way. Thus we must separate from our present
calculation those terms already included in the solution
to the no-pair Hamiltonian. While we have carried out
our analysis in both Feynman and Coulomb gauges, the
connection to MBPT is most clearly seen in Coulomb
gauge. In this gauge, the photon propagators have two
parts, an instantaneous Coulomb interaction (C) and a
retarded magnetic or transverse interaction (B). When
both photons are type (C), a simple analysis [19] shows

(a)

FIG. 1. Second-order Feynman diagrams contributing to
the energy of heliumlike ions.

(c)

FIG. 2. Fourth-order Feynman diagrams contributing to
the energy of heliumlike ions. (a) Ladder diagram, (b)
crossed-ladder diagram, (c) sample diagrams involving one ra-
diative correction and one additional exchanged photon, (d)
example of a two-loop radiative correction.

that the part of Eq. (1.1) with i and j both positive-
energy states is exactly reproduced. Further, the terms
associated with continuum dissolution vanish and there
remains only a small radiative correction term in which
i and j are both negative-energy states. This last term
can be shown (at low Z) to enter in order (Zn) a.u.
[19]; it is one of a set of terms entering in this order
that were evaluated in the Bethe-Salpeter approach dis-
cussed above. When one photon is type (C) and the
other type (B), the same analysis leads (in the approxi-
mation that the transverse photon exchange is instanta-
neous) to an important MBPT contribution referred to
here as the "Breit-Coulomb" term B( ~ which enters in
order (Zn) a.u. and is part of the fine structure. Again,
corrections to this term enter in order (Zn)s a.u. . Finally,
when both photons are transverse, the same approxima-
tion gives a term that we refer to as the "Breit-Breit"
term, B-B, which is also of leading order (Zo.) a.u. , and
which has only recently been evaluated. Another feature
of note is the importance of the contribution with two
negative-energy intermediate states because of the rela-
tive enhancement of n between a positive- and negative-
energy state. The retardation factor plays an important
role here, as dropping it leads to an incorrect contribu-
tion of order of fine structure. The actual contribution is
of order (Zo.)s ln Zn.

The general situation that we have just described
is that the ladder and crossed-ladder diagrams contain
some important MBPT eKects, but in addition contain
field theoretic eB'ects beginning in order (Za) . Because
we are interested in highly charged ions, we want to eval-
uate these diagrams without assuming Zo. « 1. To do
this, we now turn to the exact @ED calculation. Fol-
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lowing this, in Sec. III, we separate out the MBPT parts
of the calculation, and compare with the known (Zn)
results. This will allow us to infer the @ED correc-
tions to the MBPT calculations. Finally, in Sec. IV, the
role of the other @ED diagrams and prospects for future
progress will be discussed.

II. FORMULATION

In the S-matrix approach, the fourth-order energy is

E(') = li —[4(S(')).—2(S(')).'], (2.1)
e—+0

where
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Here

H, (x) = —j„(x)A" (x), (2.4)

where j~(x) is the electron-positron current, A (x) is the quantized radiation field, and T is the time ordering operator.
We now consider the terms from two contractions in S, , corresponding to the Feynman diagrams of Fig. 2(a), the

ladder (L),
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and Fig. 2(b), the crossed ladder (X)
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where G(x2, xl, z) is the Green's function for the Dirac
equation

[ x& ' +2 + V(x2) + p —z] G(x2, xl, z) = 6(x2 —xl).
(2.8)

The function DF (x2 —xl) is proportional to the Feynman

While we present these expressions in Feynman gauge, we
carry out the actual numerical calculations in Coulomb
gauge as well, finding numerically that their sum is gauge
invariant.

