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The modified Coleman-Hepp model proposed recently by Nakazato and Pascazio [Phys. Rev. Lett. 70,
1 (1993)j is further generalized so that an ultrarelativistic particle interacts with a linear array of 1V spins,
each of generic magnitude s rather than —'. We study the evolution of an appropriately defined measure

C(t) of quantum coherence, with t being time, and elucidate the roles played by N and s on the process
of decoherence. It is shown that N and s appear in the form of the product Ns in C( ~ ) at zero tempera-

ture, but not in general. It is also noted that the effect of temperature shows up only for s ~ 1. We study

the temperature dependence of C( ~ ) in detail, and point out in particular that it is not necessarily a

monotonic function of temperature. The limiting cases of s —+ ~ and/or 1V~ ~ are also considered to
investigate how the present model tends to a boson model, that is, a model in which the spins are re-

placed by harmonic oscillators.

PACS number(s): 03.65.Bz, 03.65.Fd

I. INTRODUCTION

In a paper [1] dedicated to the sixtieth birthday of M.
Fierz, Hepp introduced and analyzed "the Coleman mod-
el" which "can be considered as a caricature of an elec-
tron in the one-dimensional motion, whose spin is mea-
sured by the result of a local interaction with an infinite
spin array. " The magnitude of each spin was taken to be

2
This model, hereafter to be cal led the Coleman-Hepp

(CH) model, was intended also to mimic the development
of a photoemulsion in terms of a Hamiltonian which does
not depend on time. Exploiting the infinite size of the
system, Hepp identified a variable which may be regarded
as corresponding to "the macroscopic pointer position, "
and derived "a reduction of the wave packet with respect
to all local observables. " Hepp's C*-algebraic language
was translated into a common physicists' language by
Bell [2], who critically analyzed the meaning of the
reduction of the wave packet as derived by Hepp. In par-
ticular, Bell pointed out that the reduction claimed by
Hepp occurs only after an infinite duration of time, which
is unphysical. Later, Cini [3] introduced a model which
replaces the above infinite array of spins by a single har-
monic oscillator (or a single spin of large magnitude), and
discussed its measurement-theoretical implication. In
particular, he emphasized that the so-called reduction of
the wave packet is "a consequence —though not an exact
one but valid to a very high degree of accuracy —of the
laws of quantum mechanics, " the degree of accuracy be-
ing the higher the greater the number of degrees of free-
dom (e.g. , the magnitude of spin) involved. (The Cini
model can also be regarded as a modified version of the
model considered by Cini et al. [4], which in turn is a
modified version of the Haake-Weidlich model [5] con-
sisting of a harmonic oscillator interacting with a large
number of two-level atoms. ) A finite-array version of the
CH model was studied by Kudaka, Matsumoto, and Ka-
kazu [6] from a generalized-coherent-state point of view,

and also by Machida and Namiki [7], Namiki [8], Namiki
and Pascazio [9], and Nakazato and Pascazio [10], who
discussed its relationship with Cini s model and also stud-
ied it from the point of view of" a many-Hilbert-space
theory" put forward by Machida and Namiki [11] with
its mathematical aspect explained by Araki [12]. Very re-
cently, Nakazato and Pascazio [13,14) proposed a
significant modification of the CH model, where an ener-

gy exchange between the electron and the spin array is
taken into account, and discussed its relation with the
quantum measurement process. In these works [6—14]
particular attention was paid to the limit of infinite array
and/or to the asymptotic feature as embodied in the S
matrix.

In spite of these excellent works, there are more to be
fruitfully learned from the CH model or its variant. In
the present paper we generalize the Nakazato-Pascazio
[13] version of the CH model so that the magnitude of
each spin is arbitrary, and study it from a somewhat
different point of view. That is, we analyze the time evo-
lution of an appropriately defined measure of quantum
coherence paying due attention to the effect of the initial
state of the system, namely, the initial wave packet of the
electron and the initial ensemble of the spin array. We
consider the case of finite array consisting of N spins each
of magnitude s, although we brieAy touch upon the limits
of X~ ~ or s~ ~ as well. We shall obtain an explicit
picture on how the decoherence process proceeds. In par-
ticular we investigate the role played by X and s as well
as by the initial state. Although the S matrix depends
only on the product Xs, X and s play independent roles in
the docoherence process. It is also shown that the tem-
perature of the initial spin array is significant if (and onlyifls�.

II. GENERALIZED COLEMAN-HEPP MODEL

The purpose of this section is to introduce our model,
which is motivated by the Coleman-Hepp (CH) model
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and more directly by its extended version proposed by
Nakazato and Pascazio [13]. Let us begin with reviewing
these models. We shall somewhat change the standard
notation into the one which is more appealing to physical
intuition.

