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The quantum dynamics of a two-dimensional charged spin- — particle is studied for general,

symmetry-free curved surfaces and general, nonuniform magnetic fields that are, when different from
zero, orthogonal to the defining two surface. Although higher Landau levels generally lose their degen-
eracy under such general conditions, the lowest Landau level, the ground state, remains degenerate. Pre-
vious discussions of this problem have had less generality and/or used supersymmetry, or else have ap-
pealed to very general mathematical theorems from differential geometry. In contrast our discussion re-
lies on simple and standard quantum-mechanical concepts. The mathematical similarity of the physical
problem at hand and that of a phase-space path-integral quantization scheme of a general classical sys-
tem is emphasized. Adopting this analogy in the general case leads to a general quantization procedure
that is invariant under general coordinate transformations —completely unlike any of the conventional
quantization prescriptions —and therefore generalizes the concept of quantization to hitherto inaccessi-
ble situations. In a complementary fashion, the so-obtained picture of general quantization helps to
derive useful semiclassical formulas for a Hall current in the case of a filling factor equal to one for a
general surface and magnetic field.

PACS number(s): 03.65.Ca, 72.20.My

I. INTRODUCTION AND SUMMARY

For nonrelativistic electrons endowed with their usual
spin magnetic moment (i.e., g&=2) motion in a two-
dimensional plane perpendicular to a homogeneous mag-
netic field has a number of interesting properties.
Without taking the spin contribution into account the en-

ergy levels of a free particle split into the degenerate Lan-
dau levels endowed with the sequence of energy eigenval-
ues E„=(n + —,

' )A'to„n =0, 1,2, . . . , where co, =eB/mc
When the spin is included, each level splits, with half the
states rising in energy and the other half falling in energy.
Thanks to a proper magnetic moment (gz =2) those lev-

els that rise, exactly overlap with those levels that fall
from the next higher Landau level, leading to combined
energy values given by E„=nkco„n =0, 1,2, . . . . While
all levels but the lowest contain spin-up and spin-down
states, the lowest level consists only of spin-down states
and has exactly zero energy for any value of co, . It is
common to regard the level degeneracy as due to transla-
tional symmetry, and for all but the lowest Landau level
this viewpoint is correct. For the lowest Landau level,
however, an additional symmetry applies that preserves
the degeneracy even under circumstances where the de-
generacy of the higher levels is lifted. As we shall see the

circumstances for which degeneracy of the ground state
remains are exceptionally broad including cases where
the magnetic field is not uniform in strength as well as
cases where a (non)uniform magnetic field is everywhere
orthogonal to a two surface that does not have constant
curvature. A surface of constant curvature such as the
plane (zero curvature) or the sphere (positive curvature)
is necessary to have degeneracy of the higher levels, but a
generally symmetryless surface —loosely referred to as a
"potato, " as may arise by deforming a sphere —even in
the presence of a nonuniform magnetic field, maintains
degeneracy of the lowest Landau level.

The existence of a degenerate ground state for elec-
trons moving in the presence of nonuniform magnetic
field everywhere perpendicular to a (compactified) plane
has been known for some time [l]; a compactified plane
arises due to periodic boundary conditions, or, effectively,
when the magnetic field vanishes outside some compact
region. These properties have been demonstrated using
methods of supersymmetric quantum mechanics applied
to underlying plane surfaces [2]. Recently, the degenera-
cy of the ground state has been extended to cases of a
nonuniform magnetic field everywhere perpendicular to a
general, compact, symmetry free underlying surface [3].
The methods entailed in this proof used contemporary
techniques in differential geometry. In this paper we
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demonstrate that straightforward techniques of nonrela-
tivistic quantum mechanics are sufficient for this more
general situation as well.

A. Euclidean path integral

Although our method of proof will involve partial
differential equations, we wish to present our basic results
in the form of path integrals. The purpose behind this
form of presentation is twofold: on the one hand, path
integrals involve a functional formulation that is mani-
festly close in formal appearance to the underlying classi-
cal theory; and, on the other hand, the ultimate expres-
sions may be given a form that makes manifest their co-
variance under coordinate transformations. This feature
will be of considerable interest when attention is turned
to a mathematical analog system, namely, that of a
phase-space path integral for a general classical Hamil-
tonian which is at once rigorous in its formulation, and,
simultaneously, covariant under general coordinate trans-
formations. However, more will be said about the analog
system later (see Sec. I D).

Consider, initially, a charged spin- —, particle moving on
a two-dimensional plane and subject to a uniform mag-
netic field perpendicular to the plane. We assume also

N f exp i f (me@,yx )dt

——f [m(x +y )
—co, ]dt 'IIdx dy .

