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We investigate spontaneous emission into an electromagnetically produced transparency of the form
recently proposed [A. Imamoglu and S. E. Harris, Opt. Lett. 14, 1344 (1989)]. We show that the achiev-
able radiation temperature (or brightness) at the transparency is much greater than the atomic tempera-

ture.

PACS number(s): 42.50.Hz, 32.80.Bx

In this Brief Report we investigate the spontaneous
emission from an electromagnetically produced tran-
sparency of the form recently discussed by Harris, Field,
and Imamoglu [1], and Imamoglu and Harris [2]. The
difference between the absorption and emission profiles of
a three-state atom in the presence of a strong-coupling
field was first studied by Mollow [3]. Transparencies in
these systems have been demonstrated by Stroud and co-
workers [4] and Orriols and co-workers [5]. The bright-
ness of a spontaneous radiator is determined by the emis-
sivity divided by the absorption coefficient. Harris [6]
first noted that because the optical depth is increased at
the frequency of the transparency and the spontaneous-
emission rate is not decreased proportionately, the
brightness that can be achieved at an optical depth is
greater than that which would be predicted based on the
Planck blackbody formula [7]. This is not a hidden
atomic basis-set effect, since the total population in all ex-
cited states even if coherently phased and radiating from
a single state would not produce the large brightness pre-
dicted.

The prototype system that we consider is shown in Fig.
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FIG. 1. Prototype energy-level diagram for a spontaneously
radiating system. I',;, I';;, and I';, represent couplings to
thermal reservoirs (i.e., spontaneous-emission rates and thermal
pumping) and g& represents the spontaneous mode that we are
considering. o, is the coupling field between states |2) and |3).
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1. The basic system is a three-state atom coupled to three
thermal reservoirs at the three transition frequencies of
the atom. Additionally, states |2) and [3) are strongly
coupled by a laser field, creating a Rabi frequency (,.
We consider weak spontaneous emission from state |3)
to state |1). This system is similar to a system that we
recently proposed for a laser without inversion [8]. We
have in the present case included the possibility of a
pumping rate from state |1) directly to state [2). In the
limit of this additional rate being small, we will obtain
the lasing threshold condition given in Ref. [8].

Our calculation is based on the density matrix. For
this calculation, we neglect any collisional dephasing.
The [2)-|3) coupling laser, Q., is assumed to be in a
coherent state and single mode. The thermal reservoirs
at the [2)-[1), [3)=[1), and [3)—|2) transition fre-
quencies are assumed to be uncoupled and at independent
temperatures T,;, T3, and T}s,, respectively. The mode
into which we consider spontaneous emission to occur, @,
is at frequency w, and is assumed to be very weak. The
Hamiltonian is

H=E, [2){2|+E;|3)(3]
+(#Q, /2)expliny,t)|3) (2] +c.c.]
+#w,a'a+(#ga'11) (3] +c.c.)
+§ﬁwk3,fﬁk+ Stgy (kb)Y (jl4+cce |, (O
ij

where g is the coupling constant [9] between the spon-
taneous mode and the |1)—|3) transition of the atom;
g (k) is the atomic coupling to the normal vacuum
modes, b, resulting in spontaneous emission and thermal
pumping. We trace over the thermal reservoirs leaving
only the atomic density matrix and the weak spontaneous
field mode [9]. In this trace, the thermal reservoirs are
assumed to have a flat photon occupation number in fre-
quency. We can now write the coupled density matrix
equations for this reduced system:

putpn +ﬁ33:ﬁf ) (2a)
dpn 4 N A~
dt = —iga py+ig*p13a + Ty (1+n,)p),
+ 3 (1+n3)p33—(Dyny +Tyyn3 01 (2b)
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dpy . (p3s/p11)-