In Eqs. (2.5) and (2.6), SF(x2, xl) is the bound elec-
tron propagation function given by

gauge photon propagation function, which is given by

q~-DF(x2 —») = (0IT [&~(x2)&-(»)] Io) (2 9)

Here
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and

e—ba21

H(x2 —xl, qo) 4vrx„
x2l ——~x2 —xl~; b = —i(qo+ib) ~, Re(b) ) 0. (2.11)

The time dependence of the wave functions is given by
(x)e *+" . Substituting (2.7) and (2.10) into (2.5) and

(2.6), and carrying out the integration over time variables
yields
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It is convenient at this point to define the Feynman gauge
generalization of Eq. (1.2),

for which

E„,= E„, = E„, = E„, = &o, (2.16)

g;3/, E (q) = —4)rn dx2 dxl H(x2 —x], q) y, (x2) and where the replacement
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~
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We do this because we will now replace G(x;, x), z(1 +
iS)) by its spectral decomposition on the second line of
Eq. (2.7). This allows us to reexpress Eqs. (2.12) and
(2.13) in terms of products of g, ~3bfactors. These two
equations are valid for any state of a two-electron ion, but
the following discussion is specialized to the So ground
state:

~4 )A3 )A2 )Al

= 2[f (a, a, b, b) —f (a, b, b, a)j, (2.17)

that takes into account the spherical symmetry of the
interaction: ga b, g(q) = g a b, d(q), can be made.
For this special case we may write Eqs. (2.12) and (2.13)
as
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(2.18)
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The corresponding second-order exchanged-photon term (E) is

(2.19)
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A. Excited intermediate states

For small e, the dominant contribution to the integrals in Eqs. (2.18) and (2.19) comes from the region q2 Ep —z2
and qj z2 —Eo. When at least one intermediate state is excited, it is sufFicient to consider the leading term in
a power series expansion of the photon functions H about these points to evaluate the leading contribution to the
matrix elements in powers of e [20]. In the first term from such an expansion, integration over q2 and qi and the
translations z2 —+ z2 + Eo and z~ ~ z~ + Eo yield
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If E g Ep or E g Ep, the integration over zi can be carried out, and then application of Eq. (2.1) gives the energy
shifts
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4)r - [E —z —E (1 —i8)][E + z —E„(1 —ib)]

'
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Z ).4'
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[E + z —E„(1 —i8)][E.+ z —E (1 —ib)]

' (2.24)
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where g;ski = g,.ski —g;&i@. Here the sum over a and. 6 is
over magnetic substates of the 1s state, and was intro-
duced, with a compensating factor of 1/2, to facilitate
the angular reduction of the terms.

We have also analyzed the corrections to this from the
expansion of the photon propagators, and shown that
they vanish. We show in Fig. 3 the poles and cuts in the
complex z plane associated with the electron and photon
propagators. In the absence of cuts, the z integration
can be carried out with Cauchy's theorem, and MBPT-
like formulas obtained. However, we choose here to make
the contour rotation indicated in Fig. 3. When one in-
termediate state is 18 and the other not, the contour
includes a semicircle around a pole at z = 0, which gives
the contributions

pole 1 y gabcm(0)gcmab(0)
E. —E

(rnga)

electron branch cut
and poles

X X X
1s, Cp

Cp "ls

negative-energy states

gz

X X X

photon branch cut

Lz

X X X

pole 1 ) ~ gbmca (0)gcabm (0) gamca (0)gcbbm (0)
(b)

positive-energy states

(rnid

a)
(2.26)

Note that the sum over m includes both negative- and
positive-energy states. For the rest of the contour, the
change of variable z ~ i~ then leads to

FIG. 3. Singularities of the integrand of (a) AEb and (b)
AE~ in the complex z plane. The contour CR is rotated
anticlockwise about z = 0 to give CI plus half-pole terms C~.

&Eel, = — )27'
a, b,m, n

cd + X~V~
)
(™2 ~2) gmnab(i~)gabmn ( ) (2.27)

and

1
&Eaux = ——)27r

a,b, m, n

+ X~+n
[ganmb (&&)gbmna (&&) ganma (&&)gbmnb (&&)] ~

(2.28)

where X = E —E and Y' = Eb —E The evalu. ation of the expressions (2.27) and (2.28) constitutes the main
numerical work in the present calculation.