In the CH model, a particle with spin —,
' moves in the

one-dimensional space with a positive constant velocity v

in the x direction. It interacts with a detector consisting
of X spins. The 1th spin (I =l, . . . , Ã) is located at the
spatial position xI, has magnitude —,, and is represented
by Pauli matrices ot (a=1,2, 3). In our convention the
superscript and the subscript denote the spin component
and the spatial location, respectively. (The term detector
is used here just for brevity without any further implica-
tion. ) The interaction is such that the particle at the po-
sition x exerts a magnetic field 8 (x —xt ) on the lth spin
if and only if particle's spin is up. (By convension 8 has
the dimension of frequency. ) Let X and P be the position
and the wave-number operators of the particle, respec-
tively, so that

compact support:

8,(x)=0 for lx & 5, (2.6)

where 6 is a positive constant. We do not stipulate the
value of xI except that

6+6&x ~ . . ~x~ &L —6, (2.7)

H=H +P H'

where

H =H ++cut(st +st),

(2.8a)

(2.8b)

H =vP+ —,'O~ (2.8c)

where 6 and I. are positive constants. In addition we
suppose that the particle's spin undergoes free precession
with frequency 0 in the absence of interaction with the
detector. With these generalizations, we arrive at our
model described by the Hamiltonian

[X,P]=i, (2.1) H' = —QBt(X —xt)st exp(icotX/u)+H. c.
I

and r (a=1,2, 3) be the particle's spin operator. The
Hamiltonian, whose dimension is taken to be that of fre-
quency, of the CH model is then given by

=+St Bt(X,xt) .
I

(2.8d)

In the last expression we have introduced the notation

HcH =uP+ —P+g 8(X xt )o t, —1

1

(2.2) s=(s', s', s'), (2.9)

where P+ is the projector onto the particle-spin-up sub-

space, to be called the plus subrace for short:
B(X,x)=8 (X —x) —sin, cos, 0NX FAX

v v
(2.10)

P+=(1+r )/2 . (2.3)

Throughout this paper, it is to be understood that

I /=1
(2.4)

unless the range of the summation is stipulated otherwise.
The choice of o, rather than o', in Eq. (2.2) is merely a
matter of convention; it affects unobservable phases only.
In the CH model there is no exchange of energy between
the particle and the detector. In order to remedy this
somewhat unphysical feature Nakazato and Pascazio
(NP) [13]proposed the following Hamiltonian, where tu is
a positive constant;

1
HNp vP+ cup (0 t+ 1)

1

+—to+ g 8 (X—xt )o t exp(i coX/u ) +H. c. ,
I

(2.5)

where o. =0' —io. and H.c. stands for the Hermitian
conjugate. This is identical to Eq. (4) of Ref. [13] apart
from the projector P+, which we prefer to be present in
order to facilitate the study of coherence [cf. Eq. (3.21)].
This is the starting point of our generalization. In the
last expression it is straightforward to replace a.&/2 by
the spin operator SI of magnitude s&. There is no
difficulty either in making 8 (x) and co depend on I For.
the sake of definiteness we suppose that each Bt(x) has a

By construction, this model contains the NP model (and
a fortiori the CH model) as a special case.

The above generalization is mathematically so straight-
forward that it does not spoil the exact solvability of the
problem. As we shall see, however, it allows extra pa-
rameters leading to richer physics, and it also clarifies the
condition of appearance of some particular mathematical
structures (e.g., generalized coherent states) encountered
in the NP (or CH) model.

III. BASIC PROPERTIES OF THE MODEL

Let lx ), lp ), and l+ ) be eigenstates of X, P, and r,
respectively, such that

Xlx ) =xlx ), (x lx') =n(x —x'),
Plp &=pip &, &pip'&=&(p —p'),
r'I+&=+I+&, r-+I+ &=21+&, &+I+&=1,

(3.1)

and let I ls, m ) lm = —s, . . . , s I be the standard basis of
the spin-s representation of SU(2) associated with the spin
operator S,

s'ls, m & =mls, m &,

S—
ls, m) =&(s+m+1)(s+m)ls, m+I) .

(3.2)

When we refer to the lth spin 8&, we shall affix subscript l
to the ket; for instance lst, m )t. For the moment let us
focus on one of the spins, omit writing the subscript, and
introduce the notation
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lp;s, m ) = lp )g ls, m & .

Then

S—exp(+icvX/u)Ip;s, m ) oc Ip+cv/v;s, m+1) .

(3 3)

(3 4) where

U(t)=exp(iH t) exp[ i—(H +H')t]
=exp(ivPt) exp[ —i(uP+H')t ], (3.13)

Hence, for any s, H' describes an energy-exchange pro-
cess, as observed by NP in the case of s =

—,'.
By virtue of the relation

[X/v, H ]=i (3.5)

the operator Xlv plays the role of the time operator
Hence the vector B(X,x ) defined by Eq. (2.10) represents
a resonant rotating field in the usual sense used in the
theory of magnetic resonance or quantum optics; interac-
tion Hamiltonian (2.8d) is the so-called rotating-wave ap-
proximant to a more general one in which co& are different
from those in free Hamiltonian (2.8b). In turns out to be
convenient to define the time-dependent tipping angle

8i(x, t)= f dt'BI(x —xI+vt'), (3.6a)
0

H'=g Bt(X —x()S(
1

(3.14)

)(t)=(+le' 'r e ' 'IV), (3.15)

where IV) is the normalized initial state (at t =0) of the
entire system. Let us suppose that

—(I+ &+ I

—&) lg& I»,v'2 (3.16)

This U(t) is nothing but the plus-subspace time-evolution
operator for the CH model generalized to arbitrary spin
and l-dependent B (x). [To be precise, we have omitted a
physically insignificant overall c-number phase factor
exp( —i +1 cols, t ) on the right-hand side of Eq. (3.12).]

