
PHYSICAL REVIEW A VOLUME 48, NUMBER 1 JULY 1993

oscillator strengths for the transitions in Ca XIII
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The absorption oscillator strengths for a number of transitions among LS states and the fine-structure
levels calculated using extensive configuration interaction in the wave functions are reported. The rela-
tivistic results are obtained adopting an intermediate-coupling scheme through the use of the terms of
the Breit-Pauli Hamiltonian. In general, there is very good agreement between length and velocity forms
of the oscillator strengths and the energies obtained using these wave functions compare very well with
the observed values. The comparison of the oscillator strengths calculated in the present work with the
other available calculations shows good agreement. Also reported are accurate results for many astro-
physically important transitions involving quintet states. It is noted that spin-spin and spin-other-orbit
terms of the Breit-Pauli Hamiltonian have considerable effect on the f values for the intercombination
transitions.

PACS number(s): 32.70.Cs, 31.20.Di, 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Accurate oscillator strengths and transition probabili-
ties for the transitions in the cosmically abundant ions of
oxygen isoelectronic sequence are required for a detailed
study of the celestial bodies. Highly ionized ions of this
sequence are also of particular interest for the fusion
research and modeling of plasmas. A limited amount of
effort is devoted to the calculation of oscillator strengths,
energy levels, and transition probabilities for some ions of
this sequence, by Saraph, Seaton, and Shemming [1],
Pradham [2], Mason [3], Bhatia, Feldman, and Doshek
[4], Butler and Mendoza [5], Reed and Henry [6], Cowan
[7], Cheng, Kim, and Desclaux [8], Baluja and Zeippen
[9], Fawcett [10], Tayal and Henry [11], Hibbert et al.
[12], and references therein. The most important
member of this sequence, namely, neutral oxygen, has at-
tracted much attention and relatively less work concerns
other ions of this sequence. The existing data are sparse
and mostly pertain to transitions among the levels of
n =2 complex. Further, most of the data are obtained
with very limited, if at all, electron correlations.

The transitions within the ground configuration of
highly ionized systems, such as CaxIII, are of basic im-
portance for coronal studies. Whereas, for diagnostic
spectroscopy in fusion plasmas, it is essential to include
the n =3 shell transitions at least. This is because of the
emphasis on visible spectroscopy and on localizing the vi-
cinity of surfaces from which the impurities are released.
In the present work we consider the Ca XIII ion of the ox-
ygen isoelectronic sequence and calculate absorption os-
cillator strengths for a number of transitions using the
configuration-interaction technique (Hibbert [13]). The
accurate wave functions are constructed including the
electron-correlation effects through extensive configu-
ration interaction. The calculation is performed both in
LS coupling as well as intermediate coupling taking into
account the relativistic effects via Breit-Pauli terms of the
Hamiltonian. Relatively few calculations are reported

for this ion. Mason [3], Cheng, Kim, and Desclaux [8],
Fawcett [10],and Baluja and Zeippen [9] have calculated
energy levels, oscillator strengths, and transition proba-
bilities using various techniques. Energy levels and radia-
tive transition probabilities are reported by Mason for the
transitions among the 2s 2p and 2s2p levels using the
SUPERSTRUCTURE [14] program. Cheng, Kim, and Des-
claux [8] used the multiconfiguration Dirac-Fock
(MCDF) technique (Desclaux [15]) to calculate energy
levels and oscillator strengths but included configurations
within the n =2 complex only. The Hartree-Fock rela-
tivistic (HFR) program of Cowan [16] was used by
Fawcett [10] including a limited number of configurations
from the n =3 complex. He calculated the line oscillator
strength between the levels of 2s 2p, 2s2p, 2p,
2s 2p 3s, and 2s 2p 3d configurations. Baluja and Zeip-
pen [9] used 3s, 3p, and 3d correlation orbitals and re-
ported oscillator strengths between the n =2 LS states.
All these calculations, therefore, are for the transitions
among n =2 configuration states except the calculation
of Fawcett which includes a few levels from the n =3
complex. A systematic calculation which takes account
of all the important electron correlation effects is clearly
warranted. Further, none of the previous calculations
has considered the 2s 2p P' —2s 2p S' transition
which is most suitable for the abundance studies. A de-
tailed study of the transitions involving quintet systems,
whether for an understanding of the structure of the stel-
lar atmosphere or for an investigation of heating and ra-
diationless mechanisms in laboratory plasmas, necessarily
requires an evaluation of the intercombination oscillator
strength. We have calculated f values for many inter-
combination lines as well.

II. CALCULATION

The basic purpose of the present study of the CaxIII
ion is to calculate sufficiently accurate oscillator
strengths, excitation collision strengths, and perhaps pho-
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toionization cross sections for their use in astrophysical
and fusion applications. Since any inaccuracy in the con-
struction of atomic or ionic wave functions enters direct-
ly into the collision matrix, it is vital for the accuracy of
the final results that wave functions employed are of high
quality. In this work we attempt to obtain such wave
functions for the states of Ca XIII using the sophisticated
configuration-interaction method as implemented in the
cIV3 [13) program. In this method the nonrelativistic
configuration-interaction wave functions are expressed in
the form

C&J (LS)= g a;J p; (a;LS ) .