B. Degenerate intermediate states

We next consider Eqs. (2.18) and (2.19) for intermediate states that are degenerate with the ground state, i.e. ,

E = E = Ep In this case., (S, )I, contains a singularity of order e that cancels a similar term in (S, )&, and
there is a finite remainder that is discussed in this section. In particular, we have

(s(4) ) dql ) [gabcd(q2)gcdab(ql) gabcd(q2)9cdba(ql)]fe(q21 ql)fe(ql) q2)
C) Cj

(2.29)

(S('l) d'ql ) [gadcb(q2) gbcda (ql) gadca ('q2) gbcdb('ql)] f ('q2 & ql) &

c)d

(2.30)

where the sum over c and d is restricted to magnetic substates of the 18 state, and where

f.(q. , ql) = 1

j Ep —z(1 + x6) e + (Ep —2 —q2) e + (Ep —z + ql)

g2 —gy —4zE'

(q2 + ql) + 4E' (q2 —ze) (q) + ze)
(2.31)
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To isolate the singularity, we write

f (V2 ql)f, (qi, V2) = —,
' [f.(q2, qi) + f.(Vi, V2)]' —

—,
' [f,'(V2, qi) + f,'(qi, V2)]. (2.32)

The term proportional to

—2jt
—,
' [f.(V2, qi) + f.(Vi, V2)]' =, , (2.33)

in Eq. (2.29) completely cancels the term proportional to (S, ) in Eq. (2.1), by virtue of the identity

) [gabcd('V2)gcdab(ql) gabcd(V2)gcdba(ql)] = [9abab(V2) gabba('V2)][gabab(ql) gabba('ql)] ~

c)d

(2.34)

The net degenerate-intermediate-state (D) contribution is then AEI) = DE~I, + BED~, where

226
QEDL, = llm

~—+o ~4 2 dql ) [gabcd(V2)gcdba(V1) gabcd(V2)gcdab(ql)]f, '(V2) qi),
c)d

(2.35)

aIld

2zc
LED~ ——lim

~-+o ~4 dq2 dql ) [gadcb(V2)gbcda(ql) gadca(V2)gbcdb(ql)] f ('V2~ ql) I
(2.36)

where we have used the facts that f, (ql, q2)
f ( V2& ql) and gabcd( q) = gabcd(q).

These expressions contain integrals over q2 and qq of
the form

4g

dql h(q2, —q2) f, (q2, ql) +

dz h(z, —z) . + ~ ~, (2.38)
z —3)E Z ze

dqi h(q2, qi)f,'(q2 qi) (2.37)

where h(q2, ql) is some function of q2 and ql. The main
contribution to such an integral comes from the region
where q2 = —ql, so we replace h(q2, ql) in (2.37) by
h(q2, —V2),

where the dots represent terms of higher order in e. The
validity of the above replacement in the present context
was checked by a lengthy independent calculation that
does not make this approximation. Substituting (2.38)
into (2.35) and (2.36), we obtain

AEg)1. = lim )e~o+ 4~
a, b, c,d

Z —5ie
dZ gabcd(Z)gcdab(Z),

I Z —3ZC) (Z —ZE)
(2.39)

and

BED~ = lim —)~~o+ 47t
a, b, c,d

z —5ie
dZ [gadcb (Z) gbcda (Z) —gadca (Z) gbcdb (Z)]

Z —3ze Z —ZE'
(240)

These two expressions are valid in any gauge with the appropriate gauge-dependent definition of the g,~I,~ factors.
Were it not for the branch cuts in the photon propagator, (2.39) and (2.40) would vanish because the poles are on
the same side of the axis. However, the presence of the cuts leads to nonvanishing contributions to the energy.

In Feynman gauge, we perform the z integrals in (2.39) and (2.40) analytically, finding that AEI)1, and BEDE each
diverge logarithmically as e ~ 0+. However, the divergent part cancels identically between the two leaving a finite
sum in the limit e —+ 0+
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3 3 3 3 F 1) d xid xzd xsd x4 In(xiii+ xs4) ~
+

27t xs4p

X ~ ~1 O-'p, c ~1 b ~2 O d ~2

x Pt(xs)n Pt, (xs)P&t(x4)n P (x4) —Pt(xs)n (t) (xs)Ptd(x4)n $(, (x4)

+ y (xi)nay, (xi)yg(xg)n"yi, (xg)yg(xs)n~yg(xs)y, (x4)n y~(x4)

(Xl)333$ (Xl)d)d(X2)ll d) (X2)d)3(K3)42 Pd( X3)tf (X4)ll d)l (X4) ) (2.41)

Only the spatial indices p, v = 1—3 give a nonvanishing
contribution.