dr —iQ /2Py Ppr3) —yy(1+ny)py, Figure 2 shows our result evaluated in the limit that
R . I';;,n,; —0. This should be equivalent to the result that
T 3(1+n3,)p33+Tayngpyy—Tpngpy, (2¢) we obtained in Imamoglu, Field and Harris [8] for the
dpss laser without inversion case. Notice that as I';,— I3, the
ar =iQ, /2(ﬁ32—ﬁ23)+igﬁ316T—ig*6p\13 steady-state photon number diverges. This is the lasing
threshold condition as stated in Ref. [8] in the absence of
+T3n3p11 T T3on 305 collisional dephasing. As I';, exceeds I';; the steady-state
N photon temperature becomes negative, implying laser ac-
—[T31(14n3)+Tap(14n3) 1633 , (2d) tion. This system lases in steady state and does not satis-
dp fy the normal inversion condition for lasing that
B —igﬁT[)‘B+igﬁllﬁT+chﬁ,2/2 P2 tp33>pq;. There is no inversion in any atomic basis

dt set. It is not a normal Raman laser.
—[Tyyny +T5(14+2n5)1613/2iAw,py3 ,  (2€) Figure 3 considers our result in the blackbody limit. In
45 this case, we introduce a pumping rate from |1) (ground
Px o A A U state) into [2) (i.e., T'y;,n,, >0). For now, we specifically

—— Q _ 2_ *a ) 210721 >

dt 1Q:(pr—P3s) /218 P2 neglect the decay I';, of state |3) to |2). Based on the
(14 a1+ results of Fig. 2, this decay will increase the emitted
[Tar(1na) 4 Tyy(14n5) brightness, but conceptually it obscures our result. Pro-
+T3,(142n3,)1p3,/2+iAw p3; (2f)  vided I';5;>>T,; and the radiation temperature of the
R [1)-]3) reservoir is kept low, the spontaneous emission
dpi — —igﬁTﬁ +iQ,p3/2 has a Boltzmann factor nearly equal to that of the
dt 32 k13 [1)-]2) reservoir and much greater than that of the

—[Tyyn3y +5y(142n5,)+T 503 1p12/2
+i(Aw, — Ao, P12 > (2g)

where I'y; and ny; represent the spontaneous-emission
rate and the average number of photons per mode at fre-

- quency @y, respectively. Aw,=E; /fi—w, and
Aw,=E; /#i—E,, /fi—w, are the detunings of the probe
and coupling field frequencies. Note that these density
equations are operator equations for the photon field de-
scribed by @ and al [10]. To find a steady-state solution,
we drop the time derivatives. To calculate the spontane-
ous emission, we develop a perturbation sequence in
powers of the spontaneous mode coupling constant.
First, we find the solution with g=0. With this steady-
state solution in hand, we may reintroduce g as a small
parameter and find the first-order correction to this solu-
tion. This correction term allows us to determine the
steady-state photon occupation number of the spontane-
ous mode. In terms of the steady-state populations with
all detunings set to zero (Aw,=Ao, =0), this is

n Q2 /4 —

P :Q_F c P22 P33 ’ (3a)
I+n, pn Y2Y3 P11

where
Vo= (1+2n,,)/2+ 303, /2+TT3yn5, /2,
v3=T(1+n,,)/2+T3(1+n;,)/2
+T3,(1+2n5,)/72,
¥ (3b)

np=<’d ay .

The complete expression including the dependence on
I'5;, T3, and Iy, is tedious to evaluate but presents no
difficulties. Notice that in the absence of a coupling field
Q. the spontaneous photon Boltzman factor is exactly
equal to the atomic Boltzman factor for state |3)

atoms that are emitting the radiation. This is the pri-
mary result of this paper. Figure 3 shows the thermal oc-
cupation number of the spontaneous radiation as a func-
tion of Aw,. The peak occurs at Aw, =Amp =0, the fre-

p
quency of highest transparency. At this frequency, n, is

nearly as large as n,;, the thermal occupation numbe? of
the |1)-|2) reservoir.