A particularly useful physical quantity is the expecta-
tion value of ~

as well as

8I(x)=—f dx'Bi(x' —xI ) (3.6b)

where Ig) is the initial orbital state of the particle and
ID ) is the initial state of the detector. We shall use the
notation

and the asymptotic tipping angle

oo

8& =8, ( oo ) =—f dx Bt(x) .—oo
(3.6c)

I@) ID ) =
I P;D ) = f dx P( x)l x; D)

= f dp 4(p)Ip D &, (3.17)

8, (x, t)=8I(x+ut) if x (b, . (3.7)

The fundamental quantity of interest is the time-
evolution operator. Since P+ commute with H and H',
it is obvious that

exp( —iHt)=exp( —iH t)IP +U (t)P+], (3.8)

As the particle passes by, the lth spin is subjected to the
magnetic-field pulse and is rotated by the above amount.
Note that under conditions (2.6) and (2.7) we have the
identity

where the initial orbital wave function

q(x) = &x Iq& (3.18)

is supposed to be localized around the origin with width
5, which we take to be equal to the constant introduced
at Eq. (2.7):

g(x)=0 for lxl &b, . (3.19)

The corresponding momentum amplitude has been writ-
ten as P(p). By use of Eq. (3.8) and the relation

P =0, we find

where

U (t)=exp(iH t) exp[ —i(H +H' )t]

(r )(t) =C(t)e

(3 9) where

(3.20)

is the time-evolution operator (in the interaction picture)
restricted to the plus subspace. The observation made in
the preceding paragraph motivates us to work in the ro-
tating frame, a somewhat different procedure from that of
NP. With the aid of the unitary operator

C(t) =
& el U.(t)r- Ie)

It has the property that

(3.21)

A, (X)= exp( —i co IS) X/u ),
A(X) =+A, (X),

l

one sees that

U (t)=%(X)U(t)R(X)

exp( iHt) =%(X)e—xp( —iH t )

X tP +U(t)P+[%(X)

(3.10a)

(3.10b)

(3.1 1)

(3.12)

C(0)=1, IC(t) ~1 . (3.22)

Thus, IC(t)l may be regarded as a degree of quantum
coherence at time t. For brevity we shall call C(t) the
coherency. (This is not a standard terminology. ) It is not
the unique measure of coherence but a compact and ap-
pealing one both physically and mathematically. In a
more formal discussion one may consider the S matrix.
Its nontrivial operation is closed within the plus sub-
space. The S matrix restricted to the plus subspace,
denoted by S, is defined by

Here H is defined by Eq. (2.8c) and g=U (oo) . (3.23)
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The asymptotic value of C(t) is therefore given by

(3.24)

This quantity is essentially the same as "the visibility"
discussed by NP. For the latter to be given by the right-
hand side of Eq. (3.24), however, a few assumptions and
some arguments are needed (cf. the Appendix of Ref.
[14]),while our formulas for C (t) are exact and easily ob-
tainable; this is the virtue of having the projector P+ in
Eq. (2.8a).

We conclude this section by slightly generalizing the
definition (3.21) of the coherency; if the detector was not
in a pure state initially but in a mixture described by a
density operator pD, then

C(t) = (qltri U. (t) Iq}, (3.25)

IV. TIME EVOLUTION OF COHERENCY

where the trace denoted by tr is to be taken over the
detector's degrees of freedom alone. This formula shall
be used in Sec. VII.

and we have taken account of condition (3.19) to use
identity (3.7). Asymptotically (i.e., t~ ~), in particular,
8&(x+ut) can be replaced by the constant 8i defined by
Eq. (3.6c), because in Eq. (4.4) x is restricted to the range
lx I

(a. Thus

SIQ;D &
= J dx P(x)R(x)Ix;D &,

where

R (x)=+%i(x) exp( i 8—&Si )J7&(x)
I

(4.5a)

(4.5b)

In fact, under conditions (2.6), (2.7), and (3.19) S in Eq.
(4.5) can be replaced by U„(t) provided that ut )L + b, .

In the rest of this section we suppose that the initial
state of the detector is an eigenstate with eigenvalue ml
of SI for each l. That is,

ID&=IM&=—Is„m, &,ls„m, &,e . e Is~, m„&~,
(4.6)

where M stands for the N-tuple (m „.. . , mz). We shall
use the notation

The time-evolution operator U(t) can be evaluated by
the standard procedure [1];solving the equation

$(

m'= —s
1 1

sN

I
m = —sN N

(4.7)

i U(t) =H'(t) U(t),
Bt

H'(t) =exp(iuPt)H' exp( iuPt)—
=g Bi(X + ut —xi )Si

I

one finds

(4.1)

(4.2)

Equation (4.4) then reduces to

U (t)
I q;M &

= J dx f(x) g exp( iE ~ x—)
M'

XrM M(x, t)lx, M'&,

(4.8)
where

U(t) =exp ig 8t(—X, t)St
I

(4.3)
+M'M EM' +M (4.9)

where the function 8i(x, t) is defined by Eq. (3.6a). Note
that its argument in Eq. (4.3) is the operator X. Equa-
tions (3.10), (3.11), and (4.3) then lead to

U ( t) I g; D &
= f dx g(x )R (x, t) I x;D &, (4.4a)

E~ =g cubi(mi +si )/u (4. 10)

is the energy (in units of wave number) of the detector in
state IM'&. We have also introduced

where

R (x, t) =~Xi(x) exp[ i 8, (x +ut)—Sf]X,(x)', (4.4b)
rM M(x, t) =g r(si, mt, mt, 8i(x+ut ) ),

I

where

(4.11)

r(s, m', m;8)=(s, m'lexp( i8S )Is—, m &

' 2$

cos— g (
—1) tan—

2 k 2

' 2k —m'+m
&(s + m')!(s —m')!(s —m)!(s +m)!

k!(k —m'+m )!(s+m' —k )!(s—m —k)! (4.12)

In the last formula (i.e., the Wigner formula [15]), the summation is retricted to the range where the arguments of all
factorials are non-negative. The coherency can now be evaluated as

c(t)=
& q;Ml U.(t)lq;M &

dx x —ut ' r sI~~I~~I'I x
I

where

(4.13)

2$
0r(s, m, m;8)= cos—

2k
0i tan-

k

(s +m)!(s —m)!
(k!) (s +m —k)!(s —m —k)!