For a given set of [P;], the variationally optimal values
of the mixing coefficients a," are the components of the
eigenvectors of the Hamiltonian matrix. In the above ex-
pression, each single-configuration state function [P; ] is
constructed from one-electron orbitals whose angular
momenta are coupled (as described by a;) to form a total
I., S, and II, common to all m configurations. The radial
part of these orbitals is represented as a sum of Slater-
type orbitals,

k

P„&(r)= gc;r 'exp( g, r)—.

For the 1s, 2s, and 2p orbitals, the parameters c;, p;, and

g; are taken as Hartree-Fock values given by Clementi
and Roetti [17] for the ground state P'. The parameters
of the rest of the orbitals used in the present calculation
for the construction of the wave functions are obtained
using the following optimization procedure.

The 3s function parameters are optimized on the ener-

gy of the 2s 2p 3s S' state. Since the 3s functions ap-
propriate to the 2s 2p 3s S' state are substantially
different from those for the 2s 2p 3s S' state, and since
the cIv3 program uses orthogonal orbitals only, it is
necessary to introduce another radial function, which we
labeled as 4s, so that the 2s 2p 3s S' state is represented
by a linear combination of 2s 2p 3s and 2s 2p 4s
configurations. The parameters for the 4s orbital are ob-
tained by minimizing the energy of the lowest S' state.
The Ss orbital was optimized on the average energy of
2s 2p 4s S' and 2s 2p 4s S' states. The 3p orbital is
used to improve the ground-state energy and accordingly
its parameters are optimized on the 2s 2p P' state. The
average energy of 2s 2p 3p P'and 2s 2p 3p P'states is
used to optimize 4p parameters with configurations
2s 2p 4p P' and 2s 2p 4p P'. Similarly, parameters
for the Sp orbital were obtained on the average energy of
4p P' and 4p P' states. The 3d and 4d orbitals are ob-
tained on the energies of 2s 2p 3d D'and 2s 2p 4d D',
respectively. We have also obtained 4f and Sd orbitals
but their effect was found to be negligible and therefore
these were dropped from the final calculation. The pa-
rameters for all these orbitals are given in Table I.

These orbitals are then used to construct all the
configurations to include "internal, " "semiexternal, " and
all the major "all external" correlations effects. These
configurations are listed in Table II for even- and odd-

TABLE I. The values of parameters for the atomic orbitals
for Ca xln.

Orbital

3$

4s

5s

3p

4p

5p

3d
4d

CoefKicient

0.208 264 0
—1.787 479 8

2.345 276 6
5.986 435 3

—11.161 583 8

13.662 874 4
—9.720 900 7

3.122 494 0
—6.256 560 7
19.088 677 1

—20.046 172 4
3.510021 7
0.588 052 6

—1.167 191 3
0.460 035 5

—6.348 026 3
6.897 549 2
0.851 402 4

—0.873 656 2
0.695 830 4

—0.883 632 3
1.000 000 0
0.963 228 6

—1.429 483 8

Power of r Exponent

15.510536
4.993 998
4.965 391
2.772 518
5.608 273
5.534 040
5.434 630
1.985 957
4.676 018
4.175 824
4.713 858
4.542 951
7.925 266
4.334 604

15.403 263
2.565 674
3.122 448

16.103 421
9.514 906
4.498 314
2.481 528
4.531 850
4.299 670
3.106 880

4 (J)= gb; P;(a;L;SJ) . (3)

The sum over i includes all those configurations whose
orbital and spin angular momenta I.; and S; couple to
give the total angular momentum

J=l.;+S; . (4)

The coupling coetficients a;J and b; in Eqs. (1) and (3) ar. e
the eigenvector components of the Hamiltonian obtained
by diagonalizing the respective Hamiltonian.

parity states. The calculation performed with this com-
plete set of configurations is labeled "CI1." We have also
carried out another calculation "CI2" with a compact set
of configurations in which all the configurations with

a, . &0.005 and a negligible contribution to the oscillator
strength were discarded. This resulted in a substantial
reduction of the number of configurations for each state
which facilitated the intermediate-coupling calculation.

As the nuclear charge increases, the relativistic effects
become more and more important. We, therefore, per-
formed a separate calculation by including spin-
dependent terms of the Breit-Pauli Hamiltonian in the
nonrelativistic Hamiltonian (Glass and Hibbert [18]).
The compact set of configurations used in the CI2 calcu-
lation is employed for the calculation in intermediate
coupling. The terms of the Breit-Pauli Hamiltonian in-
cluded are, spin-orbit (S-O), spin-other-orbit (S-O-O),
spin-spin (S-S), Darwin (D) and mass correction (M). The
wave functions are then represented by a J-dependent
configuration-interaction expansion,
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TABLE II. Set of configurations used for Ca xju states.

2s 2p
2p
2p msns

2p np
2s 2p np

2p 3pnp
2s2p nd
2s2p ns
2$ 2p n1

s22p25p2

2$ 2p 3$nd
2$2p msnp
2$ 2p 3pnp

Even parity

m, n =3,4
n=3 —5
n=3 —5

n =4, 5
n =3,4

n=3 —5

n =3—4, 1=0—2

n =3,4
m, n =3,4

n =4, 5

2snp
2s 2p nd
2s 2p ns

2p nd

2p ns

2p 3pns
2p 3pnd
2s 2p msnp
2s2p mdns
2s 22p 2mdnp

2s2p 3ns

2s 2p'np
2s2p np

Odd parity

n =2, 3
n =3,4

n=3 —5
n =3,4
n =3,4
n =4, 5
n =4, 5

m =3-5,n =3,4
m =3,4n =4, 5

m, n =3,4
n =3,5

n=3 —5
n=3 —5

III. RESULTS AND DISCUSSION A. LS Coupling

The energies and oscillator strengths calculated for
CaxIII in the I.S and intermediate coupling, using the
wave functions constructed as described in Sec. II, are
discussed in the following.

