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Theoretical determination of the spectroscopic constants of CaH+
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Fourth-order many-body perturbation-theory calculations of the spectroscopic constants of CaH+
are presented as an attempt to help identify possible astronomical or laboratory observations. The
results for the rotational and vibrational constants are, respectively, 4.61 and 1511 cm . Simi-
lar calculations are made on MgH+, where comparison with experimental values shows excellent
agreement, indicating reliable results for CaH+.

PACS number(s): 31.20.Di, 33.20.Bx, 95.85.Bh

Experimental observations of new molecular species
either in laboratory or in space are usually guided by
the knowledge of the spectroscopic constants. In recent
years [1] ab initio calculations have greatly aided in the
search and identification of new molecules.

Diatomic hydride cations in general are of consider-
able importance in astrophysics. They are important
constituents of interstellar media [2, 3], cool stellar atmo-
spheres [4], comets [3, 5], and the Sun [6]. The molecule
CaH is present in sunspots [7] and almost all the cal-
cium, at photospheric temperatures, exists in its erst
stage of ionization [8]. Further, the solar abundance of
Mg and Ca are 7.58 and 6.36, respectively [9], whereas

the ionization potentials for the same are I(Mg)=7. 646
eV and I(Ca)=6.113 eV [10]. Consequently, if one as-
sumes MgH+ as observable in the solar spectrum [11],it
is only natural to believe that the CaH+ is an astrophys-
ically important molecule. The need for molecular data
on CaH+ was expressed earlier by Johnson and Sauval
[4] and Sinha and Tripathi [12]. However, opposite to
MgH+, there is no experimental data available on the
spectroscopic constants of CaH+. On the theoretical side
few efforts have been made but of a limited nature [13—
17]. The objective of the present paper is therefore to
present reliable theoretical values for the spectroscopic
constants of CaH+ with particular emphasis on the mi-

TABLE I. The calculated spectroscopic constants of MgH+ and CaH+ obtained at the
fourth-order MBPT level.

B, (cm ')
~, (cm ')
Cele Xe Cm

a, (cm ')
D (cm ')

Present
1.657

6.400
1682
34.3
0.16

14945.0

MgH+
Experiment [19]

1.652

6.387
1699
31.9
0.18

16780.0

Present
1.936

4.609
1511.0
23.5
0.13

14804

CaH+
Other theoretical values
1.864, 2.085, 1.881,

1.926, 1.940
4.85

1468, 1504, 1482, 1467
21.01'
0.09

17000, 16700,
15500," 15600

Reference
larization.

Reference
Reference
Reference

'Reference

[17]: Pseudopotential two-electron valence configuration interaction (CI) and core po-

[13]: Two-electron frozen-core CI.
[14]: Single- and double-excitation CI (only single excitation from the core).
[15]: Density functional with pseudopotential.
[16]: Single- and double-excitation valence CI.
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crowave and the vibrational constants. These results
should be of great value in the possible laboratory or
astrophysical observations of CaH+.

To assess the accuracy of our calculated values for
CaH+ the spectroscopic constants of MgH+ will also be
calculated using the same theoretical model. As the spec-
troscopic constants of MgH+ are available from experi-
ment [18,19] a simple comparison will allow a direct mea-
sure of the reliability of our theoretical approach.

Tive calculations are performed within the many-body-
perturbation-theory (MBPT) model [20] up to the com-
plete fourth-order level MBPT(4) with inclusion of all
single, double, triple, and quadruple substitutions.

All calculations were performed using the GAUsSIAN-
86 program [21) with a basis of contracted Carte-
sian Gaussian set. For Ca the basis consists of
(14s lip 2d

~

8s 6p 2d) as described previously [22]. For
Mg the basis is (12s8p2d

~

6s4p2d) as given in [23].
For H we have selected the (9s 3p 1d

~

4s 3p 1d) basis of
Siegbahn and Liu [24]. For the MBPT calculations the
core (1s-2p) for Ca and (1s) for Mg are kept frozen.

Table I summarizes the calculated values for the spec-
troscopic constants of MgH+ and CaH+ in their ground
states. A comparison with the experimental values for
MgH+ shows an excellent agreement, particularly for the
microwave (B ) and vibrational (w, ) constants. These
are expected to be the most reliable calculated constants
because MBPT(4) gives very accurate results for those
properties related to the equilibrium internuclear dis-
tance. One also notes however that the calculated val-
ues for the anharmonic constant the rotation-vibration
interaction constant w x, and the rotation-vibration in-
teraction constant o. are also in very good accord with
experiment. For the binding energy D the result is less
accurate [19, 25, 26]. Our calculated value is obtained
from independent calculations on MgH+ at equilibrium
and in the limit of separated atoms Mg++H, taking into

TABLE II. The calculated rotational constant (in cm )
of MgH+ and CaH+ obtained at di6'erent levels of MBPT.

Method
SCF
MBPT(2)
MBPT(3)
DQ-MBPT(4)
MBPT(4)
Experiment [19]

MgH+
6.450
6.471
6.438
6.410
6.400
6.387

CaH+
4.501
4.647
4.602
4.609
4.609

SCF denotes self-consistent field.
DQ represents double and quadrupole substitution.

account the zero vibrational energy.
Having in mind the accuracy of the present results for

MgH+ we now discuss the obtained values for CaH+. The
calculated value for B, = 4.609 cm, corresponding to
the equilibrium internuclear distance value B = 1.936 A,
should be very reliable. Previous theoretical values [13—
17] of B range from 1.864 A. to 1.940 A. . The value of
1.940 A obtained by Schilling, Goddard, and Beauchamp
[16] is closest to our value. The recent result of Boutalib,
Davdey, and Mouhtadi [17] of 1.864 A is found to be
somewhat too low. To illustrate the convergence of the
calculated rotational constants Table II shows interme-
diate results of the MBPT calculations for MgH+ and
CaH+.

Judging from the accuracy of our results for MgH+
and the usual performance of MBPT(4) in describing
single-reference closed-shell systems at or near equilib-
rium distance, the present values for the spectroscopic
constants of CaH+ should be reliably useful in possible
astronomical or laboratory observation of this diatomic
hydride cation. In particular B and w are good guides
for microwave and vibrational spectra.
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