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Nonlinear features of a micromaser in the semiclassical limit

Juan C. Retamal, Carlos Saavedra, and Edmundo Lazo
Departamento de Fisica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica, Chile
(Received 1 February 1993)

We study the chaotic behavior of the internal field in a micromaser with injected atomic coherence.
The quantum dynamics provides a return map in the semiclassical limit which we study as a function of
the reduced atom-field interaction time. Bifurcations, chaos, and transitions between bifurcation se-
quences appear in a broad range of the parameter space.

PACS number(s): 42.52.+x, 42.50.Lc

The micromaser remains as a system of central interest
in quantum optics. Until now, nonclassical aspects of the
interaction of an atom with a quantized field have been
experimentally realized, namely, the collapses and re-
vivals [1] and sub-Poissonian photon statistics [2]. The
possibility of generated number states [3,4] and macro-
scopic superpositions of the electromagnetic field [5] has
created a renewed interest in the micromaser research.
Additional studies show that such states could be gen-
erated in different micromaser systems [6,7]. Recently, a
discussion about the experimental feasibility of such pre-
dictions has been considered, including the cavity dissipa-
tion and the finite atomic lifetime effect [8,9]. A point of
view which has not received much attention is related to
the semiclassical limit of the micromaser theory. A pre-
liminary analysis of such a limit has been considered for a
micromaser pumped by atoms injected in the upper level,
showing the existence of chaotic features in the internal
field intensity [10]. A general formulation and character-
ization of such a limit is still open.

The aim of the present work is to consider the semi-
classical dynamics of the internal field of a micromaser
driven by coherently prepared two-level atoms. We con-
sider the quantum theory of the micromaser in the
Schrédinger picture and set the equations to the semiclas-
sical limit, obtaining a return map for the field intensity.
The return map is highly nonlinear with a rich parameter
space which allows us to investigate a variety of regimes
in which bifurcations and chaos could appear. The struc-
ture of our map resembles that of a circle map [11], but
contains an enhanced parameter space. The complete
characterization of the nonlinear dynamics in the semi-
classical limit opens new possibilities in the micromaser
study.

It is well known that the internal dynamics of a micro-
maser is driven by two processes, the gain represented by
the atom-field interaction during a flight time 7 and the
dissipation introduced through the interaction of the field
with a thermal bath. The coarse-grained derivation of
the master equation for a micromaser considers the su-
perposition of both effects. This approximation assumes
that gain and dissipation act independently in the dynam-
ics. This last statement is only valid when characteristic
times associated with the injection and dissipation pro-
cesses satisfy ¥ ! >>r !, where y is the loss rate and r is
the atomic injection rate. In a discrete time scale it is not
possible to write an exact equation that includes at the
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same time both the gain and the dissipation. We know
that the atoms enter with a delay time between them
given by the inverse of the pump rate, r_1=tp + 1, where
t, is the time for which the cavity does not have atoms.
In order to overcome the problem of simultaneous treat-
ment of gain and loss, the physical situation in which
t, >>7 is considered, so that gain and dissipation can be
assumed to be affecting the field dynamics independently.
This last assumption allows us to write the following map
for the density matrix of the field:

p(k+1)=eL’pan(k) ) 1)

The operators /M and L represent the gain and the cavity
losses, respectively. The gain operator is given by

mp(k): 1:ratom(](T)p(atom)®p(k)[]‘l.('7') H (2)

where U(7) is the evolution operator for the Jaynes-
Cummings model [12]. The loss operator at zero temper-
ature is given by

Lp(t)Z%(ZapaT——aTap—paTa) , (3)
where y denotes the cavity decay rate for the field. Equa-
tion (1) implicitly assumes a regular atomic injection into
the cavity. The problem of an arbitrary injection statis-
tics has been considered in the framework of a continu-
ous time scale within the coarse-grained approximation
[13]. In the context of Eq. (1) the real problem of a par-
ticular atomic injection process can be attacked consider-
ing a simulation of this process, introducing a suitable
choice of the injection time intervals. In the present
work we consider just regular injection.