(4.14)
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We see that the coherency is independent of co&. Given
values of si, mi and functions Bi(x) and itj(x), we can
work out C(t) explicitly for any t A concrete example
shall be given in Sec. VE.

The S matrix can be evaluated similarly. Taking the
limit t —+ ~ in Eq. (4.8), we find

+
I g; M &

=g exp( &'EM—M X ) rM M I y; M' &,
M'

(4.15)

where

rM, ~=g r(s, , m,', m, ;e, )
I

(4.16)

The argument of each ket on the right-hand side clearly
expresses the asymptotic energy conservation as in the
NP model.

is independent of x and t. One may go over to the
momentum representation via Eq. (3.17) to arrive at the
formula

Slg;M &
= Jdp it'(p) g rM Mlp+FM EM;M—'& . (4.17)

and in particular

2$
0r(s, —s, —s;l9)= cos— (5.3)

In the rest of this section we discuss only C( ~ ) and
the S matrix. Equations (3.24), (4.15), and (5.3) give

1 2$1

C(oo)=Q cos
I

1 . 2
(5.4)

which vanishes if at least one of 0&'s is equal to ~; a 180'
pulse completely flips a spin and renders the entire state
orthogonal to the ground state. Let us further specialize
to the case where co& and Oi defined by Eq. (3.6c) are in-
dependent of I; accordingly we drop the subscript I from
them. [Note, however, that Oi(x) still depends on 1

through x& even if Bi(x) is also independent of l.] Then,
operators A(x) and R(x) defined by Eqs. (3.10b) and
(4.5b), respectively, can be expressed in terms of the total
spin

V. CASE OF DETECTOR INITIALLY
IN GROUND STATE

J =ESP (5.5)

ID&=IG&, G—= ( s, s, , s ), (5.1)

Suppose that the detector was initially in its ground
state, namely, A(x)=exp( ituJ xlu—),

R (x)=A(x)exp( —I 8J2)%(x)

(5.6)

(5.7)

$+m $ m
2$

r(s, m, —s;8)= +
0—sin—
2

0
cos

2

with the notation of Eq. (4.6). In this case Eqs. (4.8) and
(4.13) are simplified considerably, because

1/2

J +sl
1

(5.8)

Since
I
G & is the common eigenstate of J and J~ with ei-

genvalue —j and j (j +1), respectively, where

(5.2) it follows that

J
R (x) I

G &
=R (x) lj, —j &

= g exp[ i (p+j )tux—/u ]r (j P j;g ) IJ,p &

2J= g exp( —intox lu )r(j, n —j,—j;9)lj,n —j &,
n=0

0—tan —
lp nculu;j, —n —j & .

where the notation of Eq. (3.2) has been used with (s, m) replaced by (j,p). Consequently Eq. (4.17) takes the form
1 2j 1/2

0 2J 2j
SIP; G &

= cos— J dp 1T(p) g2 n=0

(5.9)

(5.10)

j=¹; (5.11)

This corresponds to Eq. (14) of NP [13]. What they
called a generalized coherent state has thus been general-
ized to the case of arbitrary [si]. In addition, it has been
shown that such a state occurs if m& and 0& are indepen-
dent of l; it is, however, not necessary that s& is indepen-
dent of l.

It is to be noted that [si] and N appear in Eq. (5.9)
only in the form of j. If s& is also independent of l, then

as far as the operation of the S matrix on the ground state
(of the detector) is concerned, the role of N (i.e. , the num-
ber of distinct spins) and that of s (i.e. , the magnitude of
each spin) are indistinguishable. This result may be intui-
tively understood by imagining the case of all N spins lo-
cated at the same position (x, =xz = . =x~); then one
would effectively have a single spin of magnitude ¹.
This is essentially what was called "big bang" by Hepp
[1] in his "example 5." (He was concerned with the case
of s =

—,
' and N= oo). Indistinguishability of N and s as
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0—=N '+0( . (5.12)

Equation (5.4) may then be evaluated as

well as its intuitive interpretation given above, however,
breaks down if the initial state of the detector does not
belong to the spin-j representation of J. An example is
the case of initially thermal detector to be discussed in
Sec. VII. Parameters N and s wi11 play independent roles
also in a more detailed property than the mere 5 matrix,
in the time evolution of' coherency, for instance. We give
some explicit examples in the next section.