The propagator represents the matrix element

&x",y" le lx', y'), (1.2)

where H has a spectrum given by neo„n =0, 1,2, . . . .
Let us next take the limit co, ~~,' theoretically we can
do so by letting m ~0, while empirically such a limit is
approached by choosing large magnetic fields. The result
of such a limit is the matrix elements of a projection
operator,

»m &x",y"le " lx', y'&=&x",y" IIllx', y'& .
m —+0

(1.3)

In the present case the explicit form is easily worked out,
and one finds that

that the spin is polarized along the magnetic field. The
Euclidean space path integral for the propagator is given,
in a convenient gauge, by the formal expression (%=1,
g~ =2)

&x",y" lIIlx', y') =(eB/2rtc)exp (eB/c)(y—"+y')(x" —x') ,'(eB/c)[(y"———y') +(x"—x') ] (1.4)

It is readily verified that this expression represents the in-
tegral kernel of a projection operator. The rank of the
projection operator II—which equals the degeneracy of
the lowest Landau level —is given in turn by

f &x,y II x,y )dx dy, which diverges in the present case.
It is also useful to consider the matrix elements of the

projection operator somewhat more abstractly. To this
end we introduce the notation A(x",y";x',y') instead of
&x",y" lIIlx', y'&, and observe that for W to represent a
projection operator it is necessary and sufficient that
A*(x",y";x',y') =A(x', y', x",y") and A(x"',y"', x',y')
= fA'(x"', y"', ",y")A'(x",y";x'y')dx "dy". When
these conditions are satisfied then the rank of the so-
determined projection operator is given by
f%'(x,y;x,y)dx dy.

Let us generalize our physical situation so that the
electron moves in the presence of a local potential V(x,y)
as well as the uniform magnetic field. However, we do
not Euclideanize the potential, only the kinetic term, so
the expression of interest is represented by the formal
path integral

N fexp 'i f [me@,yx —V(x,y)]dt

——f [m (x +y )
—co, ]dt II dx dy . (1.5)

X%'(x,y;x', y')dx dy . (1.6)

In words, the Hamiltonian is given by the two-sided pro-
jection of the potential V onto the lowest Landau level.
We denote the ultimate limit (a unitary propagator for
the lowest Landau level at zero mass or high magnetic
field limit) by

In the limit that m~0 we still expect that the Hilbert
space collapses to the lowest Landau level, but in general
the result is no longer a projection operator. Instead,
there is a dynamical evolution generated by the Hermi-
tian Hamiltonian which is determined by an integral ker-
nel that is given by [4]

&(x",y";x',y') =fA(x",y";x,y) V(x,y)

rc(x",y", t";x',y', t')= &x",y" le '~Tlx', y'&

= lim N fexp E f'[me@,yx —V(x,y)]dt ——f [m(x +y ) —co, ]dt .IIdx dy,
1

m~0 2
(1.7)

where T=t"—t') 0. Additionally, it follows that
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lim K (x",y", t";x',y', t') =~(x"y"x' y')

Why have we chosen to rotate only the kinetic energy and not the potential energy to imaginary time? The answer
lies in our desire to obtain a genuine Wiener measure on the (x,y) path space so as to put the path-integral expression
for a unitary time evolution in the projected Hilbert subspace on a sound mathematical foundation. In particular, we
note that

K(x",y", t";x',y', t')= lim (2vrc/eB) f exp i(eB/c) fy dx i —f V(x,y)dt .exp. f (co, /2)dt dpi',-(x,y),
m —+0

(1.9)

where p~ denotes a pinned Wiener measure as common-

ly appears in the Feynman-Kac formula. The expression

fy dx is to be interpreted as a (Stratonovich) stochastic
integral, in which case this path-integral expression for K
is without any ambiguity and rigorously defined for each
m )0; convergence as m ~0 is assured for a wide class of
potentials [4]. As a well-defined integral one may also
consider its rigorous reformulation under coordinate
transformations. Under such transformations the phase
factor transforms under the rules of the ordinary calculus
in spite of the fact that the functions involved are
Brownian and not classical (e.g. , C') in character; these
transformation properties are the result of the Stratono-
vich (midpoint) prescription. The Brownian motion itself
transforms as one might expect: as initially formulated
the two-dimensional, planar Brownian motion was de-
scribed by Cartesian coordinates; after the transforma-
tion the same two-dimensional, planar Brownian motion
should be described, in general, by curvilinear coordi-
nates.

B. General Aeld and surface

With the foregoing elementary and familiar problem as
background we turn our attention to present analogous
results in more general circumstances. For present pur-
poses we introduce intrinsic coordinates x' and x lying
in the surface, which as usual may be described by a
Riemanian metric ds =g,b(x)dx'dx . The surface may
be compact or noncompact and may have an arbitrary
genus (number of handles), although for the most part we
restrict our attention to a simply connected manifold. In
addition, we assume there is a magnetic field present that
is described by a vector potential A„(x) in the standard
way, B, (bx)=B, Ab(x) —B&A, (x). As an antisymmetric
tensor in two dimensions it is clear that B,b (x)=e,i, A(x),
where e,„ is the Levi-Civita tensor density and A(x) is a
scalar density. Without loss of generality, we shall al-
ways orient the surface so that the total magnetic Aux is
non-negative.

The path integral that represents the desired generali-
zation of the ones given earlier reads as

lim Ãf exp i (e/c) f Ab(x)dx i f V—(x)dt .
m~0

Xexp ——'m fg,b(x)x 'x "dt+ f s' (x)B,„(x)dt II&g(x)dx'dx (1.10)

where the spin tensor s'"=&g e' /2. The structure of
this expression has been chosen with several issues in
mind. The terms in the exponent, except the one contain-
ing V(x), plus the form of the integration measure de-
scribe the Euclidean propagator of a charged spin- —,

