
PHYSICAL REVIEW A VOLUME 48, NUMBER 3 SEPTEMBER 1993

Effects of Zeeman degeneracy on the steady-state properties of an atom interacting
with a near-resonant laser field: Analytic results
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The analytic solution of the steady-state density matrix is presented for a closed two-level atom with
an arbitrary ground-state angular momentum J~ and an excited-state angular momentum J, interacting
with a linearly polarized laser field. From this solution, analytic formulas for the total rate of laser-atom
scattering, the rate of coherent scattering, and radiative forces are derived. Interestingly, it is found that
population inversion in true atomic states, as opposed to the population inversion in the dressed states,
can occur under certain conditions. A method is proposed to take advantage of this inversion for light
amplification. The mathematical formulation is built around the concept of the resolvent operator in
Liouville space, with some conclusions that are generally applicable to any system with a unique steady
state.

PACS number(s): 42.50.Hz, 42.50.Vk, 32.80.Pj

I. INTRODUCTION

Experimental and theoretical progresses in laser cool-
ing and nonlinear spectroscopy have demonstrated clear-
ly the important role of atomic Zeeman structure in
near-resonant laser-atom interactions. It is, for example,
responsible for polarization-gradient cooling [1—3] and
for narrow features in weak-probe absorption spectra
[4,5]. Theory for such experiments, assuming a closed
two-level system, requires the solution of a density-matrix
equation of dimension [2(J,+J +1)],which is equal to
400 for the cycling transition of cesium with J =4 and
J, =5 (J stands for F here). Because we are primarily in-
terested in the nonperturbative regime, the traditionally
powerful method of irreducible representation [6,7] loses
much of its edge since different IC components (tensors of
different rank) can be strongly coupled by the laser field.
The dressed-state approach can simplify the problem a
great deal [8] if only the Rabi splitting is much greater
than the spontaneous decay width, which is however not
the case in most experiments using laser traps. As a re-
sult, solutions which are valid for all laser intensities (lim-
ited only by the assumption of a closed two-level system)
has been limited to a few specific cases [9,10]. In this pa-
per, the analytic solution of the steady-state density ma-
trix for a closed two-level atom with arbitrary ground-
state angular momentum J and excited-state angular
momentum J, interacting with a linearly polarized laser
field will be presented. The case of circular polarization
is simple and will be discussed only briefly. Atomic
motion will be ignored except for the trivial case of a
plane wave. Elliptical polarization will not be con-
sidered. Just to be focused, only results which can be de-
rived analytically are presented here. Anything requiring
numerical computation, such as an emission or weak-
probe-absorption spectrum, will be presented in a
separate publication. Experimentalists who are not in-
terested in the details of the derivation can go directly to

Eqs. (29)—(31) and subsequent discussions. For theorists,
Sec. II should not be overlooked.

where X(s)=s L, and s is a —complex variable. Solving
Eq. (1) gives

p = lim e 'po=limsR (s)po,
t —+ oo S~O

(3)

with po being some arbitrary initial density matrix. More
explicitly, we have

&lip"Ij&=»ms& « t jlR(s)lk, l»&klpoll& .
S~O

(4)

This equation is, however, not very useful. It has po on
the right-hand side when in fact p should have nothing
to do with it. To get the real meaning behind this equa-
tion, it is important to remember that po is completely ar-
bitrary except that it is Hermitian and has its trace equal
to 1 (i.e., gk(klpolk) =1). It can then be shown that
Eq. (4) actually implies

lim s( (i j lR (s)lk, l ) ) =0, (5)

II. GENERAL RELATION BETWEEN STEADY-STATE
DENSITY MATRIX AND RESOLVENT OPERATOR

Before we get to the specific problem of laser-atom in-
teraction, let us first explore the relationship between the
steady-state density matrix and the resolvent operator in
a broader context. Consider a system described by the
following density-matrix equation:

t),p(t) =Lp(t),
where I is some arbitrary time-independent Liouville
operator. All we will assume about this system is that it
is closed and supports a unique steady state p . The
resolvent operator (in the Liouville space) for this equa-
tion is defined as

R (s):—[X(s)] (2)
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for k&l and arbitrary i, j, and

(i Ips jI)= lim s( (ij IR (s)lk, k ) ),s~o

for arbitrary i, j, and k. These two equations character-
ize the behavior of R (s) near the point s =0. They speci-
fy which matrix elements of the resolvent operator have
1/s poles and relate the residues of those poles directly to
the steady-state density matrix. These properties are true
for any closed system [defined by Eq. (1)] with a unique
steady state. Before using Eqs. (5) and (6) for our specific
purposes in this paper, I will simply mention that they
will also be very useful in implementing a steady-state
perturbation theory which is needed for treating, for ex-
ample, atom-atom interactions in a strong laser field [11].
The importance of the resolvent operator lies of course
not only in its relationship with the steady-state density
matrix as given by Eq. (6), but also in the fact that it is
the quantity that we have to deal with when calculating
any correlation functions using the quantum regression
theorem [12,13].