Turning back to Eq. (2) the quantity pom ®p'*
represents the initial condition for the atom-field system
after k atoms passed through the cavity. Considering
atoms injected in a coherent superposition of the atomic
levels, Eq. (1) reads

p(k+1):e‘pL{paa(@p<k)@+&fp<k)éa)
+ 04y (BB + SRS
Fipg,(CpRST—$1p0E)
+ip,, (Cp RS —Sp ey | 4)
with
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C= cos(¢Vm), C= cos(¢\/;:r; ),

S= sin(Q\/w) a
Viaa' ’

where ¢ =gt plays the role of an adimensional time and g
is the coupling constant between atoms and the field.
The previous expression allows us to calculate the
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discrete dynamics of the average photon number by trac-
ing the operator A =a 'a with respect to p'* *!). By using
the cyclic property of the trace it is not difficult to show
that

(AYKk+D=, "7 i n(Mp'®),, 6)

n=0

where the sum in this expression explicitly reads

i n(Mp®),, = (A )P +p,. (sind(gV A+ 1)) P —p,, (sin2(V 7)) P

n=0

+2|pgp | sin(8,, —0) § cos(¢V'n+1)sin(¢V'n+1)|pk | . (7

0

We observe that the phase of the atomic coherence 0,
couples with the phase of the first off-diagonal density
matrix elements, |p,, +;/e’?. In our analysis we eliminate
the phase dependence, assuming a phase-locking condi-
tion 6,, —60=m/2. This assumption is in agreement with
a Fokker-Planck equation analysis, where a similar equa-
tion arises. With this simplification Eq. (6) represents a
quantum map for the field intensity in terms of the num-
ber of atoms crossing the cavity. One of the interesting
possibilities of this equation is realized in the semiclassi-
cal limit, in which photon statistics is sharply peaked
around a certain value of the photon intensity [14]. In
that situation we can assume that quantum fluctuations
go to zero in such a way that quantum variables can be
considered as c-number variables. Let us consider the
average photon number (7)), after k atoms have
passed through the cavity, in the semiclassical limit. Let
us denote it in this limit by the c-number variable ¢, so
that Eq. (6) in the semiclassical limit reads

ei1=e P[U,+ A sinX$V P )+ B sin(26V ¢, )] ,
(8)

where 4 =p,, —p,, is the difference of initial popula-
tions and B is the initial coherence p,,. For a pure atom-
ic state B =B,,,, =V (1— A?%)/2. Equation (8) represents
a map for the internal electromagnetic field of the micro-
maser kicked by a stream of two-level atoms. This map is

completely general because it depends on four physical

parameters, namely, the factor a=e 'y , which is related
to the number of atoms which enter the cavity during the
time in which the field decays, the reduced atom-field in-
teraction time ¢, and the initial atomic coherence param-
eters A and B which are only dependent for a pure atom-
ic state. The injected atomic coherence plays an impor-
tant role in increasing the nonlinearity of the return map.
We have to point out that in the particular case B =0
this map reduces to the map obtained in Ref. [3]. On the
other hand, in the particular case of an initially pure
atomic state, that is, B =B_,,,, it can be reduced to a map
similar to the circle map. The main difference between
this map and the circle map is the presence of the param-

[

eter a as a multiplicative parameter and the parameter ¢
inside the trigonometric function which are very impor-
tant for the nonlinear behavior.

The high nonlinearity of the map given in Eq. (8) opens
new possibilities to study the existence of bifurcations
and chaos in different regimes. Here we are mainly in-
terested in analyzing the dissipative case, a <1, which is
physically more realistic. However, a rich nonlinear
structure also appears in the nondissipative regime [15].

A first step in the analysis of the return map is to
characterize the fixed-point structure. We are tempted to
consider in the first place the nondissipative regime with
a=e¢ "7=1. In this case it is straightforward to show
that the fixed points of ¢, ;= f (¢, ) defined by Eq. (8)
are given by

Yr=q’m’¢"% ¢=0,1,2,..., unstable, )
2

p=0,1,2,..., stable . (10)

Y=

pm—arctan

Stability of fixed points is given by the condition
|f'(#)] <1 and there are stable and unstable solutions.
This is illustrated in Fig. 1, where the return map is plot-
ted for a=1, 4 =0.5, B =0.433, and ¢=3.03. We ob-
serve that between two unstable fixed points there is a
stable fixed point of the map. The position of the unsta-
ble fixed points depends only on the reduced time ¢. In
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FIG. 1. Return map for a=1.0, 4=0.5, B =0.433,

$=3.03.
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FIG. 2. Bifurcation diagram in terms of a for A4 =0.2,
B =B, $=13.37 with the initial condition 1,=4.8.

addition, the stable fixed points depend on the values of
A and B. The fixed-point structure changes when B goes
to zero because the stable fixed points converge to the
upper unstable ones, giving rise to the marginally stable
fixed points analyzed by Filipowicz, Javanainen, and
Meystre [3]. The interval between two neighboring un-
stable fixed points defines a basin of attraction. All the
points in this region give rise to the same attractor.
When B goes to zero the situation changes drastically, be-
cause near initial points between two marginally stable
fixed points belong to different basins of attraction, so
that starting from different initial points in this region
gives rise to different attractors. If we compare these
semiclassical features with the quantum counterpart of
the model, the situation with B0 resembles the dynam-
ics of the system in disconnected blocks of the Fock space
[5], because an initial condition within a given basin of at-
traction evolves to a steady state contained in the same
basin of attraction and a typical trapped dynamics takes
place. The case B =0 is not reminiscent of this trapped
dynamics.

