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Contributions to the binding, two-loop correction to the Lamb shift
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In this paper, I present an evaluation of the two-loop diagrams, including the closed electron loop,
which contribute to the Lamb shift in (n/vr) (Za) /n order. These corrections sum to 2.71061(1)
for S states, which gives a 37.41-kHz shift for the 1S state of the hydrogen atom.

PACS number(s): 03.65.Bz, 12.20.Ds

I. INTRODUCTION II. EVALUATION

Although the binding, two-loop correction to the Lamb
shift has not yet been calculated in full, some partial
results have been already obtained [1—4]. This correction
is expected to be several kilohertz for the 2S hydrogen
state, and hence its evaluation is necessary to match the
precision of the latest experimental measurements [5,6]

L „,(2S —2Pi/2) = 1057845(9) kHz,

L,„ t(2S —2Pi/2) = 1057851(2) kHz,

All two-loop diagrams that contribute to the Lamb
shift in order (n/vr) (Zn) are presented in Fig. 1.
Groups I and IV contribute also to the lower
(n/m)2 (Zn)4 order. We start the evaluation with group
VI, the simplest of the diagrams.

For the first one (the last diagram in Fig. 1), the energy
shift E can be expressed as

while a recent measurement [7], of the 1S Lamb shift,

L „p,(1S) = 8172.84(9) MHz, (2)

is also on the verge of being sensitive to the two-loop
binding correction.

The other higher-order corrections n(Zn) [8],
o.(Zn) m/M [9], (Zo. ) m/M [10] have been already cal-
culated, except for the three-loop contribution deter-
mined by the slope of electron form factor at q = 0,
which is expected to give about 1 kHz. There remains,
however, the problem of the proton charge radius, for
which two experiments [11,12] give results that differ in
the predicted 2S Lamb shift by about 18 kHz. This is the
main source of uncertainty in the theoretical result, and
should be removed either by a further electron scattering
experiment or by a measurement of the Lamb shift for
muonic hydrogen which is currently being prepared by
Taqqu [13].

Experience from the higher-order @ED calculation
shows [14] that such results should be relied upon only af-
ter they have been performed by two independent groups.
The results presented here are in agreement with the re-
cent result of Rides and co-workers. My calculation relies
upon a mixed analytical and numerical approach, and a
program for symbolic manipulation [15]has been used ex-
tensively. To check the calculations I performed several
tests for intermediate results, and all the more sophisti-
cated analytical transformations have been performed by
writing symbolic programs.
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FIG. 1. Feynman diagrams representing two-loop correc-

tions to the Lamb shift in (—
) (Zo.) order; the double line

means a Dirac propagator in a Coulomb field.
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V(p) = 4' o.

p2 1+~(—p2)
4am

[1 —~(—p )+~ (—p ) — ].P2 (4)

We introduce here some functions that are also used
for the evaluation of other diagrams:

ur(k)= —k u( —k)

where p is a Schrodinger charge density and V( ~ is a
second-order {in n) correction to the Coulomb potential
V (in the one-loop approximation),

the energy shift becomes

OO

E = — — ZO. ' — dpu2 p2 .

The contribution from the second diagram can be writ-
ten as follows:

V(&) V(&)
P —m

In this order we may approximate the wave function P(r)
by P(0), and obtain

u(p') =

The energy shift can now be written as

d (q') . . .
)
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7r q2 jq2 —k2
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E = p(0)
(2vr)s

" P- m 4

Zo. — dp& p

5 48
(Z ~)'—

7t o

23
(Z n) vr

378

dpu (p)

(Z a.) 0.191155 .

After the summation of terms (10) and (12), and an
analytical integration [16], we obtain

Since for small p the function cu behaves like p, the
charge density can be approximated by

We consider now the diagrams from group IV. They
sum to a gauge-independent quantity which can be ex-
pressed by the two-loop vacuum polarization a(2~,

(2 A)4 (2 A)4

[p2 + (2 P)2]2 4
@iv = (14)

where A = ma.
Using (3) and (5), the contribution of this diagram to

or&2) has been calculated analytically in [17] with the fol-
lowing result:

A'~"(—1') = (
—

) (—2')
q(q +p

u~')(q') = — —(3 —b') (1+b') + — ln
~

&1+b)
3 16 4 q1 —b)

( 1 —bl (1 —bl 3 /'1+ b& f 1+ b
+(3 —b') (1+ b') L,, ~

—
~
+ 2I., ~

ln(b)1+ by (1+b) 2 (1 —bp (1 —b

+—5 (5 —55 )+ —5(5 —5') lc
~ ~

—25(5 —5 ) ttI(5)),
3 3, f1 —b

8 2 ( 4
(16)

where

4
1 ——.

q2
(17)