III. ANALYTIC SOLUTION
FOR NEAR-RESONANT LASER-ATOM INTERACTION

We now focus on the specific problem of a stationary
two-level atom with Zeeman degeneracy interacting with
either a circularly or a linearly polarized coherent laser
field. The case of circular polarization is rather "boring",
since the atom will either be pumped into a dark state (if
J, ~J ) or become a simple two-level system (if J, )J )

which has been well studied [13—15]. We will simply ig-
nore it here (noting that either collision [10] or a magnet-
ic field can make it interesting). For linear polarization,
the case where J, (J is again straightforward. The
atom simply gets pumped into dark states IJ —J ) and
IJg+Js) with equal population. The rest of this paper
will therefore deal only with the case of linear polariza-
tionand J, ~J .

For a stationary atom in a coherent laser field linearly
polarized in the z direction, the density-matrix equation
in the rotating frame (in which L ~ is time independent) is
given by [16]

a,p'„(t)=I.„'p'„(t)= i—(b+iy/2) —& I J,m, && J,m, l
p~&(t) p~&(r) (b—+iy—/2) g IJ,m, && J,m, l

m

+y & &J,mslqlJ, m,'&IJsmg &&J,m,'Ip~(r) J,m, &&Jgmgl&J, mslqlJ, m, &

q, all m

i —(0—, /2) g f (IJ,m )(J m I+IJ m )(J,m I), p~(t)

where A=co —cu, is the laser detuning; y is the spontane-
ous decay rate of the excited state; Q,s =Eo(J, llpll Js ) /A'

is the reduced Rabi frequency; and

X'i'(s) be the representation of X(s) [ =s Lz ] in each—1

manifold, it has the following form for all I:

=( —1) ' J, 1 J
—m 0 m

aI
br

B(1) 0
p B(1)

B(1) C(1)

p B (1)

cr

Note that J is merely a notation which can also stand for
F (the total angular momentum including nuclear spin).
It is easy to show that the representation of L„[and
therefore X(s) and R (s)] in the basis of

I

J'm', Jm ) ) is
block diagonal in 1:—(m' —m). This is of course what
one would expect because of the cylindric symmetry of
the problem. Using Eq. (5), we see immediately that
there will be no coherences between states having
diFerent m values (this is only true in the coordinate sys-
tem that we have chosen). All the information about the
steady-state density matrix is then contained solely in the
1 =0 manifold of Lz (for emission spectra and absorption
spectra by a weak probe, the l =+1 manifolds will also
come into play). There are 4J +1 1 manifolds (because
for J, =J + 1, it can be shown that states having to do
with either

I J,J, ) or
I J, —J, ) are basically irrelevant),

each having a dimension of 4(2J + 1 —
I ll ). Letting

Here a, b, c,d are defined by a =s, b =s —iA+y/2,
c =s +i b +y /2, and d =s +y. I represents the unit ma-
trix. 3'", B'", and C' ' are all matrices of dimension
(2J + 1 —

I il ) with their elements defined by

(m'I A' 'Im ) = —( (J,m', Jsm' —1IL~ I Jsm, Jsm —1)),

(m Ia'"Im &
—= —

& (J,m', J,m' 1IL„'IJ,m, J—,m 1)), —

(10)

(m'IC'"Im) = —((J m', J m' 1IL„'IJ,m, J,m —1&) . —

It should be quite obvious that both 3 '" and B'" are di-
agonal matrices, and C' ' is tridiagonal. The correspond-
ing R ' '(s) can be written as
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~ (I)
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ee, gg

~ (t)
gg eg

eg, eg

g (I)
ge, eg

ee, eg

g (I)
gg ge

( I)
~eg, ge

g (I)
ge ge

( I)
~ee, ge

gg~ ee

( I)
~eg, ee

+ge, ee

(I)
+ee, ee

(12)
P J—+1 l —J +1

lim Y (s)=—(0)
s~0 S

PJ PJ

I —J +1

where every element is again a matrix of dimension
(2Js+1 —~l~). It is quite straightforward to show that
R'"(s) (and therefore all steady-state properties such as
emission spectrum) can be obtained by inverting a tridi
agonal matrix Z' ' of dimension (2J + 1 —

~
1

~
):

Z'"(s) =(acI+ 3 '" B'" )—(bdI+ 3'" B'"—)
(g +d)(b +c)g (l) +(b +.c)C(l)B(1)g (l)

(20)

Here M is a constant matrix which is independent of s. It
is easy to calculate numerically though there does not
seem to be a simple closed formula for it. Fortunately,
only the 1/s part is necessary for the determination of the
steady-state density matrix [see Eqs. (6), (17)—(19)]. This
part can be determined by taking advantage of Eq. (16).
We obtain

(13)

This is a considerable simplification even when it is com-
pared with inverting X(" which has a dimension of
4(2Js+ I —~l~), because X'" is neither Hermitian nor
symmetric.