In the dissipative regime of the system the fixed-point
structure exhibits radical differences. We notice that dis-
sipation, introduced through the exponential in Eq. (8)
(< 1), produces a shift in the slope of the sinusoidal
curve with respect to the diagonal ¥, , ;=,. The curve
begins to separate from the diagonal, producing a finite
string of fixed points, conversely to the nondissipative
case in which the fixed-point set is infinite. In this case, it
is a nontrivial problem to characterize the fixed points, so
we proceed to iterate the map to obtain the fixed points
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FIG. 3. Lyapunov’s exponent of Fig. 2. “

FIG. 4. Bifurcation diagram for 4 =0.2, B=B,_,,, «a=0.99,
and the initial condition 9,=2.8.

as a function of the parameters 4, B, and ¢. A prelimi-
nary analysis of the fixed points and chaotic behavior of
the field, considering a=e ~ " as a control parameter and
initial coherence equal to zero (B =0), was carried out by
Filipowicz, Javanainen, and Meystre [3]. In this case the
existence of chaos is natural to the structure of the return
map when «a is the control parameter. As we can see in
Eq. (8), there is a close analogy with the structure of a
logistic map, that is, a nonlinear function with a multipli-
cative parameter. More explicitly, considering the first
two terms in a series expansion of the sinusoidal function,
it gives rise to a logistic-type map. This last statement
occurs independently whether or not the atom is injected
in a coherent superposition. An example of such features
is shown in Fig. 2 (see also Fig. 3), where the fixed-point
structure is plotted as a function of a for 4 =0.2,
B =B, .., $=13.37 for an initial condition ¢,=4.8.

The return map offers additional possibilities to search
chaotic behavior, namely, the injected atomic coherence
and the reduced interaction time ¢. In this work we are
concerned with the reduced atom-field interaction time.
As it is induced from the semiclassical map, the main
effect of the variation of ¢ is to increase the frequency of
the sinusoidal curve on the diagonal. As a consequence,
for a given initial condition ¥, of the field, the continuous
variation of ¢ causes ¢, to belong to different basins of at-
traction. This effect explains the successive transitions
which experience the field intensity for different values of
¢, as is observed in Fig. 4. In this calculation we con-
sidered atoms in a coherent superposition with B =B ..,
for difference of populations A4 =0.2 and dissipation
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FIG. 5. Lyapunov’s exponent of Fig. 4.
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FIG. 6. Bifurcation diagram for the same parameters as in
Fig. 4, in an extended region of ¢.

a=0.99, using an initial point ¥,=2.8. The appearance
of bifurcations and tendency to chaos for different values
of ¢ is clearly observed. In Fig. 5 the Lyapunov exponent
corresponding to Fig. 4 shows the existence of chaos
(A>0) in this case. The same situation is considered in
Fig. 6 in an extended range of ¢. We observe that in-
creasing the value of ¢ the field experiences transitions to
higher intensities. This behavior is explained because the
field attractors in the intensity axis increase when ¢ is in-
creased.

A more complete search of chaotic behavior is the pa-
rameter space {A4,¢] has been considered when
B =B,_,,(A) for a fixed dissipation a=0.99 and an initial
point 1,=2.8. In Fig. 7 we show the chaotic zones
(black points) in the space { 4,4} where the Lyapunov
exponent is positive. This diagram allows us to visualize
the behavior of the field intensity for a fixed difference of
initial population A4 as a function of the reduced time ¢.
The case shown in Figs. 4 and 5 corresponds to a single
vertical line of this general map. Simultaneously we can
observe that there exist a similar structure of bifurcations
and chaos for a fixed reduced time ¢ and varying initial
population 4. The existence of chaotic behavior in terms
of A as a control parameter is comparable with that

A
FIG. 7. Phase diagram of chaotic regions in the plane { 4,4¢}.

occurring in the circle map [11].

In the present work we have analyzed the nonlinear
behavior of a micromaser in the semiclassical limit. We
found that the system evolves to a chaotic regime in a
broad range of the parameter space. The main result of
this work is that the chaotic behavior is obtained in terms
of the reduced interaction time ¢ as a control parameter.
This gives an alternative physical picture which allows us
to find chaos at higher values of the field intensity. This
result is very important, because the semiclassical limit is
well justified in a high-intensity regime of the system such
that quantum fluctuations tend to vanish compared with
the average intensity. On the other hand, it is important
to point out that the transitions between different bifurca-
tion sequences are an interesting aspect which require a
deeper analysis. Problems such as the characterization of
the different routes to chaos, the effect of additive noise,
and the simulation of the measurement process are in
progress now [16].
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