Under the conditions of Fig. 3, the ratio of the total
excited-state population to ground-state population
[(pra+P33)/P11] is less than 2X 10~ % Since the total
population of the excited states is independent of a basis
rotation, no rotation of the atomic basis can create an oc-
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FIG. 2. Spontaneous photon number vs I'y,/T;,. For this
case, I';;=1, n3;=0.1, T';,;=n, =n; =Aw,=0, Aw.=0, and
Rabi frequency 2, =3 in arbitrary units. The lasing threshold
is reached as I'y,—TI'3;.
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FIG. 3. Spontaneous photon number vs detuning Aw, from
the transparency center (Aw,=0). For this case, I';;=0.001,
ny, =0.1, T'y;=1, n;;=I3;=n;;=0, and Q,=3. The peak
value occurs at the center of the transparency and its value is
close to the occupation number of the [1)-[2) reservoir,
(B3 =0.1.

cupancy in an excited state larger than 2X 10~ % Since
the process of emission of a spontaneous photon requires
the stimulated absorption of a coupling laser photon in
the field Q,, one may think of the spontaneous field as
due to a stimulated Raman-type effect. It is important to
note that a normal Raman-type effect would be unable to
produce a photon occupation number greater than ap-
proximately 2X 10~ * in this case. The coupling laser Q,
creates a coherence between the |1)-|2) reservoir and the
spontaneous mode. This coherence allows the occupa-
tion number of the spontaneously emitted radiation to
grow as large as n,;, the occupation number of the
[1)-]2) reservoir. The transparency allows the atoms to
remain at a low temperature.

It is an apparent contradiction that the steady-state
condition for the spontaneous mode is at a higher tem-
perature than that of the |1)-|3) reservoir. The resolu-
tion of this dilemma, of course, is that the atoms are not
in thermal equilibrium to begin with and therefore the
emission temperature in one mode need not be equal to
the temperature of the environment in another mode.
Nevertheless, this places a requirement on any practical
way to realize the system. We need to impose a relatively
cold temperature on the |1)-|3) reservoir, and yet allow
the spontaneous emission to build up at the transparency
point.

To achieve the conditions called for in our calculation
we require a cell that is long and narrow. The large as-

pect ratio allows most spontaneous photons to escape and
thereby imposes the temperature of the surrounding envi-
ronment on the atoms. Along the length of the atoms,
the media must be optically thick in order to achieve the
full photon occupation number predicted above. The
spontaneous photons can be detected by placing a detec-
tor at one end of the long column of atoms. In general,
practical constraints will dictate that the width of the
atomic region be sufficient to capture some of the spon-
taneous photons. This will tend to increase the tempera-
ture of the |1)-|3) reservoir and destroy the effect. In
order to estimate this effect, we introduce an operator
equation for the evolution of the |1)-]3) thermal reser-
voir. This can be traced over the reservoir states just as
the density equations are and then it becomes a c-number
differential equation coupled to the density equations. As
a crude approximation to this effect, we may use y as the
escape rate for photons and n.,, as the average photon
number outside the atomic region. The equation for n5,
is then
d{ny)
— = rlngd = (ny))

+[T3(1+ny Np33— T3 {ny dpy l/N . 4)

where N is the number of modes being emitted into. This
allows for a finite escape rate of photons from the optical-
ly dense region. The derivative may be set to zero and a
steady-state solution may be found, which is consistent
with the atomic populations and the thermal reservoir
temperatures. The escape rate of photons for a particular
case may be evaluated using the formulas for the optical
absorption of a transparency given in Harris, Field, and
Imamoglu [1].

Practical considerations like collisional dephasing of
the atoms and finite Doppler widths can be accounted for
with the addition of the conventional terms in the density
equations and averaging over atomic velocity distribution
functions. These effects degrade the performance of the
system, but do not render the effect unobservable.

We have analyzed the spontaneous emission into an
electromagnetically induced transparency. The emitted
brightness can be much greater than that which would be
predicted based on the atomic populations and the
Planck blackbody law. To achieve this large brightness,
the thermal fields surrounding the atoms must be con-
trolled using a geometry that allows photons of all wave-
lengths to escape.
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