III. NUMERICAL EVALUATION

The numerical calculation was carried out as follows.
Firstly, the sum over magnetic substates was carried out
analytically using standard Racah algebra, reducing the
sum over a, 6, m, and n to sums over the allowed angu-
lar quantum numbers of the intermediate states m and
n and sums over their principal quantum numbers n
and n . These latter sums include both positive- and
negative-energy states. Additionally, there is a sum over
the multipolarities of each of the two g;~I, ~ factors. One of
these sums (over I, say) is infinite, while the other is finite,
constrained by triangular conditions for a fixed value of
l. This situation is analogous to the MBPT treatment of
He in Ref. [1]. We refer to the infinite sum over I as the
"partial-wave" expansion of the terms.

The sum over principal quantum numbers was done
with a relativistic finite basis set constructed from B
splines [21], incorporating at least 70 positive- and 70
negative-energy states per angular quantum number to
ensure adequate saturation of the sums. The w integral
was performed to high numerical accuracy for each par-
tial wave by a Gaussian integration method. The infinite
partial-wave sum, which was the outermost "loop" in the
calculation, was truncated at l = 8 and extrapolated to
infinity by fitting to polynomials in 1/L. The finite size
of the nucleus is included by using a Fermi distribution

for the nuclear charge with parameters given in Ref. [22].
The calculation was checked by two independent codings,
and by varying the details of the procedure, for example,
by performing the partial-wave sum before the u integra-
tion. The leading numerical error in the final tabulations
arises principally from a combination of basis-set trun-
cation error and error in the partial-wave extrapolation.
We estimate the total numerical error to be less than
0.00003 a.u. for Z = 70—110, less than 0.00002 a.u. for
Z = 40—60, less than 0.00001 a.u. for Z = 20 and 30,
and less than 0.000003 a.u. for Z = 10.

The ground-state term LED was evaluated several dif-
ferent ways. In one, we computed (2.41) with Monte
Carlo techniques. As a variant, we included the z in-
tegration in the Monte Carlo procedure and worked di-
rectly from the suin of the expressions (2.39) and (2.40).
We also considered an ad hoc regularization of the ex-
pressions (2.39) and (2.40) in which we replaced z in the
rational function by z + L, with A real, and let e ~ 0+.
This electively modifies the eigenvalue of the intermedi-
ate 18 states. The resulting expressions were evaluated
by a contour rotation and extrapolated to 4 ~ 0, giv-
ing identical numerical results for LED to those obtained
with the previous methods.

The entire calculation was checked further by perform-
ing it in both the Coulomb and Feynman gauges. Ta-
ble I gives a breakup of the calculation in each gauge
for two Z values. Here, AE+

&
and LE

&
are the

parts of the pole term AE&~
' + EF~ ' [Eqs. (2.25)

and (2.26)] where m is a positive- or negative-energy
state, respectively. The contour term DE~I, + AEt-~

TABLE I. Ladder plus crossed-ladder diagrams calculated in the Feynman and Coulomb gauges
for two Z values. See text for explanation of symbols. Units are a.u.

