
PHYSICAL REVIEW A VOLUME 48, NUMBER 3 SEPTEMBER 1993

Series representation of quantum-field quasiprobabilities
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The Wigner and Glauber-Sudarshan P functions for quantum fields are usually defined in terms of in-

tegrals over the phase space of characteristic functions. We show that they and, in general, any s-

parametrized quasiprobability distribution may be represented as a series in terms of displaced number
states facilitating a straightforward evaluation.

PACS number(s) 42.50.—p, 42.52.+x

The representation of quantum fields in phase space in
terms of quasiprobabilities is widely used in quantum op-
tics, with particular emphasis being given to the Wigner
function, the Glauber-Sudarshan P function, and the
Husimi Q function [1,2]. The computation of quasi-
probabilities, given a density matrix, is often a tedious
task which involves integration over phase-space vari-
ables. The exception is the Q function which is simply
expressed as the coherent expectation value of the field
density matrix and is therefore widely adopted to de-
scribe field dynamics in situations where the density ma-
trix is easily computed. However, the Wigner function
has an interesting characteristic which makes it an excel-
lent diagnostic of quantum properties: it can be negative
in some areas of phase space when the field has nonclassi-
cal interferences (although of course not all nonclassical
field states have negative contributions to their Wigner
functions).

The Wigner function is usually expressed in an integral
form which is not always easy to compute. Recently,
Wiinsche [3] has derived another form for the Wigner
function, and in general, for any s-parameterized quasi-
probability distribution. However, the method given in
Ref. [3] is very formal and we believe the method we use
to obtain it is simpler and gives more physical insight. In
this Brief Report we present a series representation for
the Wigner function, and, in an analogous way for any s-
parameterized quasiprobability distribution. In order to
do that, we use the fact that the Wigner, P, and Q func-
tions may be expressed [1,2] in an integral form,

F(a, s ) = f C(P, s ) exp(aP* a*P)d P, —1

where C(p, s) is the s-ordered generalized characteristic
function

C(P, s) =TrID(P)p]exp(s ~P~ /2),

and s is a parameter which defines the relevant
quasiprobability distribution. For s=1 we obtain the
Glauber-Sudarshan P function, for s=O we have the
Wigner function, and for s = —1, we have the Q function.
In Eq. (2), D(p) is the Glauber displacement operator [4],
and p is the density matrix of the field under investiga-
tion.

We shall concentrate first on the Wigner function.
From Eq. (1), with s = —1, we can write the Q function as

Q(a)= f G(P) exp(aP* a*P)d—P,
and the Wigner function as

W(a ) = f G (P) exp(aP* —a "P) exp( ~P ~
/2)d P,

where

G(P) = Tr [D(P)p I exp( —P 2/2) .=1

(4)

We now use the fact that

a a exp(ap* —a*p) = —
~ p~ exp(ap* —a*p),

Ba ()(y*

to express the Wigner function in terms of the Q function
given in Eq. (3) as

oo 2 n

W(a) = g
n=O n'

'n

Q(a)
~a

1 a a=exp Q(a) .
2 Be Q~*

To compute Eq. (7), we express the Q function in the
usual form as the coherent-state expectation value of the
field density operator

Q(a)= —(a~pea) =—TrIp~a) (a~]
1 1

so that
'n

Q(a)

=1 a aTr p Ba pa*

n

(a) (a[ . (g)

Our immediate task is to obtain an expression for

From Eq. (4) we note that the Wigner function can be
expressed as the infinite series

oo 2 n

W(a) = g f G(/3) exp(ap* a*p)
~ p~

"—d p .
n=o n
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B B

Be Be*

n

(9)
Be Be

n

In order to do that, we note [5] that

B
a& &a~=(at —a*)~a& &a =Atp(a),

Be

n n= g ( —1)"
k (n —k)!(A )"P(a)A" .

k=0
(10a)

In this form, Eq. (7) becomes

and

B
)a& &a(=(a& &a((a —a)—:p(a)A .

Be
(lob)

2

1
" 2W(a)= —g g (

—1)"
k (n —k)!