We conclude this section by considering C( ~ ) for the
case where sI is independent of l and each 0I deviates
only slightly from the mean value

C(t)= f dx iit(x ut)i —+ cos
I

08(x —xt )
(6.4)

[In this case 0 may be restricted to the interval (0, 2n. )

without loss of generahty. ] This is illustrated in Fig. 2(a
for (N, s)=(2, —,') and in Fig. 2(b) for (N, s)=(1,1). De-
tails of the profile depend on the shape of ~g(x)~; the
figures correspond to the case of ~P(x) ~

being a Gaussian
packet of half-width 6, truncated at

~
x

~

=6;

stant is so chosen as to satisfy the condition (3.6c). Oscil-
latory behaviors occur for large 0, which corresponds to
large B(x) or small particle velocity u. When h))5, on
the other hand, we may replace B (x) by u05(x). Accord-
ingly

91
C( ~ ) =exp 2s g ln cos

2

0
cos—exp

2

where

(50)
2

0
8 cos—

2

2N$

(5.13)

~g(x)~ ~b 'exp( —x /b, )e(b, —~x~) . (6.5)

It would be instructive, although we shall not do so ex-
plicitly, to depict (r )(t) on the complex plane. It gives
a clear picture of how the precession of the particle's spin
is affected by the interaction with the detector. In each
f th cases shown in Figs. 1 and 2, two qualitative y

anddifFerent regimes exist, namely, the regimes Q)) a/u an
0 ((a/u; in the latter regime the magnitude of (r )(t
diminishes before it has precessed appreciably.

(50) =N ' g (0i —0) (5.14)

The asymptotic coherency is seen to be depressed by the
weak l dependence of 0I, it is not necessarily the random-
ness but simply any l dependence that counts in this con-
nection.

1/2—

I I
(

-----------—-3/4

1/4

VI. EXPLICIT EXAMPLES OF C(t)

Let us illustrate the separate N and s dependence of
C(t) by considering a simple model in which B&(x) is in-
dependent of l and

-1/2—
(2, 1/2)

h/a =0.4

0=10m/3

xi=6+la, a )26, (6.1) -1
0

where a is a constant and 5 is the half-width of B (x) [cf.
Eq. (2.6)]; Eq. (6.1) ensures that g(x) and B(x —xi) do
not overlap each other. We consider two typical situa-

we may replace ~1((x) ~
in Eq. (4.13) by 5(x) and obtain

2$

vt/a

3/4

1C(t) = g cos 0i(ut)—
2

(6.2)

B(x)/u ~5 'exp( —x /5 )e(5—ixi), (6.3)

This is illustrated in Fig. 1(a) for (N, s) =(2, —,
'

) and in ig.
1(b) for (N, s ) = ( 1, 1 ), where the abscissa refers to the di-
mensionless time Ut/a. Details of the profile depend on
the shape of B(x); the figures correspond to the case of
B (x) being a Gaussian pulse of half-width 5, truncated at
/x/=5; 0

0

8/a =0.4

I

1

vt/a

0=10m/3

1/4

where 8 is the step function and the proportionality con-
FICx. 1. (a),(b) Examples of C(t) given by Eq. (6.2). The pair

of numbers in the lower left corner denotes (N, s).
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I/2-

I I I I

8= /3 (a)

8=2m/3

3/4

1/4

W(s, P;9)=(exp( —i9S ))ti,
with the notation

( A )ti=tr, p(s, p)A .

In particular,

C(m)=+ W(si, Pi, 8i) .
I

(7.6)

(7.7)

(7.g)

(2, 1/2)

d/a =0.4

Rotation invariance of p(s, p) around the S axis implies
that

I I i I

0
vt/a

W(s, P;8) = W(s, P; —8),
W(s, P;it+9) =(—1) 'W(s, P;m. —8) .

With notation (4.14) we have

(7.9)

tr, exp( —PS )exp( —i9S )=g e ~r(s, m, m;8) .

8=2m/3 or 4&3

~—3/4

Again, rotational symmetry implies

r(s, m, m;9)=r(s, —m, —m;8) .

(7.10)

(7.11)

d/a =0.4

0
0

vt/a

I

2

FIG. 2. (a)(b) Examples of C(t) given by Eq. (6.4). The pair
of numbers in the lower left corner denotes (N, s).

In the special case of s =
—,', therefore, W(s, p;9) is in-

dependent of temperature.
One might intuitively guess that ~C( ~ )

~
should de-

crease as the temperature goes up. However, this is not
so in general. The case of sI =

—,
' for each I gives a counter

example in which
~
C( ~ ) ~

is independent of temperature.
A more drastic one is the case of 0I =~ for each I. A 180
pulse reverses the direction of spin, that is, the state
~s, m ) is transformed into ~s, —m ), which is orthogonal
to the original state unless I =0. This property mani-
fests itself in the formula

VII. CASK OF DETECTOR INITIALLY
IN THERMAL EQUILIBRIUM r (s, m, m; ir ) = ( —1 )'5 (7.12)

Let us now suppose that the detector had been in
thermal contact with a heat bath and had attained the
thermal equilibrium of temperature T by the time t =0,
when the detector was decoupled from the heat bath. We
focus our attention on the coherency as defined by Eq.
(3.25). In the present case

(7.1)

where

p, =fico, /k' T,
p(s, P)=[Z(s,P)] 'exp( —PS ),

sinh(s + —,
' )P

Z(s, P)=tr, exp( —PS )=
sinh —,'P

(7.2)

(7.3)

(7.4)

C(t)= Jd ~gx( xvt)~ +W(s, ,P, ;9,(x)),
I

where

(7.5)

with tr, being the trace over the (2s+1)-dimensional
spin space. Putting (7.1), (3.11), and (4.3) in (3.25), we ob-
tain

It follows from Eqs. (7,8), (7.10), and (7.12) that C( co ) =0
if at least one of the sI's is a half odd integer, and that

Q Z(s, ,P, ),
I

(7.13)

0 y+y'
cos cos =cos

2 2 2

Taking the trace of both sides, we find

tr, exp[ —i(y+y')S ]exp( i9S )=Z(s, i—(p) .