The energies of the states of CaxIII obtained in the
present two sets of nonrelativistic calculations are given
in Table III along with the observed values compiled by
Sugar and Corliss [19]. The observed term energies are

TABLE III. Calculated and observed LS energies (in a.u. ) of Ca xIII states relative to the ground state.

State

s2p p
2s 2p 'D'
2s 2p4'S'
2p

s 2p (4So)3p 5Pe

s2p(S)3p P
s 2p'( D')3p 'Pe

s 2p ( D')3p
2$ 2p ( D )3p 3y'e

2s 2p ( D')3d 'y'
2s 2p 3p S'
2s 2p ( D )3p P'

s 2p ( P')3p
s 2p ( P')3p '

s 2p ( Po)3p 'Pe

s 2p ( Po)3p P
s 2p ( D')3p '

2s 2p 3p 'S'
2s2p 3s P'
2s2p ( P)3s P'
2s2p 3s D'
2s2p 3s 'D'
2s2p 3s S'
2s2p 3s 'S'
2s2p ( P)3s 'P'
2s2p 3s 'P'
2s2p43d 5P'
2s2p 3d D'
2s2p 3d S'
2s2p 3d P'

Even parity
CI1

0.0
0.3429
0.7157
6.3904

15.8699
16.0395
16.3538
16.3869
16.4289
16.4592
16.6227
16.6894
16.6934
16.7463
16.7573
16.8070
16.9877
17.2567
17.4791
17.7631
18.4015
18.5841
18.9223
19.0899
19.1321
19.2039
19.2140
19.4237
20.0698
20.1676

CI2

0.0
0.3309
0.7046
6.3716

15.8476
16.0721
16.3546
16.3713
16.4376
16.4603
16.6025
16.7228
16.7034
16.7487
16.7665
16.8307
16.9988
17.2395
17.4779
17.7621
18.4091
18.5863
18.9182
19.0862
19.1367
19.1905
19.1905
19.5672
20.0398
20.2048

Observed

0.0
0.3501
0.7621
6.5108

State

2s2p
"P'

2s2p 'P'
2s 2p ( So)3s 'So
2s 2p'( So)3$ So
s 2p 3$ D

2s 2p 3s 'D
2 2 3 P'
2s 2p 3s P
2$ 2p ( So)3d Do
25 2p ( S)3d D'
2$ 2p ( So)3d So
2s 2p'( D)3d 'P'
2 2 (D)3d D'
2s 2p (2D)3d iDo

2s 2p (2D)3d Po
2$22p 3(2D o)3d 3So

s 2p (2P)3d 3Po

22p 3(2p )3d 3D o

2s 2p'( P)3d 'D'
2s 2p ( P)3d 'P'
2s2p 3p D'
2s2p ( P)3p D'
2s2p S'
2s2p ( P)3d'S'
2s2p ( P)3p P'
2s2p ( D)3p 'P'
2s2p ( D)3p 'D'
2s2p 3p 'S'
2$2p ( P)3p So
2s 2p 4s S'
2s 2p 4d 'So

Odd parity
CI1

2.7286
3.7744

15.1541
15.3507
15.7252
15.8234
15.9737
16.0719
16.8100
17.0006
17.3300
17.4372
17.4615
17.4856
17.5141
17.5658
17.6442
17.7209
17.7870
17.9724
18.2357
18.3567
18.3725
18.4106
18.4586
19.1153
19.2639
19.9521
19.9790
20.5791
21.7400

CI2

2.7045
3.7500

15.1233
15.3254
15.7017
15.8123
15.9751
16.0773
16.7830
17.0030
17.2987
17.4564
17.4587
17.5014
17.5402
17.5461
17.7623
17.7368
17.8079
17.9994
18.2179
18.3276
18.3514
18.3940
18.4692
19.1975
19.2745
19.9477
19.9858
20.5819
21.7432

Observed

2.8876
3.8225

15.3244
15.6931
15.7804

16.0980

16.9952

17.4334

17.5420
17.5543
17.6770
17.7971
17.7414
18.0322



48 OSCILLATOR STRENGTHS FOR THE TRANSITIONS IN Ca xnan 253

tabulated relative to the LS center of gravity of the
2s 2p PJ levels for the comparison with our calculated
LS values. The energies of Ca XIII states as calculated in
the CI2 calculation are very close to those obtained in the
CI1 calculation as can be seen from Table III. The agree-
ment with the observed values is reasonably good, within
0.3%, except for the 2s 2p 'S', 2s 2p 'D', and
2s2p P' states where present CI2 calculated energies
differ with the observed ones by 0.058, 0.019, and 0.183,
a.u. , respectively, leading to a maximum difference of
about 8%%uo. It is mainly due to the choice of ls, 2s, and 2p

orbitals chosen for the 2s 2p P' ground state in the
present calculations. Baluja and Zeippen (BZ) [9) have
compared their excitation energies for several transitions
with other theoretical works and with experimental
values of Baskin and Stoner [20]. Our LS excitation ener-
gies are in good agreement with these and in fact are
closer to the experimental values except for the excitation
energy for the transition 2p 'S' —2s2p 'P', for which
our calculated value is in disagreement with others by
about 14%%uo. However, our value for the excitation energy
of this transition disagrees with the value given by Sugar

TABLE IV. The oscillator strengths for the transitions among CaxIIr states. The numbers in brackets indicate powers of 10:
a [+b ]=u X 10'".