' par-
ticle moving on the curved surface in the presence of a
magnetic field everywhere orthogonal to the surface. In
particular, the final term in the exponent represents a
generalization of the term f (co, /2)dt and describes the
interaction of the polarized spin- —, particle with the mag-
netic field (gii =2). For this form of interaction the de-
generacy of the lowest Landau level is not destroyed by a
nonuniform field and/or a curved geometry. Moreover
the energy of the lowest Landau level remains equal to
zero. These facts lie at the heart of what is proved in the
following section. As a consequence, when V=—0 and in
the limit m ~0 the path integral (1.10) leads to an in-
tegral kernel for a projection operator on a degenerate
lowest Landau level, while for VWO a unitary evolution

on the corresponding Hilbert subspace is obtained.
There are two kinds of transformations of the formal

path integral of interest. By construction the expression
is invariant under coordinate transform ations,
x~x=x(x), assuming that the indicated quantities
transform like tensors of the appropriate kind. A second
kind of transformation involves a change of gauge of the
vector potential, A„(x)~ Ab(x)+ Bb A(x). The only
consequence of such a transformation is the appearance
of a total derivative leading to a phase factor of the form
exp(i(e/c)[A(x") —A(x')]). Such a factor only affects
the local phase of the wave function, a modification
without physical content. Of course, transformations
that combine both gauge and coordinate changes are im-
portant as well as we shall see in the next subsection.

C. Reinterpretation in phase space

It is often useful to take the mathematical formulation
appropriate to one physical situation and reinterpret it in
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an entirely different physical situation. Hamiltonian
mechanics for particles and ray optics provides just one
example of the utility of such a reinterpretation. Quanti-
zation of two-dimensional particles in a magnetic field
and a phase-space path-integral quantization of a parti-
cle, as we now shall see, provides yet another example.

We return, first of all, to the case of a particle moving
on the plane in the presence of a uniform magnetic field
and an auxiliary potential V. For present purposes let us
introduce new variables, viz. ,

q =VeB/Qcx, p =v eBQ/cy,
v=eB/mc =co„h (p, q)= V(x,y) .

In terms of these variables the former path integral, Eq.
(1.1), assumes the form

lim JVf exp i f [pq —h (p, q)]dt

f (0 'P +Iraq v~—)dt IIdp dq .

(1.12)

Apart from the limit and the v-dependent factor in the
integrand the expression in question resembles a formal
phase-space path integral. The additional factor may be
interpreted as a regularizing factor, more specifically as a
continuous-time regularization, for in the limit v~oo,
the factor in question formally becomes unity. To gain
insights into the consequences of such a regularization we
first specialize to the case h =0, and define

A(p", q";p', q')= lim JVf exp i fpq dt — f (0 'p +Qq v)dt —IIdp dqv~ oo 2v

=exp —(p" +p')(q" —q') —
—,'[0 '(p" p') +Q(q—"—q') ] . ,

2

as follows from (1.4), with the proviso that we have res-
caled the integration measure to absorb the prefactor,
namely, (eB/2vrc)dx dy =dp dq/2m. It readily follows
that

g~ ~k~(p q pk qk)
2

gtz„A(p, q;p„,q„) dp dq/2'& 0, (1.15)

A(p"', q'";p', q')

= f~(p"', q"'„p",q". )%(p",q";p', q')dp "dq" /2'

(1.14)

and %'*(p",q";p', q') =&(p', q', p",q" ); therefore
represents a projection operator, but a projection onto
what? Just as in the planar motion in a magnetic field,
the projection operator projects onto the relevant Hilbert
space for the subsequent quantum mechanics. In the
present case A' denotes a projection operator on
L (IR, dp dq/2m) onto the relevant functional Hilbert
space for the problem at hand. Nevertheless the integral
kernel for the projection operator is, at first sight, unfam-
iliar in its quantum-mechanical meaning. Insight into
that meaning is gained by first observing that A is a posi-
tive definite function, i.e., satisfies

in virtue of the properties of %' previously given. As a
consequence the Gel'fand-Naimark-Segal (GNS) theorem
[5] asserts that there exists a representation of%' as the
inner product of two Hilbert space vectors that is unique
up to unitary equivalence; namely, there exists an
abstract Hilbert space H and vectors ~p, q) HH, for all
(p, q) ER, such that%'(p", q";p', q') = &p",q" ~p', q') for
all argument pairs. In special cases —such as the one
presently under consideration —these vectors are gen-
erated by a transitively acting group (or a group up to
factor) on a fixed fiducial vector, but this situation is far
more the exception than the rule.

In the present case the appropriate states are given by

~p, q)=e "e"~~A) (1.16)

for all (p, q) HR, where Q and P denote irreducible self-
adjoint Heisenberg operators and

~
0 ) is a normalized

vector that satisfies (QQ+iP)~Q) =0. In terms of the
Schrodinger representation it follows that

=v'&/~ f exp[ —Qx /2 ip"x +ip—'(x +q"—q')]exp[ —Q(x +q"—q')~/2]dx

=exp (p"+p')(q" q')———[Q (p"—p') +Q(q" —q') ] .

—=~(p" q";p', q') . (1.17)

The GNS theorem then effectively asserts the unique association of the Weyl group and the Heisenberg operators with
this particular kernel. Of course, the states ~p, q ) in question are just the familiar canonical coherent states [6], which
in H admit a resolution of unity in the form
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1=f ~p, q)(p, q~dp dq/2' . (1.18)

These states provide a representation basis for an arbitrary vector ~g) EH, given by g(p, q):—(p, q~g), with an inner
product given by ~~g~~:—f ~P(p, q) ~ dp dq/2m = (g~f). Finally, the propagator that arises when h (p, q)WO is just the
coherent-state matrix element of the evolution operator, namely,

(p",q" ~e
' ~p', q') = lim JVf exp i f [pq h(—p, q)]dt — f (0 ~P +Oq v—)dt .II dp dq

Q~ 00 2v

—=K(p",q", t",p', q', t') .