The 6rst term in the expansion of Cu( ~ in p is propor-
tional to p2 and gives exactly the c5 (Zc(.)4 order contri-

1 1 1
q2 + p2 q2 + p2 q2

(18)

so that we can make the approximation (9) and obtain

bution to the energy. We separate it out by making the
following replacement in (15):
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, 16 1, -d( ')
Eiv = — (&~)' — dp —,(—p')

7r 7r jp 4

( 1 1 l (,) (19)

After integration with respect to p, Ey~ becomes

OO

2 (2)
7r 4 q5

Zo. '4 dbms gl —b2 (')(b) (20)

where t) is defined in (17). The remaining integral is done
analytically [16] with the result

o. 2
5 ( 15647 25 2 52(~~)'

I

vr ——vr + —n. ln(2) I

q 13 230 63 63

Z o. 1.596 396. (2

The expression for the energy shift related to diagram
II is the following:

d4k u(k') — „1
(2vr) 4i k2 P—g —Vpo —m

(22)

where V = o./r. —The above matrix element has been
calculated analytically in [8] by direct integration with
respect to the electron momentum. The result in o. order
denoted by f is the following:

(
1 (5) 5

f (~—, k),
P—g —Vpo —m m

f(u), k) = 512X (1+w) 896X 512m X 128(u

3 (k2 + X2) 3 (k2 + X2) 3 (k2 + X2) (k2 + X2)

40m X 8u X 520X 72(d X
4 + 4+

(k2 + X2) (k2 + X2) 3 (k2 + X2) (k2 + X2)

+ 4i(1+(u) ( i k+ X)—
ln

Ik(k'+X') ( ik+X ) '

256 X 128 X
5+

3(k +X ) (k +X )

56 X 40+ X
+

(k' + X')' (k' + X')

16' X
(k'+ X')'

(24)

where w = k, k = ~k2, X = /2 or —w2 and we set the electron mass m = l. Using (22) and (23) Eii becomes

Ely = — — Z Q.' dkk u( —~ +k ) f((u, k), (25)

and therefore

Cd = 1 + 2 Q) ) (26)

and obtain

X = 1+u) (27)

where u is given in (6). To make the further numerical
evaluation easier we change the contour of w integration
to

pression:

5 oo

KP2
p( )(p) = d(q ) ,

')
0

q'( 1 l 4
f(q') = J+ —I,—J

I
+ —,(J —1) —1

4 pl+ q2 ) q2

(4 l(
+o-(q —2) I

—,+1
I I) (q2 1 —~4

(30)

E» = — (Z )' 0.229053. (28)

4+
q2

The diagrams from the III group have an interesting
physical interpretation. The energy contribution Eyyy can
be written as

=1 (2l
arctan(q) —8(q —2) arccos

I

q
(32)

Error = d p
(2vr) s

&(i) (p) V (i) (p) (29)

i.e., as a product of the one-loop correction to the electron
charge density and the one-loop correction to the vacuum
polarization. This correction to the charge density has
been evaluated in [18] and is given by the following ex-

After using (29) and (30), Erii becomes

d'p 8n', f(q') 4vrn (—np')
EIII 'q

(2vr)' harp' o q' + p' p'
OO 1

x d(k ) u(k ).
4 k2 k2+p2



2612 KRZYSZTOF PACHUCKI 48

Integration with respect to p is performed by means of
the formula

The final q integration is done numerically with the result

f d p 4m

(2 ~)3 p2 (p2 + k2) (p2 + q2) q k (q+ k)
' EIyy = — Z o-'1.920 576. (39)

and Eyyy becomes

Eyyy
——— — Z o. 32 «f(q') h(q) (»)

where

u(k')
h(q) = dk „

Taking u from (7) the k integration gives

1 a ( 128 48) 1 ( 121
h(q) = —I9- . ——.I+

I

5+ —,
I (37)

6q 32 ( q4 q2) 3q ( q2)

E~ —e4
d4k

(2vr) 4
q

(2')'

We pass now to the last diagrams with the closed elec-
tron loop, i.e. , to group V (of Fig. 1). Because their
evaluation is more difEcult, we present these calculations
in more detail. The energy shift Ev is given by the fol-
lowing expression:

1 1 (4am)2
k4 4 Pl/ (40)

(38) where

(27r)' "
P —m p+ y' —m P+ g+ y' —m P+ g —m

1 1 1 1+ fp,
yf —m P+g —m P+g+g —pp P+g —m,

QV QO

1 1 1 1
+pp

P —m P+g —m P —m P+g —mQO QO QV (41)