Transition

L(CI1) V(CI1)

Oscillator strength

L(CI2) BZ [9]

2s 2p P'-2p 3s S'
2s 2p P' —2p 3d S'
2s 2p P' —2s2p 3p S'
2p'( S )3p P' —2s2p 3p S'
2p 3s S'-2p 3p P'
2s 2p P'-2p'3s D'
2s 2p 'P' —2p'3d D'
s 2p 'P' —2p'( D')3d

2s 2p 'Pe —2p ( P')3e
2p ("S')3p P' —2p 3d D'
2p'3s D' —2p ( S)3p P'
2s2p P' —2s2p P'
2s 2p P' —2p 3s'P'
s 2p P' —2p ( D)3d P

2s 2p P' —2p ( P)3d P'
2p ( S')3p P' —2p 3d P'
2p ( P')3p D'-2p 3s P'
2s2p' P' —2p'3p 'S'
2p 3s P'-2p'3p S'
2s2p' 'P' —2s2p "3s 'S'
p 33s 'D' —2p 3p

p 3s'D' —2p ( Po)3p
2s 2p 'D' —2s2p' 'P'
2s 2p 'D'-2p 3s 'P'

s 22p 4 1D e 2p 3( 2D )3d 1P0

2s2p' 'P' —2p' 'S'
2s2p'1P' —2s 2p 3p 'S'
2s2p 'P' —2s 2p 'D'
2s 2p'3s 'P'-2s 2p 3p 'D'
2s 2p'3s 'D'-2s 2p'3p 'P'
2s 2p 3p 'P' —2s 2p 3d 'D'
2s 2p 'D'-2p 3s 'D'
2s 2p 'D' —2p 3d 'D'
2p'3s 'P' —2p'( D }3p 'P'
2p 3d 'P' —2p ( D)3p 'P'
2s 2p 'S' —2s2p' 'P'
2s 2p 'S'-2s 2p'3s 'P'
s p 'S' —2s 2p'3d 'Po

2p 3s 'S'-2p'3p 'P'
2p 3p P' —2s2p 3p S'
2p'3p 'P' —2p'3d 'D'
2p 3p P' —2s2p 3p D'
2p'3p 'P'-2s 2p'4d D'
2s2p"3s P' —2s2p 3p D'

4.1787[—2]
1.7528[—1]
4.1412[—2]
1.6092[—2]
2.5036[—1]
6.3385[—2]
2.8840[—1]
5.1729[—1]
5.5450[—1]
1.9457[—1]
2.7453[—3]
1.0997[—1]
3.6415[—2]
5.2454[—1]
3.0277[—2]
1.7975[—2]
1.6403[—1]
1.9161[—3]
2.7871[—2]
1.5507[—2]
8.3388[—2]
8.4608[—3]
1.4075 [—1]
3.0290[—2)
1.3485[—1]
1.220[—1]
2.2845[—3]
3.5446[—3]
9.5006[—2]
3.5595 [—2]
1.0657[—1]
1.0115[—1]
1.4130[—1]
6.4806[—3]
3.4828[—2]
6.2142[—2]
1.4164[—1]
1.7293[—1]
2.9207[—1]
1.8533[—2]
2.1071[—1]
7.0632[—2]
3.4020[—1]
2.0908[—1]

4.1019[—2]
1.5496[—1]
3.7831 [—2]
1.2935[—2]
2.4638[—1]
6.1239[—2]
2.7423[—1]
4.8677[—1]
5.2857[—1]
2.4469[—1]
3.1743[—3]
9.9808[—2]
3.7456[—2]
4.8495[—1]
2.6698[—2]
1.9597[—2]
1.7512[—1]
8.7908[—4]
2.9125[—2]
1.6761[—2]
8.1818[—2]
7.7137[—3]
1.0441[—1]
3.2023[—2]
1.2469[—1]
8.5115[—2]
2.1908[—3]
2.7752[—3]
9.9016[—2]
3.8698[—2]
1.1992[—1]
9.8737[—2]
1.2559[—1]
7.6983 [—3]
3.9567[—2]
8.8902[ —2]
1.3426[—1]
1.5678[—1]
2.8546[—1]
1.2398[—2]
3.1872[—1]
6.7185[—2]
3.0389[—1]
1.9140[—1]

4.1691[—2]
1.7657[—1]
4.3770[—2]
1.2186[—2]
2.8110[—1]
6.0918[—2]
2.9629[—1]
5.2596[—1]
5.3947[—1]
1.9922[—1]
2.8564[—3]
1.1008[—1]
3.5578 [—2]
4.8887[—1]
2.9548[—2]
1.7855( —2)
1.6466[—1]
2.0933[—3]
2.6894[—2]
1.5236[—2]
8.5127[—2]
9.1356[—3]
1.3985[—1]
2.9394[—2]