Term
AE+

)

AE
~@++
AE+
AE
AE'~
AE~

+@+ED
AE (total)

z=
(+@MBPT

Feynman
—0.112776

0.000000
—0.048061

0.000010
—0.000145
—0.048196
(1.16 x10 )
0.000026

—0.160972

10
—0.160999)

Coulomb
—0.112776

0.000000
—0.048088
—0.000018
—0.000090
—0.048196
(1.16 x10 )
0.000026

—0.160972

z
(2-) @MBPT

Fey nman
—0.25371
—0.00065
—0.12633

0.02346
—0.02820
—0.13107

0.00415
0.02664

—0.38128

80
—0.40792)

Coulomb
—0.25371
—0.00065
—0.12422

0.01013
—0.01697
—0.13106

0.00415
0.02665

—0.38127
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TABLE II. Decomposition of the sum of the ladder and crossed-ladder diagrams into contri-
butions from positive- and negative-energy intermediate states. Calculations carried out in the
Feynman gauge. Units are a.u.

z
10
20
30
40
50
60
70
80
90

100
110

~@pole
—0.112777
—0.11816
—0.12737
—0.14078
—0.15897
—0.18289
—0.21393
—0.25436
—0.30787
—0.38100
—0.48595

~@++
—0.048061
—0.05178
—0.05756
—0.06544
—0.07565
—0.08867
—0.10519
—0.12633
—0.15392
—0.19113
—0.24396

az+-
0.000010
0.00016
0.00073
0.00205
0.00449
0.00849
0.01457
0.02346
0.03617
0.05427
0.08032

AE
—0.000145
—0.00091
—0.00255
—0.00523
—0.00902
—0.01402
—0.02035
—0.02820
—0.03785
—0.04980
—0.06486

AE'~
0.000000
0.00000
0.00003
0.00012
0.00037
0.00094
0.00208
0.00415
0.00769
0.01346
0.02255

[Eqs. (2.27) and (2.28)] has been similarly decomposed
into contributions where the intermediate states m and
n have both positive or both negative energy, LE++ andLE, and a contribution where one is positive and the
other is negative, LE+ . The total energy, including the
ground-state term BED, is denoted by LE. The term
+EQED = +E —LEMBpT is discussed further below.
The pole terms AE+

&
and AE &, the total contour

term LE~ ——LE++ + LE+ + AE, and the ground-
state term LE~ are found to be separately gauge invari-
ant.

Table II gives the analogous breakup at Z = 10,20, . . .,
110 for the Feynman gauge only, with AE" the to-
tal pole term. As is clear from Table I, the breakup
into AE++, AE+, and AE is gauge dependent and
would be diferent in the Coulomb gauge. The point
we wish to emphasize is the significant role played by
the negative-energy states for all Z. The Anal column
in Table II gives LED. Figure 4 shows this contri-
bution to scale closely as (Za. )s. For low Z, we find
AE~ = 0.056 (Zo.)s a.u. .

Now, as discussed in the Introduction, it is desirable
to combine this calculation with high-accuracy MBPT
calculations. To do this, in the second, third, and fourth

columns of Table III, we also present the three second-
order contributions from MBPT mentioned above, E( ),
B~ ), and B-B.In the last column of Table III, we give the
difFerence between the @ED and MBPT results, which we
refer to as the "residual @ED correction" AEqED. This
correction must be added to the MBPT calculation to
account for the omitted negative-energy and retardation
contributions, and the crossed-ladder diagram.

We analyze LEQED further in Table IV, where for two
Z values we give the terms arising from two Coulomb
photons, from one Coulomb and one transverse photon,
and from two transverse photons, in a Coulomb-gauge
calculation. An exact @ED evaluation is compared with
the corresponding MBPT values. In fractional terms the
two-transverse-photon term is most modified, but in ab-
solute terms all combinations make significant contribu-
tions to LE@ED.

In the Coulomb gauge, the two-Coulomb-photon term
makes no contribution to BED because of the absence
of branch cuts in the photon propagator. We find fur-
ther that the one-transverse —one-Coulomb term cancels
identically between the ladder and crossed-ladder dia-
grams, so that LED arises entirely from the transverse-
transverse term. Furthermore, in the Coulomb gauge,

TABLE III. The present calculation DE is compared with a second-order MBPT calculation
E + B +B-B to determine the residual +ED correction AEqEn. Units are a.u.