(7.14b)

(7.15)

if all sI are integers. This is a monotonically increasing
function of temperature. On the other hand, one's intui-
tion is confirmed when 0 is small and s ~1; see Fig. 3
below and also Secs. VIII and IX.

In order to evaluate W(s, p;8) for a generic case, we re-
call the well-known relationship among the rotation
operators; let y, 0, and y' be the Euler angles correspond-
ing to the rotation through an angle y about the axis
specified by a unit vector n, then

exp( —iyS )exp( —i9S )exp( —iy'S )=exp( —iyn. S),
(7.14a)

where
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8=Jf/3

0=2m/3

=0.1

~ . ~ ~ &

8=5m/6
9=10m/3

6/a =0.4

-1/3

vt/a

FIG. 3. W(1 R. 6I)) as a function of temperature.

(b)

Since both sides are analytic functions of + ' w'V y

8'(s, P; 8) =Z(s, g) /Z(s, P),
where

cos}i =cos—cos}i—8
2 2 2

(7.16a)

(7.16b) 6/a =0.4

i
1
1
1
I
1
1
I

I
i
\

I
i

\
P =0.1

O' —,P; 8 =cos—02'' 2'
coshP+ ( 1+coshP)cosB

1+2coshP
(7.17)

W —,P; 8 = cos ——(coshP) 'sin —cos—20

In particular if u
tain

, 'f u&, &, and sI are independent of I b-f~ o, weo-

C( ~ ) = [ W(s, P;8) ] (7.18)

which depends separately on X and s. We ds. e epict

Oin Fig. 3;b
as a unction of temperature for f 1ra ew va ues of

ig. ; y virtue of the symmetry relation (7.9), 8
may be restricted to the interval [O, m. ].

In the evaluation of Z(s gs, g), one can adopt without loss of
generality the convention that sinh(~~/2) lie
posi ive real axis or positive imagin

'
r h

'
ary axis o t e com-

plex plane. Explicit forms of 8'(s p 8) fos, ; or small values
o s may e worked out by use of Eqs. (7.4) and (7
For example,

an .16).

vt/a

FIG. 4. (a),(b) Exam lesp es of C(t) at a finite temperature; the
system considered is the same as in Fig. 1{b).

This figure shows explicitly that
~

8' is
a monotonicall

y a ~ is not necessarily
nica y decreasing function of temperature. Fi-

e zero-temperature case.
Nakazato and Pascazio [14] studied "the case in

i ially in a thermal state" with the NP
model. Their "thermal state" ha e, owever, is not the true
thermal state described by (7.1)

'
hwit s =

—,; they restricted
themselves to the total-spin-N/2 subs ace. Thus

i~a ion o~ matrix is concerned, their

mitially in thermal equilibrium. Indeed "the ' 'bil-
ity" given by their Eq. (3.20 readsq. . reads, in our notation,

the followe
In their ratherer involved calculation,

lo t
ey o owed related calculations in R f 6 10

p y he normal-ordering formula,

'n e s. , to em-

exp[ i B(S+e '~+5—e'~)] =ex ( iS+e-=exp i e 'Pt—anB)exp( —2S ln cosB)exp( iS e'~ tanB),— (7.19)

which followollows from the observation that all the
tial factors in it belon

a a t e exponen-
in i belong to a representation of Cxl(2, C)

[16]. By contrast, our derivation of (7.15) on the basis of
(7.13) is simple and elementary.

VIII. CASE OF LARGE SPIN

The case of s ))1
as low-1 in

or all l is of some interest 1

- y' g excited states are concerned h
; so ong

e, eac spin may
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be replaced by a boson and one is left with a detector
with an array of boson sources (or of harmonic oscilla-
tors). In order to investigate this limit, we begin with the
definition

ccrc(x)= —(s&/2)' Oi(x)

xf dx'ft(x' —xi),
2u

(8.9a)

ln &, = ls, n —s &, n =0, 1, . . . , 2s . (8.1) cci =~i( ~ ) = — — f dx f, (x) .
v 2u —co

(8.9b)

With this notation, Eq. (3.2) reads as Supposing that a is independent of s, we find up to order
s that

S'ln &, =(n —s)ln &, ,

S+ ln &, =+(n +1)(2s —n)in+1&, ,

S ln &, =+[2s (n ——1)]n ln —1&, .

(8.2)
exp(+ g /2 )

cx 1 a2 2
2

1+ z+- (1+3z—3z )z e —~c2 + /2

4s 6 4s
(8.10)

Therefore the spin operators can be expressed in terms of
the operators a and a defined by where z =coth(P/2). Consequently

aln &, =&n ln —1&, ,

a ln &, =+n+I n+1&, ,

(8.3)
W(sPH)= 1+ (2n +1) n — n +n +-a CX 1

2s ~ ~ Z

as follows (the Holstein-Primakoff transformation [17]):
CX

Xexp — (2n&+ 1) (8.1 1)

S=aa —s,
S =(2s —a a)' a,
S+ =a t(2s —a ta )

"z
(8.4)