1.2135[—1]
2.3137[—3]
3.46214[—3]
9.6139[—2]
3.5608[—2]
1.0578[—1]
9.6989[—2]
1.4399[—1]
6.5433 [—3]
3.5142[—2]
6.3428[ —2]
1.3306[—1]
1.7145[—1]
2.9628[ —1]
1.8638[—2]
2.1022[—1]
7.3481[—2]

2.1009[—1]

1.079[—1]

1.138[—1]

6.41[—2]
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and Corliss [19]only by 2.5% (0.067 a.u. ).
Table IV contains the oscillator strengths for dipole

transitions among the states of 0 I-like calcium ion as cal-
culated in the present two LS-coupling calculations. We
have included only the length value of the oscillator
strength obtained in our CI2 calculation. These are com-
pared with the values obtained by Baluja and Zeippen [9]
in their LS-coupling calculation. They reported the oscil-
lator strength between the states of n =2 complex and
used 3s, 3p, and 3d correlation orbitals to account for the
electron correlations. They used the experimental ener-
gies instead of theoretical ones.

The close agreement between the length L and velocity
V forms of the oscillator strengths is a necessary (but of
course not sufficient) condition for the good quality wave
functions. The length form emphasizes the asymptotic
part of the wave function whereas the velocity form
weights the intermediate region. For most of the transi-
tions reported here, we get a very good agreement be-
tween these values. Our length values, which are sup-
posed to be more accurate, are in remarkably good agree-
ment with those obtained by Fawcett [10] and Baluja and
Zeippen [9]. Both of these authors used experimental
values for the excitation energies. The values reported by

Cheng, Kim, and Desclaux [8] are higher than all other
values. This is mainly due to neglect of the electron-
correlation effects in their calculation. We will discuss
the calculations of Cheng, Kim, and Desclaux [8] and
Fawcett [10] in more detail in the intermediate-coupling
section.

The f values reported here between the LS terms are
obtained through a step-by-step improvement of wave
functions. We have tried to include all the important
configuration-interaction effects and therefore have
reasons to believe that the f values reported here provide
an improvement over the values reported so far and can
be used with con6dence in the astrophysical applications.

B. Intermediate coupling

The results in the intermediate coupling are obtained
by including one- and two-electron operators of the
Breit-Pauli Hamiltonian in the nonrelativistic Hamiltoni-
an. The spin-forbidden transitions which are not allowed
in the LS coupling become allowed through the inclusion
of the spin-dependent operators of the Breit-Pauli Hamil-
tonian. Different LS terms of the same parity couple to
give the same value of J. It is, therefore, important that

TABLE V. Fine-structure energy levels of Ca xni relative to the ground-level energy (in a.u.).

Level

Even parity
2s 2p P2
2$ 3p P1
2$22p43PO

2s 2p 'D2
2$22p4 1S.
2p6 1Se

2s 2p ( S')3p P3
2s 2p ( S')3p P'
2s 2p ( S')3p P1
2s 2p ( S')3p P2
2s 2p ( S')3p P1
2$ 2p ( So)3p Pe
2s 2p'( D')3p D2
2s 2p ( D')3p 'D;
2s 2p ( D')3p 'P;
2s 2p ( D )3p F3
2s2p (D )3p
2s 2p ( P')3p D'
Odd parity
2s2p P2
2$2p5 3P o

2$2p Po
2s2p 'P'
2s 2p ( S')3s S2
2s 2p ( S')3s S'
2s 2p ( D')3s D;
s 2p'( D )3$

2s 2p ( D')3s D'
s2p(D)3$
$2p ( p )3$ Po

2$2p'( P')3$ 'P;

Calculated

0.0
0.1095
0.1286
0.4050
0.7949
6.6896

15.9326
15.9230
15.9135
16.1853
16.1708
16.1906
16.4464
16.4039
16.4903
16.5124
16.5029
16.7981

2.8478
2.9380
2.9912
3.9503

15.1806
15.3873
15.7487
15.7519
15.7713
1S.8818
16.0662
16.0785

Observed

0.0
0.1145
0.1316
0.4019
0.8138
6.5626

2.8170
2.9080
2.9621
3.8743

15.3760
15.7321
15.7342
15.7570
15.8312

Level

Odd parity
2s 2p ( P')3s P'
2s 2p'( P')3s 'P;
2s 2p ( D')3s 'P;
2s 2p ( S')3d'Do
2s 2p'( S')3d 'D1
2s 2p (4S')3d 'D2
2s 2p ( Se)3d 'D3
2s 2p ( S')3d'D4
2s 2p ( S')3d D1
2s 2p ( S')3d 'D&

2s 2p ( S')3d D3
2$ 2p ( D )3d
2s 2p ( D')3d F'
2s 2p ( D')3d F'
2s 2p ( D')3d G3
2$ 2p'( D')3d G4
2s 2p ( D')3d Gz
2s 2p (~D')3d 'G4
2s 2p'( D')3d D1
2s 2p ( D')3d D2
s 2p (D )3d D3