~n ——O
"' k=O

XTrIp(A ) p(a)A (12)

From Eqs. (10), we obtain an expression for Eq. (8) Now we have to evaluate

TrIp(A )"p(a)A "}=&a~(a —a) p(a —a*)"~a&= &O~D (a)(a —a)"p(a"—a*)"D(a)~0&

=
&0~a "D (a)pD(a)(af)" ~0&

=k!&k~D (a)pD(a)~k &=k!&a,k~p~a, k &,

where ~a, k & are the displaced number states [6]. Substi-
tuting the last expression in Eq. (12) we obtain the
Wigner function as an infinite series in terms of the dis-
placed number-state expectation values

n

8'(a)= —g 2 " g (
—1)"

k &ak P ak & . (13)
n =0 k=0

We can simplify Eq. (13) further by noting that the sum
up to n may be extended to infinity (because m!= —oo

for m (0). By doing so and by interchanging the order
of the sums we obtain

at~a�

&
= ~a, 1 &+a*~a &,

or, in general, using

a n &=D (a)(a —a")D(a)~n &

=(n +I)'~ ~n+ I &

=(n+I)' D (a)D(a)~n+I&

(17)

states (a ~a & =a ~a & ). In this form, when in Eq. (7) we ex-
press the Wigner function in terms of the Q function,
and, noting the Wigner function is symmetrically or-
dered, we obtain terms of the form

~(~)=—y ( —I)"&~,klpl~, k& y 2 "
k=0 n=0

it follows

a a, n &=(n+1)' a, n+1&+a*~a, n &, (18)
OO n=—g (

—1) &a, k~p~u, k & g 2
k=0 n=k

(14)

we can express Eq. (13) as

The second equality holds because of the same reason as
above: a factorial of a negative integer diverges to minus
in6nity. So for n (k all the components in the sum are
zero. By using the relation [7]

T

oo n
n —k (1 )

—k —1 (15)
n=k

thus making the displaced number states the natural
states for the non-normally ordered quasiprobability dis-
tributions. We can generalize Eqs. (13) and (16) to obtain
an expression for Eq. (1), i.e., for any s-parametrized
quasiprobability distribution

OO n n
+(~,s)= —g [(.+1)Z2]" g ( —1)"

k &a, k~/~~, k&
n=0 k=o

(19a)

or
OO

W(a) =—g ( —I )"
& a, k ~p~a, k & .

k=0
(16) F(a,s)= —g ( —1)" q, &a, k~p~a, k& .

(1+s)"
~ y=o (1—s)"+' (19b)

Provided the expectation values of the assumed known
density matrix in a displaced number state basis can be
calculated easily (and this is apparently usually so), the
summation in (16) can be evaluated efficiently (especially
numerically).

At this point we should note that, given the Q function
is normally ordered, its natural states are the coherent

Note that for s = —1, the only term that survives is n =0,
and then we recover the definition for the Q function as
an expectation value in terms of a coherent state.

We can illustrate our expression for the Wigner func-
tion by taking p to be that for a coherent state,
p =

~/3& &P~. For this choice of density matrix we obtain
the displaced number-state expectation values
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&a, klp a, k&=l&klP —a&l'

= exp( —Ip —al )
I

2k

(20)

Analogously, for the P function, i.e., with s=1 in Eq.
(19b), we obtain

P(a) =—exp( —IP —al )
1

and by substituting Eq. (20) into Eq. (16), we obtain the
Wigner function as

W'(a) =—exp( —2IP —al=2

a coherent state.
The series forms in Eqs. (16) and (19) will allow a

straightforward computation of the field quasiprobabili-
ties in cases where we know the field density matrix but
wish to avoid phase-space integration, for example in the
Schrodinger-cat states of the field in the Jaynes-
Cummings model [8]. Often of course we do not know
the field density matrix, but instead use Fokker-Planck or
other techniques to obtain it from an appropriate
quasiprobability evolution. In this case our results are
not of value. However, there are many cases as we have
pointed out where the converse is true and our series
solution may be helpful.

X lim exp[ —II3—al rl(1 —r)]/(1 r), —(22)

where r ~1—means that r tends to one from the left in
Eq. (21), for the P function, is a positive singular function
of the form obtained by Cahill and Glauber [2], who re-
lated this to the two-dimensional 5 function expected for
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