[To be precise, a l2s &, is not defined by Eq. (8.3). How-
ever factors are so carefully arranged in the definition
(8.4) of S that a l2s &, is not needed. ] We also define

f (x)=s' B(x) . (8.5)

Putting Eqs. (8.4) and (8.5) in (2.8), and formally letting
s —+ ~ while keeping f (x) fixed, we find

H„=H +g coiai ai,
l

(8.6a)

H' = g f, (X x, )a, exp(icu, X—/u)+H c (8.6b.).
2 l

At the same time, we define

ln&=ln &„. (8.7)

Hence a and a ~ simply become boson annihilation and
creation operators on the space spanned by

t ln &ln =0, 1, . . . ]. The physical significance of fi(x) is
clear; in the rotating frame (cf. Sec. III) H„' reduces to

—g fi(X —x&)qi, q&
=—(ai —

a& )/v'2i, (8.8)

and ft(x) is a force exerted on the ith harmonic oscilla-
tor.

Let us examine the above formal procedure of letting
s —+~ more closely. To be specific we shall deal with
C(t) at finite temperature and the S matrix as operated
on the ground state.

First, consider C(t) defined by Eqs. (7.5) and (7.6). In
accordance with (8.5), we define

where

nt3=(e~ —1) (8.12)

and we have discarded terms of O(s ) or O(e ' ' "~).
The last exponential factor is the familiar persistence am-
plitude for a harmonic oscillator driven by an external
force, which can also be obtained by working directly
with Hamiltonian (8.6); a n and a (n +1) are one-boson
absorption and emission probability, respectively, in the
lowest-order perturbation theory when the initial boson
(i.e. , harmonic-oscillator) state is ln &. The prefactor ex-
hibits how large s should be for the boson limit to be
effectively attained. The coherency C(t) itself is obtained
by substituting Eq. (8.11) into (7.5). In particular, if col

and 0,'I are independent of l, then

C( ~ ) =exp[ —Ncc (nil+ —,
' )] (8.13)

IG&=IJ, —
q &=lo& (8.14)

—1/2
2J

Ij, n —j &
= ln &, =, „(I+)"lo&, . (8.15)

It follows that

in the boson limit. Let us illustrate the behavior of
C(t) in the boson limit with the model introduced in
Sec. VI; Eqs. (6.2) and (6.4) are valid if [cos—,'Oi(ut)] '
and [cos[(8/2)e(x —x, ) I ]

' are replaced by
exp[ —(nti+ ,' )cc, (ut)] an—d exp[ (nti+ ,' —)a e(x ——x,) ],
respectively. In contrast to the case of finite s, such oscil-
latory behaviors as in Figs. 1 or 2 do not occur; C(t) is
monotonically suppressed as f (x) increases or u de-
creases.

Next, we consider Eq. (5.10) for the S matrix in the
special case of cu&, 6I&, and sI being I independent. We use
notation (8.2) with S and s replaced by J and j defined by
Eqs. (5.5) and (5.11), respectively; accordingly



GENERALIZED COLEMAN-HEPP MODEL AND QUANTUM COHERENCE 2595

'2
0 — ' 1

Slf;0), = cos— f dp P(p) g2 &
n!

n

—J tan —
lp

—neo/u;0)0

2J

cos — exp —e ' 'J+ tan —lf;0)
2 2

(8.16)

This formula can be obtained also by use of Eq. (7.19); cf.
Ref. [14]. For our purpose, however, the knowledge of
the particular case (5.2) of the Wigner formula was
sufFicient. We also introduce operators b and b~ which
are related to J via Eqs. (8.3) and (8.4) with (S,s, a) re-
placed by (J,j,b ); in particular

I+ =b t(2j b tb )1/2 (8.17)

Putting Eqs. (8.9) and (8.17) in (5.10), and letting s —+ ~
(recall that j =¹),we find

&lg;0)=exp — a+&—Nae ' 'b lg;0)

where

~=((S ) )&=—,
' [s(s+1)—pz],

with the notation

=((s )"), .

Consequently

C( ~ )=exp( —1~8 /2) .

It can be shown (see the Appendix) that

P2
pip2 p3+0 i

(9.3)

(9.4)

(9.5)

(9.6)

=e g f dp Q(p), lp neo—/u;n ),—x 'n
n=0 (n ~ )i/2

(8.18)

where we have dropped the subscript j on the ket in ac-
cordance with notation (8.7). This is of course a coherent
state as far as the boson is concerned; it can be written as ~= —+ s ——e ~+O(e ~),s 1 —2

2 2
(9.7)

except for the case of s =
—,
' or P= ~, where the right-

hand side vanishes. Hence K is a monotonically increas-
ing function of temperature for any s ~1. It follows
readily from Eq. (9.3) that

Zl ti, o) = f dx 1t (x) lx ) e
l
&Xa(x) ),

with the notation

la) =exp( —lal /2+ah")l0),
a(x) =a exp( —i cox /u ) .

(8.19)

(8.20)

(8.21)

in the low-temperature regime, and that

~= —s(s+1) 1 — s —— s+ —P +O(P )
1 1 1 3 2 4

3 15 2 2

(9.8)

b=cV-'/2+ai . (8.22)

In the limit s~ ~, b is related to the individual bosons a&

via

in the high-temperature regime. A closed-form expres-
sion valid for any temperature may be obtained by noting
that

IX. CASK OF LARGE N

The 5 matrix in the limit X—+ ~ was studied by Naka-
zato and Pascazio [14] for the NP model of s =

—,
' under

the condition that both

P2 —P)+g,
where

p, = — lnZ(s, P)
a

(9.9)

e=a'"6I (9.1)
1 1 1=—coth —— s + —coth s +—13
2 2 2 2

and I. in Eq. (2.8) are independent of X. Let us generalize
their result to the case of arbitrary s, assuming for simpli-
city that coI, 0I, and sh are independent of l.