2s 2p ( D')3d P'
2s 2p ( D')3d P;
2s 2p ( P')3d 'F3
2s 2p'( D')3d P'
2$ 2p3(2D )3d 1Do

s 2p ( D')3d 'F3
s2p(P)3d F4

2$ 2p 3d Po
2s2p43p 'D4
2s2p43p 'Do

Calculated

16.1154
16.2024
16.2225
16.8886
16.8883
16.8875
16.8865
16.8781
17.12S2
17.1143
17.1289
17.3953
17.3983
17.4095
17.4461
17.4519
17.4461
17.4789
17.5386
17.5802
17.5897
17.6598
17.6649
17.6785
17.6831
17.6497
17.7368
17.7600
17.9212
18.3932
18.4279

Observed

16.1502

17.0362
17.0541

17.4422
17.4870
17.5012
17.5461
17.5510

17.5461
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TABLE VI. The oscillator strengths for the transitions among Ca xnan fine-structure. levels. The numbers in squared brackets refer
to the numbers in the reference list. The numbers in brackets indicate powers of 10:a[+0 ]=a X 10+b.

Transition

2s 2p P2 —2s 2p 3s S1
2 2 P; —2 2 33 2S;
2$22p43po 2$22p33$3S1

2p 3s 'S1 —2s2p 3p P1
2$22p43P2-2$22p 33$ 5S2

2s 2p P1 —2s 2p 3s S'
2s 2p P2 —2s 2p'3s D3
2$22p4 3P2 —2$22p 33$ 3D

2$ 22p 4 3P2 —2$ 22p

2$22p43P1-2$22p33$ 3D2

2s 2p P1 —2s 2p 3s 3D1
2$22p43PG-2$22p 33$3D1
2s 2p P2 —2s 2p 3d D2
2$ 2p P2 —2$ 2p 3d D3
2s 2p P2 —2s 2p 3s 'D'
2$22p43P1-2$22p 33$1D2
2s 2p P; —2s 2p 3d 'So
2$22p43P2-2$2p5 3P2
2$22p43P2-2$2p "P;
2$22p43p1 -2$2p 5 3P2
2$22p43P1-2$2p54PO
2$22p43po-2$2p5 3P1
2$22p43P1-2$2p53P1
2s 2p P2 —2s 2p 3s P2
2$ 22p 4 3P e 2$ 22p 33$ 3P 0

2$22p43P1-2$22p 33$3P1
2s 2p P; —2s 2p 3s P;
2$22p43P1-222p33$ 3po
2s 2p PG —2s 2p 3s P1
2s2p Po —2s 2p'3p P1
2s 2p'3s Po —2s 2p 3p 'P;
2s 2p 'D2 —2s2p''P2
2$22p4 1D2-2$2p 5 3P1
2s 2p 'D2 —2s2p 3s S2
2$22p4 1D2-2$2p33$ 3D2
2$22p4 1D2-2$2p33$3P2
2$22p4 1D2-2$2p33$ 3P1
2$22p4 1D2-2$2p33$1D2
2s2p P1 —2p SG
2s2p 'P1 —2p 'S,
2$22p43P2-2$2p 5 1P1
2$22p43P1-2$2p5 1P1
2$22p4 3po
2$22p4 1D2-2$2p5 1P

2$22p4 1D2-2$2p 33$ 3S1
2 2p 'D'-2 2p 3 D;
2$22p4 1D, -2$2p'3$ 'D'
2$22p4 1D2-2$2p33$3D1
2s 2p 'D' —2s2p 3d D'
2s 2p 'D2 —2s2p 3d D3
2s 2p 'D2 —2s2p ( S)3d D3
2s 2p 'D2 —2s2p ( S)3d D'
2s 2p P' —2s 2p ( D)3d'P'
2 2p P; —2 2p (P)3d P'
2p 3p P1 —2s 2p 3d 'So
2$22p4 1SG

2$22p4 1so-2$2p5 1P1
2$22p4 1so-2$22p33$ 1P1

4.4074[—2]
3.4895[—2]
4.0848[—2]
9.8264[—2]
5.1428[—4]
1.0710[—4]
4.8491[—2]
2.0743[—2]
8.5226[—4]
2.6739[—2]
2.3912[—2]
3.9335[—2]
5.1498[—2]
2.5425[—1]
4.8690[—3]
6.3896[—3]
3.0118[—4]
8.3931[—2]
3.0553[—2]
4.5846[—2]
3.907[—2)
1.0962[—1]
2.8416[—2]
1.2184[—2]
2.7642[—2]
4.4341[—3]
7.1692[—3]
1.2015[—2]
5.8739[—2]
2.7593[—4]
2.6647[—4]
2.6433[—3]
3.5714[—5]
6.5254[—8]
3.8919[—4]
1.4088[—2]
2.6043[—3]
7.6096[—2]
8.8834[—4]
1.2538[—1]
3.7528[—3]
2.4062[—4]
1.7381[—3]
1.4079[—1]
4.4429[—4]
8.7796[—4]
1.9658[—3]
8.7796[—4]
1.8512[—6]
9.1360[—6]
1.0784[—3]
2.3703[—3]
1.0486[—1]
7.6142[—2]
5.4718[—4)
2.9191[—3]
6.5748[—2]
1.3339[—1]