In this expression

~(p",q";p', q'): &p",q—"~~ p', q' &
= f &p",q" ~p, q )h (p, q)&p, q~p', q')dp dq/2~,

(1.19)

(1.20)

or abstractly

~= f h(p, q)lp, q &&p, qldp dq/2~, (1.21)

In this section we have reinterpreted the mathematics
appropriate to a charged spin- —, particle moving in a
two-dimensional plane in the presence of a uniform mag-
netic field and an auxiliary potential as a phase-space,
path-integral quantization procedure. Admittedly the
reinterpreted expression has the form of a phase-space
path integral apart from the unusual v-dependent factor
in the integrand. This factor has apparently introduced a

I

which relates the Hamiltonian operator & and its c
number representative h (p, q).

Let us interpret the integral in (1.19) as one involving a
Wiener measure and a Stratonovich stochastic integral.
In that case it becomes appropriate to discuss coordinate
transformations. In particular consider a change of
canonical coordinates P=p(p, q), q=q(p, q) for which
p dq =p dq+dF(q, q) This e. quation which holds for
classical (C') functions holds for Brownian paths as well.
In light of the discussion in the previous subsection, we
have chosen to link a gauge transformation with a suit-
able coordinate transformation so as to preserve the form
of the classical action (and of the associated classical
equations of motion). With the Wiener measure reinter-
preted as planar Brownian motion expressed in curvilin-
ear coordinates, an expression such as (1.19) transforms
covariantly under a canonical change of coordinates.

Recarpi tulation

metric into the phase space for the purpose of quantiza-
tion where none seem to be present in alternative quanti-
zation procedures, e.g., the standard Schrodinger
prescription. However, we assert that a metric is impli-
citly used in Schrodinger quantization when one recog-
nizes that the Schrodinger rules of quantization work
correctly only in certain coordinates, namely, Cartesian
coordinates [7]. A Bat metric appears when it is recog-
nized that global Cartesian coordinates exist only in a
globally flat space. The role of the v-dependent factor is,
of course, to regularize the formal integral which then
may be reinterpreted as a well-defined Brownian motion
integral.

Based on an analogous reinterpretation of the motion
of charged spin- —, particles in a magnetic field we shall, in
the next subsection, propose a quantization scheme for
phase spaces endowed with general symplectic forms and
general and unrelated metric structures. In so doing we
will encounter an unexpected surprise related to the
quantization of such systems, namely, each path does not
contribute to the path integral with equal weight in the
general case.

D. Quantization of general systems

As was the case in the previous subsection we initiate
our discussion with the kinematics. Let the phase-space
variables be denoted by g = ( g', g ), set
(e/c)A, =a„(e/c)B,b =b,b, m =1/v, in which case our
attention focuses on

hm JVf exp, &' f ab(g)dg -exp — fg.b(g)g'kbdt +—f s' (g)b,b(g)dt H g(g)dg'dg' (1.22)

In the next section we shall prove that the kernel defined
by this expression corresponds to a projection operator
on a nontrivial subspace of the Hilbert space
L ( I,v'g d g'd g ) ( I denotes the phase-space manifold).
This subspace will be identified with the Hilbert space H
of the quantum system. As a consequence the kernel
satisfies

%(g",g') = fA(g"; g)A(g;g')v'gdg'dg
(1.23)

A*(g";g')=A(g', g") .

—fb,b(g)dghdg =2~n, n =1,2, 3, . . . ,
1

(1.24)

should hold; the dimension of H is then finite and given

We shall analyze phase spaces with an R topology and
derive the formula for the dimension of H, and even a lo-
cal expression for the semiclassical density of quantum
states. The case of a compact Riemanian phase-space
manifold will also be discussed and illustrated by exam-
ples. For the latter case the compatibility condition
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D =n+1 —g, (1.25)

where g denotes the number of handles on the surface.
From the viewpoint of classical mechanics ai, (g)dg

denotes the one form whose exterior derivative

The kernel A(g";g') is a positive-definite functional,
and as such, according to the CxNS theorem, may be
represented as the inner product of (not necessarily nor-
malized) vectors

~ g &
=—

~
g', g & in an abstract Hilbert

space H, namely,

(1.27)

da (g)d g"=a,a (g)d g'R d g"

,'b, i, ( g—)dP R dg (1.26)

These vectors are continuously labeled and, in virtue of
the projection property of A, they admit a resolution of
unity in H according to

1=f Ik&&kl&gd('dk' (1.28)
denotes the symplectic two form on the manifold. In
simple cases, namely, canonical coordinates, the one form
is just p dq and the symplectic form then is dp h, dq. The
symplectic form is, in this simple case, the same volume
element that appears in the formal path integral measure,
namely, II' dq. It is noteworthy in the general case
that the volume element required in the path-integral
measure is not (proportional to) the symplectic form
volume element. In the general case the volume element
&g (g)dg'dg appears in the path integral measure while
the symplectic form is given by ,'b, i, (g)dP—Rdg . This
fact flies in the face of conventional wisdom that in a
path integral "all paths enter with equal weight. "

Conventionally, the phrase "symplectic form" is
reserved to a nondegenerate skew-symmetric matrix, ~,b,
such that co,b~ '= —6'. In this paper, we refer loosely to
the skew-symmetric matrix b, b as a symplectic form even
if it may be degenerate in some regions and even when it
is not degenerate it may fail to be a square root of unity
in the sense noted above. Our justification for this termi-
nology arises from the fact that b,b are the coe%cients in
the exterior derivative of the one form ai, (g)dg" that
figures in the action functional for the system at hand [8].