The general expression for the II„~ was derived in the
classical paper [19],and a similar problem of the forward
scattering of light by a Coulomb Beld has been considered
in [20]. Our problem diff'ers from the light scattering by
the fact that the photon is not on mass shell k g 0, and
the former general expression is too complicated to be
sure that we will not make an error during its rewriting.
Thus, we calculate our expression from the beginning.
The matrix element in (40) can be evaluated by taking
the wave function P on mass shell. After symmetrization
with respect to the sign of k, one obtains

= &(0)',
l

t" t +g"
l

(42)k' —4(kt)' q k'

where t is a timelike vector t = (m, 0, 0, 0).
After evaluating the traces of (41) we pass to Euclidean

space by changing the integration contour. The integra-
tion with respect to p in (41) is carried out by introducing
Feynman parameters and the Pauli-Villars mass regula-
tor M. For the first term in (41) this requires three pa-
rameters a, b, c. Since the denominators here are linearly
dependent upon p, after the p integration one integrates
with respect to the parameter whose square does not ap-

pear in the denominator; for example, c. The denomina-
tors in these three terms are then the same and have the
form

O(l —a —6)
k2 a(l —a) + q2 6(1 —6) + 2(kq) a6

(43)

The terms in the numerator can thus be added together
and the M-dependent terms cancel out, leaving a poly-
nomial of k, q, a, b. A problem arises in its evaluation,
because of the presence of k, q in the denominator in
(40). Before the integration with respect to a, 6 the whole
expression is divergent in k, q. This is the reason why
we do not now continue the integration by introducing
another Feynman parameter. After integration over a
and b, it is apparent from the effective Heisenberg-Euler
Lagrangian that the numerator of our expression should
behave for small k or q like k or q~. However, this re-
quires a subtraction of the 6nite term at k = q = 0.
This interesting additional subtraction is required by the
renormalization procedure. We have checked by analyt-
ical integration that in the case of k = 0 or q = 0, the
expression vanishes after this subtraction. We solve the
divergence problem by dividing our expression into two
parts. The first is obtained by putting k q = 0 and the
second is the remainder.

In the second part we symmetrize in q and obtain terms
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of the following form: TABI E I. Results of the calculation of binding two-loop
corrections.

1
[1+k a(1 —a) + q2 b(1 —b)]2 —4(k q)2 a2 b2

1

[1+k2 a(l —a) + q2 b(1 —b)]2
'P (k, q, a, b), (44)

dO„ 1 1
2~2 cr2 + u2 P2 u2x y

where 7 denotes a polynomial. Next, we integrate with
respect to all angles by means of the formula

No.

I
II
III
IV
V
VI

This paper

-0.229 053(1)
1.920 576(1)

1.596 396
-0.386 15(1)
-0.191155

Eides
and co-workers

'?

-0.2290
1.920
1.5959

?
-0.1913

4
arctanh

1

~P+gP -I-+~I+- ~
'

(45)

The first part, because the absence of k q, is open
to further analytical integration. We integrate first with
respect to q, then b, and finally with respect to the (k, t)
angle. The remaining two-dimensional integral with re-
spect to k and a is performed numerically. From the sum
of the two parts we obtain

where u is a unit vector with u, u» x, and y compo-
nents, and dO„denotes the integration over the three-
dimensional u-sphere. The remaining integration with
respect to k, q, a, b is done numerically. The separation
of the terms with k q = 0 allows the divergence in k and
q to be removed separately from each term, thus avoiding
the numerical instability in the evaluation of this integral.

I

&v ——— — Zo. 0.38615 1 (46)

The evaluation of the remaining diagrams from the
first group will be presented in a subsequent paper; these
diagrams seem to be the most dificult in the evaluation.
Our starting point will be the following formula, which
we give without proof:

Ei = P(0)
dsp (4vr n)2

T
I A~(0, p, 0)+2I'R(0 p) + ~R(p)

1 1 l (go+ I)
2'7r p gf m— P —m)2) 4 S

(47)

where A, I', and Z are two-, one-, and zero-vertex func-
tions with implicit indices equal to 0, which are gener-
ated by the expansion of the diagrams I in powers of the
Coulomb field, and S means the separation of the con-
stant term for p = 0.

III. CONCLUSION

The result of our calculations is summarized in Table
I. The evaluated corrections sum to

l

[1—3] multiplied by vr to match our convention. There
are only small di8'erences caused, we believe, by the nu-
merical integration, and these results thus appear to be
verified. The remaining uncalculated diagrams, which
give a contribution of the same order in o. , are diagrams
from the first group in Fig. 1 and the three-loop contribu-
tion. The latter can be calculated using the on-mass shell
approximation, and the numerical method developed by
Kinoshita [21] or the analytical approach by Remiddi and
co-workers [22] are suited for its evaluation.

bE = — (Zcr) 2.71061(1)= 37.41 kHz (48) ACKNOWLEDGMENT
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