The X~ oo limit of Eq. (5.10) for the S matrix is for-
mally the same as the s~ cc limit, since X and s occur
there only in the combination j=As. The result is simply
Eq. (8.18) with &Xa replaced by —(s/2)'/ 8.

Next, we consider C( ~ ) at finite temperature. Since 8
is of order X ' „we can expand each factor on the
right-hand side of Eq. (7.8) as

(9.10)

is its fiuctuation (or the susceptibility). The result is

1
K = p coth21 2' (9.11)

is the mean spin polarization given by the Brillouin func-
tion, and

8'(s, g;8) =1— 8 +O(X ),2X
(9.2)

which is depicted in Fig. 5 as a function of 13 for a few
values of s.
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1/2

1/4

t I t I f
I I I I

j
I I t

S=1/2

- 2/3

Yamada, and especially K. Niizeki whose penetrating re-
marks on the finite-temperature effects and the Holstein-
Primakoff transformation, in particular, are more or less
heavily reAected in our presentation of Secs. VII and
VIII. We are grateful to T. Nakamura for valuable com-
ments on the manuscript. Many thanks are also due to
H. Nakazato and K. Kakazu for providing us with infor-
mation prior to publication.

APPENDIX

I I I I I I I I I I I l ~ I

1 2

The identity in (9.6) is a special case of

a
&pPk PiPk Pk+» (A 1)

FIG. 5. Temperature dependence of v.

In Hepp's original paper [1], where xi=la and a is a
constant independent of N, the S matrix and C( ~ ) were
not physically relevant unless the limit N —+ ~ was taken
after the limit t ~ ~; the latter, however, is "an unattain-
able mathematical limit" [2]. By constrast, in the present
paper, we have supposed a =L/N with 1. being N in-
dependent as in Refs. [7,8]. Therefore S matrix and
C( ~ ) make clear sense;

which follows from direct differentiation. Likewise, the
inequality in (9.6) is a special case of the more general one

[8k+I 9'ki i] —o (A2)

(ok+I PkPl)lz(s P)')'= X g(m n»
m, n

(A3a)

which is valid for arbitrary positive integers k and l, the
equality holding only if "P= ~" or "k or I (or both) is
even and s =

—,'." Perhaps the simplest proof proceeds as
follows. Consider the quantity

C( )=C(t) +lqD)=U (t)~yD) (9 12) where

for any t greater than v '(L +6, ), as already mentioned
in Sec. IV.

g (m n)
—mk(ml n l)e

—t~™~~~

The right-hand side of Eq. (A3a) is equal to

(A3b)

X. CONCLUDING REMARKS

Since 5 matrix depends on Xs only, most of asymptotic
properties discussed in this article can be read off NP
[13,14]; only the derivations of various formulas have
been somewhat simplified. Also, the boson model (8.6)
obtained by letting s~ ~ is merely a lattice generaliza-
tion of the NP version of "the maser model, " a variant of
the Jaynes-Cummings model [18]. When it comes to a
finite-time property, however, N and s play separate roles.
Even the restriction to the total-spin-Ss subspace would
not render the detector equivalent to one with a single
spin of magnitude Ns (as in the Cini model [3]); such an
"equivalence" mentioned by NP [14] holds only for
asymptotic properties.

The time-dependent physical quantity explicitly evalu-
ated in this paper is the coherency C(t) defined by (3.25).
There are of course other physical quantities of interest,
such as the energy of the particle (uP )(t), the energy of
the detector ( g&colS& ) (t), individual detector spins
(Si ) ( t ), fiuctuations of these quantities, and so on.
These shall be subjects for a future publication.

—g f(m, n),1

m, n

where

(A5a)

f(m, n)=g(m, n)+g( —m, n)—
=(m" n)(m ' n')h—k+&(m +—n),

with

(A5b)

coshPx if k + l is even,
h (x)= '"+' —sinhPx if k +l is odd .

(A6)

It follows from the elementary property

s nm" n" =—sgn(m —n ) if k is even

sgn(m n) if k is odd, —(A7)

that

g g(m, n), g(m, n)—:—
[ g(m, n) +g(n, m) ], (A4)=1

m, n
2

which in turn is equal to
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( —1) +'f(m, n)~0,
where, for finite p, the equality holds only when m = n if
both k and l are odd, and only when m =n or I = —n
otherwise. This proves inequality (A2). For (A2) to be an
equality, (A8) should be an equality for all (m, n). This is
possible only if k or l (or both) is even and s = —,'.
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(E'(A)L (A) ) & (K(A) ) (L (A) ), (A9)

where

(A 10)

Incidentally, if both k and l are odd, inequality (A2) is
a special case of

This inequality holds for an arbitrary density operator p
and a Hermitian operator A, provided that both E and I.
are real nondecreasing functions. Its proof is analogous
to, but much simpler than, the proof of (A2); simply re-
peat the procedures corresponding to (A3) and (A4) with
m", m', and e P replaced by (minim ), (m~Lim ), and
(mipim ), respectively, where I im ) I is the orthonormal
basis diagonalizing A.
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