Z
10
20
30
40
50
60
70
80
90

100
110

AE
—0.160972
—0.17069
—0.18673
—0.20927
—0.23878
—0.27614
—0.32283
—0.38128
—0.45579
—0.55420
—0.69190

E(2)
—0.158083
—0 ~ 15952
—0.16226
—0.16662
—0.17303
—0.18211
—0.19482
—0.21271
—0.23844
—0.27690
—0.33769

—0.002870
—0.01095
—0.02363
—0.04059
—0.06179
—0.08750
—0.11841
—0.15578
—0.20185
—0.26061
—0.33947

B-B
—0.000046
—0.00043
—0.00163
—0.00415
—0.00854
—0.01542
—0.02545
—0.03943
—0.05846
—0.08414
—0.11913

+@+ED
0.000026
0.00021
0.00078
0.00208
0.00458
0.00889
0.01585
0.02664
0.04296
0.06744
0.10439
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0.070 EE[(Zn) ] = —0.15766638, (4 1)

0.065

LA

0.060

C)
Llj

0 055—

Z Z[(Z~)'] = —0.6356(Z~)',

AE[(Zn) ] =
~

———ln2 ——inn
~

(Zn)s (98 8 2

8~ l9 3 3

(4.2)

0.050
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Z

FIG. 4. The ground-state term EEz& scaled by (Zn)

120

14 2 3 I——Q ——n M',
3 3' (4.3)

where Q for the ground state in hydrogenic approxima-
tion is [23]

LEDL, and LED~ are each finite as e —+ 0+ or 4 m 0+.
For example, at Z = 80, AEDI, ——0.03271 a.u. and
LED~ ———0.02856 a.u. . By contrast, in the Feynman
gauge, only the sum of these terms is finite.

IV. ANALYSIS AND CONCLUSIONS

and

Q = — (ln 2Z —1.333)
(Zn)s

8'

2 s, (Zn)s t' 16——n M'=
~

——lnZ —1.88 ~.3sr 87r q 3

(4.4)

(4.5)

The principal result of this paper is the tabulation of
AEgED given in the last column of Table III. It is this
quantity that is to be added to MBPT or configuration-
interaction (CI) calculations of the ground states of he-
liumlike ions using a no-pair Hamiltonian with the in-
stantaneous Breit interaction. When the as yet uncalcu-
lated diagrams of Figs. 2(c) and 2(cl) are included, the
S-matrix approach will have included all the previously
determined (Zo.) a.u. corrections along with a set of
(Zn)4 a.u. and higher corrections. It is clearly of interest
to isolate these new corrections. To this end, we con-
centrate on AE in the first column of Table III rather
than DERED. This is because the MBPT expressions
also contain (Zrr) a.u. and higher-order corrections. In
Table V, we show a comparison of AE with the known
corrections of order (Zo. ) ' 's, which are [23]

The term M' is generally combined with another term
from the vertex diagram to give the full Bethe logarithm,
which has been analyzed in the I/Z expansion by Gold-
man and Drake [24]. However, M' has not, to our knowl-
edge, been separately computed before. We evaluated it
by working in Coulomb gauge and evaluating the one-
Coulomb-photon —one-transverse-photon interaction lad-
der and crossed-ladder diagrams with the same method
that leads to the Bethe logarithm. Specifically, this in-
volves taking the transverse photon pole and making the
dipole approximation in the integration over the photon
energy, which is logarithmically divergent in this approx-
imation, but is cut off at 1 a.u. .

It is of interest to compare our inferred @ED correc-
tion in Table III to the @ED corrections calculated by
Sucher [9] and Araki [10], so that the part of the present
calculation that is truly new, that is of order (Zcr) a.u.

TABLE IV. Comparison of exact Coulomb-gauge QED calculations with MBPT calculations.
C-C, two Coulomb photons; C-B, one Coulomb and one transverse photon; B-B, two transverse
photons. The final column is the di8'erence of the second and third columns. Units are a.u.