These are just the properties that make the vectors I ~ g & I
into a set of coherent states. It must be emphasized,
however, that in the general case there is no few-
parameter unitary representation of a group (or a group
up to the factor) that generates all the states ~g& as uni-
tary transformations of a fixed fiducial vector. However,
convenient such a group may be, there is, in the general
case, no symmetry of the phase-space manifold that
would support the existence of such a transitively acting
group. The difference in viewpoint regarding quantiza-
tion advocated here could not be greater than the con-
ventional quantization viewpoint in which one promotes
several of the classical phase-space variables to self-
adjoint operators appropriate to some low-dimensional
closed Lie algebra. These two quantization procedures
coincide for a limited number of cases, but will surely
lead to different results in the general case. The existence
of the physical analog of the quantum Hall effect speaks
to the validity of the alternative quantization scheme ad-
vocated in this subsection in the general case.

The introduction of a nonvanishing Hamiltonian and
nontrivial dynamics proceeds as in the elementary case.
The propagator is given by

IC(g", t";g', t')= lim A'f exp i f [ai, (g)g —h (g)]dt'
Xexp ——fg,„(g)g'g "dt + fs' (g)b, i, (g)dt .II&g (g)dg'dg

(1.29)

Here & and h are related by

~= f h(g)lg&&glg&g dg'd g'. (1.30)

To ensure that a unitary evolution exists it is sufhcient for
% to be essentially self-adjoint on the finite linear span of
the coherent states.

With the final formulas we have achieved our goal of
presenting a manifestly coordinate invariant quantization
procedure appropriate to a general symplectic form and
geometry of the underlying two manifolds. One should
mention that the present approach to quantization has

been extended to Kahler manifolds of an arbitrary even
dimension [9], and for flat phase spaces the Wiener mea-
sure in (1.9) may be replaced by a probabilistic measure
for a general Poisson process [10].

II. STRUCTURE OF THE LOWEST LANDAU LEVEL

Consider an electron moving on an arbitrary smooth
two-dimensional surface I as described in Sec. I B. The
path-integral expression (1.10) with a fixed value of the
mass parameter m and with V(x)=0 yields the integral
kernel of the operator exp I H[ 3,g] TI where (fi= 1)—
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1 1H [ A, g] = — [8, +i (e lc) A, ]g' Vg [8 b+i (e lc) Ab ] — —B&2 .2m V'g ' ' ' '
2mc&g

(2.1)

II= lim exp[ H[—A, g)T] .
7 —+ 00

(2.2)

The limit operator H exists and is a nontrivial projection
operator in the Hilbert space L (I,&gdx 'dx ) if and
only if: H [ A, g] ~ 0 and there exists a nontrivial subspace
H of normalizable eigenvectors P satisfying

H [ A, g]/=0 . (2.3)

In the following we shall construct the solutions of Eq.

It follows from (2.1) that the limit m ~0 in the path in-
tegral (1.10) for V—=0 is equivalent to taking the follow-
ing operator limit (in the sense of matrix elements)

d&2 e2w(u, u)(du 2+ dv 2) (2.4)

In this special coordinate system the matrix elements of
the Hamiltonian H[A, g] are given by the following ex-
pression:

(2.3) for a for a manifold I admitting a global parame-
trization (R topology) generalizing the Aharonov-Casher
[1] approach to a flat surface with an arbitrary magnetic
field, and then we shall briefly discuss two examples of
compact manifolds. Before doing this we should take ad-
vantage of the fact that for any two-dimensional surface
one can always choose a (local) coordinate system, say u
and v, (u, v)ER, such that the metric becomes confor-
mally liat, i.e., [11,12]

(y~H[A, g]~p) = — fg'e 2~[[&„+i(e/c)A„] p2+[ i,3+i(e /c) A] QIe "du dv — f (B„A,—B„A„)du dv
2fPl C

f du dv (2)g)*2)P,
1

(2.5)

where

g)P=[(B„iB,) +—i(e /)c( A„iA, )](—h . (2.6)

From (2.5) and (2.6) it follows that H[A, g]~0 indeed
and that the ground states (with polarized spin) are all
solutions of the equation

[(a„—i a, )+i (e/c)( A„—i A, ) ]P =0 . (2.7)

Obviously the relevant solutions must be square integra-
ble with respect to the measure &gdx'dx and must
satisfy the topological constraints in the case of compact
manifold I . Equation (2.7) gives us control of the singu-
larities of P. Indeed, in the neighborhood of any point
there always exists a local nonsingular solution, say p,
which does not vanish [13]. Any other solution P can be
expressed in terms of p as P(u, v) =f (u iv)p(u, v—), f be-
ing a holomorphic function. Hence, any singularity (or
zero) of P is a singularity (zero) of a holomorphic func-
tion. We conclude from this that a square-integrable
solution is supposed to be smooth. This has implications
on the topological restrictions. Mathematically, Eq. (2.7)
defines a holomorphic bundle and P is a global section.
There are known strong mathematical methods which
give us the dimension of the space of solutions to (2.7) in
the compact case in terms of topological invariants: the
Aux of the magnetic field and the Euler characteristic of
the surface. We shall illustrate them in Sec. II B. On the
other hand, in Sec. II A we show that even in a noncom-
pact, topologically Aat, case the magnetic Aux and the in-
tegral of a Gauss curvature —provided that they are
finite —determine the dimension of H.