V

4.5300[—2]
3.4984[—2]
4.0149[—2]
1.1201[—1]
5.2431[—4]
1.0808 [—4]
4.9174[—2]
2.1229[—2]
8.6304[—4]
2.6185[—2]
2.3767[—2]
3.8006[—2]
4.8758[—2]
2.3812[—1]
5.2722[—3]
5.4230[—3]
2.6020[—4]
6.7777[—2]
2.3199[—2]
3.8723 [—2]
3.003[—2]
8.8312[—2]
2.2208[—2]
1.2381[—2]
2.8159[—2]
4.5546[—3]
7.4349[—3]
1.2366[—2]
5.9680[—2]
2.9368[—4]
2.9292[—4]
2.6984[—3]
1.2807[—5]
4.2271[—8]
4.4849[—4]
1.3321 [—2]
2.8663[—3]
7.7907[—2]
8.7698[—4]
8.0308[—2]
2.2029[—3]
1.1822[—4]
2.4899[—3]
9.4427[—2]
4.0529[—4]
1.0168[—3]
1.7435[—3]
1.0168[—3)
1.4319[—6]
8.9071[—6]
9.7110[—4]
2.2417[—3]
9.5091[—2]
6.7160[—2]
5.0242[—4]
2.5776[—3]
9.9001[—2]
1.2203[—1]

Oscillator Strength

HFR [10]

5.520[—2]
4.400[—2]
4.901[—2]

5.780[—2]
2.420[—2]

3.030[—2]
2.661[—2]
4.200[—2]

2.586[—1]
5.600[—3]
7.300[—3]

8.440[—2]
3.040[—2]
4.930[—2]
3.900[—2]
1.120[—1]
2.860[—2]

3.23 [—2]
4.800[—3]
8.000[—3]
1.330[—2]

1.500[—2]

1.012[—1]

1.230[—2]

1.420[—1]

7.300[—2]

SS [3]

9.218[—2]
3.303 [—2]
5.060[—2]
4.290[—2]
1.213[—1]
3.124[—2]

2.223 [—3]
3.000[—5]

3.07[—3]
1.900[—4]
1.350[—3]
1.543 [—1]

2.460[—3]
7.160[—2]

MCDF [8]

9.220[—2]
3.323[—2]
5.045[—2]
4.285[—2]
1.210[—1]
3.128[—2]

2.383[—3]
4.988[—5]

9.089[—4]
1.443[—2]
3.438[—3]
2.131[—4]
1.519[—3]
1.542[—1]

2.622[—3]
7.149[—2]
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TABLE VI. (Continued).

Transition

2s 2p"'So —2s 2p 3s D&

2 2p 3 D'-2 2p 3p P'
s 2p 3$ 3Do 2s 2p 3p P~&

2s 2p 3p P j —2s 2p 3d Do
2s 2p 3p'P2 —2s 2p 3d'D3
2s 2p'3p P' —2s 2p 3d D3
2s 2p P& —2s2p 3d Do
2s 2p P2 —2s2p 3d D2
2 2p P' —22p 3d D'
2s2p P2 —2s2p ( D)3d F3
2s 2p P2 —2s2p 3d G3
2 2p 'D' —2 2p 3d'F'
2s 2p 'D2 —2s2p 3d G3
2s2p 3s P' —2s2p 3p D'

8.7936[—4]
9.9538[—2]
5.9212[—2]
3.2415 [—3]
3.9914[—4]
9.5615[—6]
1.1161[—6]
4.3875[—2]
1.2215[—1]
8.7997[—4]
4.6640[—4]
1.2051[—3]
2.8211[—4]
1.4744[—2]
2.8862[—3]
9.9402[—4]
4.9947[—3]
2.1330[—1]

7.1438[—4]
9.3898[—2]
5.6578[—2]
3.2329[—3]
4.0218[—4]
1.2260[—5]
9.8770[—5]
6.3595[—2]
1.7649[—1]
9.6855[—4]
4.1507[—4]
1.1196[—3]
2.7333[—4]
1.3845[—2]
2.7086[—3]
9.6055[—4]
4.7991[—3]
1.8636[—1]

Oscillator Strength

HFR [10]

2.180[—2]

5.800[—3]

SS [3] MCDF [8]

all the states which mix with the ones considered for the
transition are represented by accurate configuration-
interaction wave functions.

The energies of the fine-structure levels and the oscilla-
tor strengths between these levels are given in Tables V
and VI, respectively. The fine-structure-level energies
presented here are in very good agreement with the ob-
served values tabulated by Sugar and Corliss [19]. The
maximum difference is about 2.3%. In general, the
length and velocity values are in good agreement, within
10%, except for some transitions for which these differ by
as much as a factor of 2. This is due to the use of the
common set of orbitals for all the states and perhaps
inadequate all-external correlation effects considered
here. The present fine-structure oscillator strengths are
compared where available with the line strengths report-
ed by Cheng, Kim, and Desclaux [8] who used the
MCDF technique with only n =2 configurations, super-
structure (SS) results of Mason [3], and relativistic
Hartree-Fock calculated values of Fawcett [10]. All
these calculations account for the relativistic effects. As
can be seen from Table VI, our length values of the fine-
structure oscillator strengths agree remarkably with
those of Fawcett [10] for the transitions between n =2
levels. The f values reported by Cheng, Kim, and Des-
claux and Mason [3] are slightly higher than ours, which
seems to be due to insufficient configuration interaction in
their calculation. Fawcett [10] also reports f values for
the transitions between the fine-structure levels of n =2
configurations and 3s and 3d excited-state configurations.
It is to be noticed that his values are consistently larger
than values reported in the present calculation. It could
be due to the fact that he did not explicitly include
enough electron-correlation effects for these states. We
have used extensive configuration interaction and our
length and velocity values for these transitions are in ex-
cellent agreement. We, therefore, believe that our results

for these transitions are better than the ones reported by
Fawcett.