Term

C-C
C-B
B-B
Total

MBPT

—0.158083
—0.002870
—0.000046
—0.160999

Z=10
QED

—0.158058
—0.002846
—0.000069
—0.160972

0.000025
0.000024

—0.000023
0.000026

C-C
C-B
B-B
Total

—0.21271
—0.15578
—0.03943
—0.40792

Z = 80
—0.20556
—0.15905
—0.01666
—0.38127

0.00?15
—0.00327

0.02277
0.02665
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TABLE V. Comparison of full QED calculation with low-order terms from the (Zn) expansion
to determine the residual terms of order (Zn) and higher. Units are a.u.

z
10
20
30
40
50
60
70
80
90

100
110

AE
—0.160972
—0.17069
—0.18673
—0.20927
—0.23878
—0.27614
—0.32283
—0.38128
—0.45579
—0.55420
—0.69190

(Zn) + (Zn)
—0.161051
—0.17120
—0.18813
—0.21182
—0.24228
—0.27951
—0.32351
—0.37428
—0.43182
—0.49613
—0.56721

(Zn) 3

0.000092
0.00068
0.00217
0.00494
0.00937
0.01578
0.02451
0.03589
0.05021
0.06779
0.08892

(Zn)
—0.000013
—0.00016
—0.00077
—0.00239
—0.00586
—0.01241
—0.02383
—0.04289
—0.07418
—0.12586
—0.21361

&EMB[(Zn)'] =
8~ q3 2) (4.6)

Writing the new terms of order (Zn) a.u. and higher in
DE@ED as d(Z) (Zn), that is, putting

and higher, can be seen. To do this, we have tabulated in
the first two columns of Table V our complete calculation
and the sum of the (Zn) and (Zn) contributions. In
the third column, we give the known (Zn) terms. In the
final column, the new physics of order (Zn) and higher,
calculated here, is given. Writing the terms in the fi-
nal column as c(Z)(Zn), we show a plot of the function
c(Z) in Fig. 5. For Z = 10—110, c(Z) lies in the range
—0.43 + 0.10 a.u. .

We can perform a similar breakup of the QED residue
DE@ED into known' terms of order (Zn) a.u. and new
higher-order terms. To do this, we note that the MBPT
calculation contains all of AE[(Zn) ] and AE[(Zn) ],
and in addition a part AEMB[(Zn) ] of AE[(Zn) ],
where

AEqED = AE[(Zn) ]
—AEMB [(Zn) ] + d(Z) (Zn)

(4.7)

we plot the function d(Z) in Fig. 6. It lies in the range
0.27 6 0.03 a.u. for Z = 10—110.

In summary, we have applied a contour rotation
method that allow us to evaluate the diagrams of
Figs. 2(a) and 2(b) numerically. The dominant Coulomb
correlation has been picked up along withf terms that con-
tribute at the order of fine structure, which are associated
with solution of the Dirac-Coulomb-Breit Hamiltonian.
Because the method involves an exact QED formulation,
additional physics, LE@ED, enters. This physics, which
enters at the level of I/Z of the Lamb shift, is an impor-
tant part of any calculation seeking to test our under-
standing of radiative corrections in high-Z few electron
atoms. The next steps are to extend the calculation to
the intensively studied n = 2 energy levels of the he-
lium isoelectronic sequence, and to begin the study of

Q 3Q ~ i I
(

I i I
t

~ 03Q

-0.35 0.28

-0.40

-0.45
N

-0.50

0.26
05

0.24N

-0.55 0.22

-0.60
0 20 40 60 80 100 120

Z

Q 2Q & & ~ I

0 20 40 60 80 100

Z

120

FIG. 5. The function c(Z) such that terms of order (Zn)
a.u. and higher in AE are given by c(Z)(Zn)

FIG. 6. The function d(Z) such that terms of order (Zn)
a.u. and higher in DE~ED are given by d(Z)(Zn)
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the other class of diagrams that contribute at this same
level, those involving one radiative correction and one
photon exchange shown in Fig. 2(c).

Note added in proof. It has been brought to our at-
tention that Eq. (2.41) has been derived with a method
based on Rayleigh-Schrodinger perturbation theory by
V. M. Shabaev [Sov. Phys. J. 33, 660 (1990)]. We have
obtained the analytic result E~ = (37i2107r)(Zn) a.u.
for that quantity in agreement with the numerical fit in
Sec. III.
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