A. Surface with I topology

Pi, (u, v)=(u —iv) e (2.8)

with k =0, 1,2, . . . , N ( =D —1) ~ ~, and real functions
F, G satisfying the equations

(&„+8,)F (u, v) = (e /c)(B„A„—8, A„),

(&„+&„)G(u,v)= —(e/c)(B„A„+8,A, ) .

(2.9)

(2.10)

The condition of square integrability of p& demands that
the function (u +v )"exp[ —2F(u, v)+2w(u, v)] should
decay at least as (u +v ) "+' for ~u~, ~v~ oo with
e & 0. Suppose now that the following integrals are finite
(4~0):

&0= —f (B„A,—8, A„)du dv,

0' = —f (8„+i), )w ( u, v )du dv .

The solution of (2.9) can be written as

(2. 1 1)

(2.12)

F(u, v)= fdu'dv'[[B„A„(u', v') —B, A„(u', v')]

(2.13)X ln[(u —u ') + (v —v') ] I .

For large ~u~ + ~v~ we obtain the following estimation,
using (2.9), (2.11), (2.12), and (2.13):

We assume now that there exists a global coordinate
system (u, v) satisfying (2.4). Then it follows from Eq.
(2.7) that the subspace H of the ground states is spanned
by the linearly independent functions
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k & (4&++)—1 .
1

2&
(2.15)

The expressions for 4 and 4 can be easily transformed
into a geometric, coordinate independent form

e= I [a.~, (x)—a, &.(x)]dx'n, dx', (2.16)

'P= —f8 (x)&g(x)dx'dx2,1

2
(2.17)

where R is the scalar curvature given by the Riemann
tensor of g

= —2e 2~(g2+g2)w .aP U
(2.18)

We emphasize, however, that in this case 4 and N are
not topological invariants. Finally, from (2.15) our ex-
pression for the dimension of the lowest Landau level
reads as

1 1
D = largest integer less than N+ 4—12' 2'

(2.19)

Clearly for infinite N and/or %' the subspace H is
infinitely dimensional. However, even in this case the fol-
lowing formula for the semiclassical density of electronic
states on the surface I (with a unidirectional magnetic
field) is valid as can be seen from Eqs. (2.16), (2.17), and
(2.19):

dX(x)= ' [a.~, (x)—a, ~.(x)]dx'~dx'

~(})„(u,v)~ exp[ —2w(u, u)]-(u +U )" ' + ' . (2.14)

Hence to attain square integrability k must satisfy the in-
equality

[12]) index theorem gives the dimension D of the lowest
Landau level as

D =n+(1 —g)= 1 (4+ ~I) ) —1 +g2' (2.23)

We consider here Eq. (2.7) on a two-surface I which is
topologically equivalent to a sphere. The genus g=O,
now, and we know from the classification of Riemann
surfaces that I is conformal to a sphere equipped with
the natural metric. The coordinates (u, U) cannot be ex-
tended to the entire surface I . However, in this case,
there exist "spherical" coordinates (6), a) such that the
scalar product ds =g„dx"dx", ()M, v=8, a) takes on the
following appearance:

ds =e [dg +sin (6))da ] . (2.24)

Let A„be a vector potential carrying the magnetic
charge C&=2mn. According to (2.23), the number of
linearly independent solutions of (2.7) is

D=n+1 . (2.25)

%'e shall derive them below, but first here is an outline of
our strategy. We write 3 as

if n &2—2g or g=O and when n «0, necessarily D=O.
Note that Eq. (2.23) extends the formula (2.19) to com-
pact manifolds. Here, again, in the semiclassical limit
(n ))1+g, unidirectional magnetic field) the local ex-
pression (2.20) for the density of states remains valid.
The manifest expressions for the wave functions which
span H in the case of compact I are obtained as the solu-
tions of Eq. (2.7) which satisfy the topological con-
straints. For the sake of illustration we present three par-
ticular examples.

Example 1: Potato

+ R (x)&g (x)dx 'dx1

4~
(2.20) A„=nA„+a„, (2.26)

B. Compact surfaces

1 N=n, n =0, 1,2, . . . ,
7T

4=2(1—g), g =0, 1,2, . . . .
1

2&

(2.21)

(2.22)

The case of a compact two-dimensional manifold I
with an arbitrary genus g =0, 1,2, . . . , can be discussed
using geometrical methods. First of all the vector poten-
tial 2& and the coordinates at which the metric tensor
g,b takes the form (2.4) are defined only locally and sub-
ject to a suitable gauge or coordinate transformation
from a one to another local domain. The (normalized) in-
tegrals (1/2~)(I), the magnetic charge, and (1/2')%', The
Euler characteristics, are now topological invariants and
can take only integer values, namely,

4(i+I) (1 (1)) ( P(2)) (2.27)