Consider, for example, the 2s 2p P2 —2s2p 3s S&
transition. The present length and velocity values are
4.4074[—2] and 4.5300[—2], respectively, and the
Hartree-Fock relativistic value reported by Fawcett [10]
is 5.52[—2], showing a difference of about 20%. Similar-
ly, for transitions 2s 2p P& —2s2p 3s S

&
and

2s 2p 'D2 —2s2p 3s 'D2 his results are higher by more
than 28% and 33%, respectively. For most transitions,
however, the discrepancy between the two sets of results
is below 15%.

Included in the above table are also the f values for the
intercombination transitions which are of special interest
for the calculation of the chemical abundances due to
their small values. The emission lines pertaining to the
allowed transitions are often highly saturated, making
them useless for the abundance studies. Some of the os-
cillator strengths reported here for the intercombination
transitions have not been considered in earlier calcula-
tions. It is seen that for such spin-changing transitions,
the inclusion of two-electron operators, S-S and S-O-O, of
the Breit-Pauli Hamiltonian in the calculation reduces
the oscillator strengths by about 11% to 50%. Table VII
compares these values obtained with and without the in-
clusion of these terms in the Hamiltonian for
some of the transitions. Also tabulated are the transition
probabilities ( Al ) for these transitions. The length
form of the oscillator strength for the transition
2s 2p P2~2s 2p 3s Sz increases by about 12% as a
result of neglecting spin-spin and spin-other-orbit terms,
whereas the value for the transitions 2s 2p 'Dz
~2s 2p 3s P& gets overestimated by almost a factor of
2. These operators have negligible effect on the f values
for the spin-allowed dipole transitions. It is to be noted
that the inclusion of these terms in the calculation is very
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TABLE VII. Effect of S-S and S-O-O Breit-Pauli terms on the intercombination transition oscillator strengths. Numbers in brack-
ets indicate powers of 10: a[+&]—=a X 10+ .

Transition With S-S, S-O-O

fv AL (sec ')

Without S-S, S-O-O

fv

2s 2p P2 —2s 2p 3s S2
2s 2p P; —2s 2p 3s'S2
2s2p 3p P2 —2s 2p'3d D3
2$ 2p P2 —2$ 2p 3d D3
2$22p4 1D2-2$22p 33$3S1
2$22p4 1D2-2$22p 33$3P1
2$22p4 1D2-2$22p 33$3P2
2s 2p 'D2 —2s 2p 3d F3

5.1428[—4]
1.0710[—4]
7.1926[—4]
2.8211[—4]
3.3847[—4]
1.7434[—3]
1.4088[—2]
7.4979[—4]

5.2431[—4]
1.0808[—4]
7.9424[ —4]
2.7333[—4]
3.1031[—4]
1.9159[—3]
1.3321[—2]
7.2361[—4]

3.8277[9]
4.6895[8]
2.4002[7]
1.8462[9]
4.0685 [9]
2.2935[10]
1.1159[11]
4.9691[9]

5.7436[—4]
1.3444[—4]
8.7997[—4]
3.4748[—4]
3.4256[—4]
2.5982[—3]
1.5536[—2]
9.9402[—4]

5.7590[—4]
1.3510[—4]
9.6855[—4]
3.3699[—4]
4.0353[—4]
2.8594[—3]
1.4958[—2]
9.6055 [—4]

time consuming and therefore expensive. However, we
feel that for the calculation of oscillator strengths for the
intercombination transitions in the Breit-Pauli approxi-
mation, it is important to include these terms in the
Hamiltonian.

IV. CONCLUSION

We have used extensive configuration-interaction wave
functions to calculate oscillator strengths for the transi-
tions between I.S states and fine-structure levels belong-
ing to the n =2 and n =3 complex. The energies ob-
tained in the present calculation agree fairly well with the
observed values. Our length values of the oscillator
strengths for the transitions between n =2 levels are in
very good agreement with the values reported by Fawcett
while values of Cheng, Kim, and Desclaux [8] and Mason
[3] are higher for the lack of sufficient electron correla-
tions in their calculations. For the transition between
n =2 and n =3 levels, our values show an improvement
over the ones obtained by Fawcett. There is good agree-
ment between our results obtained in length and velocity

forms. The present results are tested using a more ela-
borate configuration set and it is found that results do not
change by more than 10%%uo. It is also seen that neglecting
spin-spin and spin-other-orbit terms of the Breit-Pauli
Hamiltonian overestimates the values of the oscillator
strengths of intercombination transitions considerably,
varying from 12% to about 50%%uo. These two-electron
operator terms, therefore, should be taken into account
while calculating oscillator strengths for the intercom-
bination transitions in the Breit-Pauli approximation.
We expect our results to be of high accuracy and there-
fore confidently recommend their use in any application.
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