Every (}((;) is a solution to (2.7) with the vector potential
(2.26). It is also easy enough to see (details given below)
that the P(, )'s are linearly independent, hence they form a
basis of the solutions. More specifically, to express the
vector potential 2 we divide I into two hemispheres and
on each of them fix a gauge (if n )0 then there is no glo-
bal gauge on I ). Then 2 and an associated wave func-
tion (}) may be written as

where 3 is a vector potential of the uniform magnetic
field corresponding to a magnetic charge no=1. Next,
we solve Eq. (2.7) with A„and a„, respectively, substitut-
ed for 3„. In the first case we find two linearly indepen-
dent solutions, it)(, )

and 1t(2), and in the second case a sin-
gle solution denoted by P'. This is consistent with (2.25).
Finally, we define wave functions ()t)(i), . . . , P(„+i) by

The condition (2.21) is the famous Dirac condition on the
monopole while the condition (2.22) is the Gauss-Bonnet
theorem [11]. As mentioned in Sec. ID the Riemann-
Roch-Hirzebruch-Atiyah-Singer (see, for example, Ref.

(A„P ) if 8~ —+e-2
(A„,P)=

2(A„,P ) if 8)——+,
(2.28)
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A =A +nda, P+=e (2.29)

Through n in the exponent, the gauge transformation
contains the information about the magnetic charge. For
the uniform magnetic field we choose a vector potential

where A„—and P
—are well defined on the hemispheres,

and on the intersection of the two hemispheres we glue
them by a gauge transformation

where (x")=(u,v). To solve Eq. (2.7) we shall use the
same technique as in the previous example. We decom-
pose A into the sum of a vector potential of a uniform
magnetic field which carries the topological charge and
the rest. However, in the case of a sphere, magnetic field
determined uniquely a gauge class of corresponding vec-
tor potentials. Now, this one-to-one correspondence does
not hold. The ambiguity consists of magnetic "vacua"
given by constant vector potentials of the form

A —=
—,'(+1+cos8)d(I) . (2.30)

A„' =P„, A,
' =P, (2.36)

The solutions corresponding to A have the form

cos 2 0
p's being constant numbers. In other words, we write A
as

e ' cos—'0
7

e ' sin —,
' 0

(2.3 1)
A„=n A„+a„

where for A we can choose

(2.37)

sin —,
' 8,

where the upper and the lower cases correspond to the
upper and lower hemisphere, respectively, as in Eq.
(2.28). On the other hand, the term a„ in (2.26) is a glo-
bally defined covariant vector field. It follows from the
simple connectness of I that a„can be decomposed into
the form

a„=()„G+E„()g (2.32)

with G and F being real functions on I . The solution of
(2.7) corresponding to a„ is

vou uovdx"= dvP 2
v o

(2.38)

but unlike in (2.32), the Hodge decomposition of a„reads
as

a„=P„+()„G+e„'()g (2.39)

where P„and P, are real constants. After the substitu-
tion of (2.37) and (2.40) into (2.7), the second and the
third term of a„[see the right-hand side (2.39)j can be el-
iminated from Eq. (2.7) in the same way as in example 1,
i.e. , by introducing i/i such that

e
—(F+ iG) (2.33)

y
—

i/ie
—(F + iG) (2.40)

We have learned from this example that for a simple
connected surface it is enough to find ground states for a
uniform magnetic field which has the Aux 2~ and for all
the magnetic fields of zero Aux. Then, ground states for
an arbitrary magnetic field are generated algebraically
from the previous ones.

We consider here a surface topologically equivalent to
a torus. This means that the genus g = 1, and the dimen-
sion of the space of solutions to (2.7) given by (2.23) be-
comes D =n. The geometry of the surface is, up to a
pointwise-dependent rescaling, equivalent to the
geometry of the quotient: the plane R equipped with
the Aat metric du +dv divided by the group of transla-
tions generated by two vectors

In that way, we are left with the equation

vou uov
i +n — +P /=0 .

Bu Bv 2vo
(2.41)

The general solution to (2.41) which satisfies the first
periodicity condition, i.e., with respect to the translations
generated by the vector (2~,0), can be expressed as

2 2'"ov v —2iuv
g=l (z')exp n +n +2iPv, (2 42)

2vo 2Up

where z:= u + iv, /3: =p„+ip„and the function l is
periodic with respect to the vector (2m, 0),

X=(2~,0), V=(uo, vo), vo)0 . (2.34)

The topological conditions which have to be satisfied by a
wave function i)) of a particle interacting with a vector po-
tential A „,which has the topological charge n, take the
form of certain periodicity conditions. They can be writ-
ten as

A„(u +2~, v)dx~ = A (u, v)dx" + dv
277n

Vp

/(z )= a ek (2.43)

nak+„=akexp i k +—(uo iv—
() )+2iv—()P (2.44)

Applying the second periodicity condition, that with
respect to z —+z+P, we obtain the condition

P(u +2', v) =exp 2 irn1
~( )

Up

A„(u +uo, v +vo)dx"= A„(u, v)dx",

y(u +uo, U +UQ)=y(u, U),

(2.35)

Hence, we can fix n arbitrary values for a p, . . . , a„,and
determine by (2.44) all other ak. It is easy to see that
(2.44) guarantees that the obtained sum which gives l
converges for every z since v o )0.

Summarizing this example, we could see above the
mechanism which determines the number of independent
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(polarized spin) ground states as determined by the mag-
netic Aux.

Example 3: Arbitrary surface
but topologically trivial magnetic fteld

Mathematically, Eq. (2.7) defines a holomorphic bun-
dle, and a global solution forms a holomorphic section.
However, in the previous examples we did not necessarily
have to apply the theory of holomorphic bundles. We
could just explicitly derive the solutions. If the surface
has higher genus then straightforward computations
would be very complicated and we only have the formula
(2.21). Now, we would like to concentrate on the case
when the magnetic Aux vanishes, i.e., when n=0. We
shall present now how the mathematics works for this ex-
ample. Suppose a wave function P is a solution to (2.7).
We shall see that there are no other solutions linearly in-
dependent of P. Indeed, suppose that P' also solves (2.7)
with the same vector potential A. Then necessarily

1—(i), +ia, )g' v'g (i)&+iab) +s' b,b /=0 .

(2.48)

In the special coordinate system the solutions of (2.48)
are given by the solution of E.q (2.7) with (e/c)Ab,
(e/c)B, b replaced by ab, b, b and in different topological
cases we proceed as in Secs. II A and II B. Having found
the solutions Pk of Eq. (2.7), which span H, we may con-
struct the reproducing kernel W as

~(k" 0') =&P~tkk(k")09k'» (2.49)

tern discussed in Sec. I D, namely, treating now the two-
dimensional surface I as a phase space of a certain physi-
cal system we obtain the representation of the Hilbert
space H of the quantized system. H is identified with the
subspace of the Hilbert space L (I,Vgdg'dg ) which
contains functions satisfying the polarization condition

0 =f(z )4' (2.45)

2m. n =C =2vrgp; (2.46)

where f (z') is an antiholomorphic function of z. The
only (anti)holomorphic functions on a compact surface
are constant functions. However, if P has a zero in some
point then perhaps f can have a pole which is compensat-
ed by P. Therefore, we have to study zeros of P, and here
mathematics gives us a precise answer. First, as we men-
tioned before every zero of P is a zero of a holomorphic
function. Hence, any such zero is of the kind (z —zo )r.
Second, we have a formula which expresses the magnetic
flux by the zeros of P and their orders; this expression
reads as

where Pk& are coefficients of a matrix inverse
to the Gramm matrix with coeScients akl =
f Pk(g)Pi(g)&g (g)dg'dg, and then complete the quant-
ization scheme presented in Sec. I D.

D. Quantum Hall current

The motion of an electron in a general magnetic field
and on an arbitrary surface I as discussed in Sec. I B is
described by the propagator (1.10). However, according
to the reinterpretation given in Secs. IC and ID this
propagator may be treated as a quantum propagator for
the classical system with a phase space I and an action
functional

summed over all zeros. But in our case 4=0. It follows
that every order p;=0. Hence, P cannot vanish at any
point.

Summarizing, we have seen that, if n =0 there are two
possibilities: there exists either exactly one solution or
none. A solution exists if and only if 3 can be written in
the Landau gauge in the form

A = f —A (x)x —V(x) dt .b (2.50)

—B.,(x)x '=a. V(x) .
e

(2.51)

The corresponding Euler-Lagrange equations read as

A, (x)=v'g( )xe, '( )xB, b(x) (2.47)

with b being a global real function on the surface.

C. Application to quantization of general systems

The results of the previous sections have immediate ap-
plication to the problem of quantization of a general sys-

I

Consider now two points x' and x" on I connected by a
curve C. The total electric current J& which Aows

through the curve C for the case of fully occupied first
Landau level may be calculated using the following semi-
classical arguments. Let us treat the electrons as a Quid
with the local surface density given by Eq. (2.20) and the
local velocity x ' which satisfies the Hamiltonian equa-
tion (2.51). First from Eq. (2.20) we obtain

[a.A, (x) a, A. (x)]dx'~dx—'+ ~ (x)&g(x)dx'dx'e a b

' [a.A, (x)—a„A.(x)]+ ~(x)&g(x)e., dx /dx".
4~c Sm

(2.52)
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Then using Eqs. (2.51), (2.52), and the fact that

B,b =(QB„,B"'g/2)e, b, we have

2

Jc= f B,bx 'dx + f R (x)&g(x)e,bx 'dx

[V(x")—V(x')]+ f "
dV(x) .

2nc 4rr c QB, B'"/2

(2.53)

The first term on the right-hand side of Eq. (2.53) gives
the standard expression for the quantum Hall current
with the filling factor equal to 1 [14] while the second one
is a geometric correction due to the curvature. For a Hat
surface and uniform magnetic field the standard expres-
sion is verified experimentally with an amazing accuracy.
We expect also that the generalized formula (2.53) is ap-
plicable far beyond the semiclassical limit for physically
interesting cases (here semiclassical regime corresponds
to the case where the typical magnetic length [eB/c]
is much smaller than the other relevant length scales).
This wider applicability is due to the fact that all quan-

turn corrections which can be derived from the expansion
in the path integral (1.10) around the classical trajectory
effectively cancel in the integral along the curve C as long
as the external potential V(x) varies very slowly at the
ends x', x". One should notice that Eq. (2.53) makes
sense only for B,b&0, which is in agreement with the
semiclassical picture. For an application of the above re-
sults to the description of an anomalous Hall current due
to the anomalous magnetic moment of an electron in the
case of a Bat surface but general magnetic field, see Ref.
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