Since our goal here is to find the steady-state matrix,
we need only to be concerned with the l =0 manifold, for
which 8' '= —A' '

P =y 'w [5 +(y/2) +g, Q, /2]

where

m =+m

(21)

(22)

(23)

(m'~ 2' '~m ) = —i(f 0, /2)5 (14)
m'= —m+1 m'=m+1

where m = —J, . . . , +J, and
y' "= f (J m ——1, 1 1

~ J,m )
J

gs = X Wmfm
m= —J

(24)

(25)

C = —y
(0)

(1) (0) ( —1)g —J g —J +1 g —J +2

(1)g —J +1

The steady-state density matrix can now be derived
from Eq. (6), or more specifically from the following rela-
tions:

( —1)
gJ

(1) (0)J —1 gJ

(15)

in which g'"' are defined by g'"'—= ( Jsm +n, 1 n~ J,m—),
which satisfies

1

g(n)
n= —1

(16)

Defining Y'"(s)—= [Z'"(s)] ', we have

Rs(s'ss(s)=[cbdI (b+c)A' ' ]Y' —'(s), (17)

R' ' (s)= —cdA' 'Y' '(s)
eg, gg (18)

R,', ss (s ) = (b +c ) A ( ) Y—( )(s) .ee, gg (19)

In the limit of s~O, Y' '(s) has a form which refiects
quite well the properties of R (s) as given by Eqs. (5) and
(6):

(Jsm ~p„' ~Jsm ) =lims(m ~R' ' (s)~k ),

(J,m
)
p"

[J m ) = lim s ( m (R,(o) (s) (
k ),s~0

(J,m ~pcs J,m ) =lims(m ~R,(,0)„(s)~k),
s —+0

(26)

(27)

(28)

where k is arbitrary. Substituting Eqs. (17)—(21) into
Eqs. (26)—(28), we have finally

(Jsm ~p„' ~J m ) =w [6 +(y/2) +f Q, /4)

X[6, +(y/2) +g, Q, /2] ', (29)

(J,m~p„' ~J m ) =w (f fl, /2)( —b+iy/2)

X[A, +(y/2) +g, Q, /2] ', (30)

(Jm ~p„' ~(Jm ) =w (f 0, /4)

X[6, +(y/2) +g, Q, /2] ', (3l)

and, of course, (Jsm~p„' ~J, m ) =(J',m~p~' ~Jsm
)".

A special case that we can check this solution against
is when J, =Js and are both integers. fo=O in this case
and we obtain (J O~pz' ~J 0) =1 as the only nonzero
element of the density matrix. This is exactly what one
would expect since all atoms will end up being optically
pumped into the state

~ J&0). For the Jz =0 to J, = 1
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Third, the total upper-state population, given by

r, (~)=y & J,m lp',"IJ,m )

=(g, Q,s/4)[h +(y/2) +g, Q, /2] (34)

is never greater than —,'. It approaches —,
' for large Q, .

The total upper-state population is an important quantity
since it is directly related to both the total laser photon
scattering (extinction) rate and the radiation pressure
force (see next section). A nice feature of Eq. (34) is that
all geometrical dependences are summarized in a single
parameter g, . Its values for all transitions of interest, up
to J~=4 and J, =5, are given in Table I.

Note that in the limit of large detuning (6 »y, Q, ) or
the limit of weak field (Q,s ~0), Eqs. (29)—(31) reduce to

& J,mlp'„"IJ,m & =0,
(J,mlp'„'"IJ,m & =0,
& J,mlp~" IJ,m ) =w

(36)

where w is not equal to 1/(2Js+ 1) except for the cases
of J =0 and J =—,'. This result may look surprising at
first. But think about it. All it is saying is that no matter
how weak the laser field is, given sufficient interaction
time (which we have assumed to be infinite), the atom will
eventually get pumped, which we resentfully accept.
However, any discomfort we feel at this point is perfectly

TABLE I. Values for g, .

gs

transition, our solution reduces of course to that of an
idealized two-level atom, with wo= 1, fo= 1/&3, and
gs= 3

The following are some more of the characteristics of
Eqs. (29)—(31). First,

& J,—m
I

p'„'R
I J, —m &

=
& J,m

I
ps~'

I J,m &,

which is of course what one would expect for a cylindri-
cally symmetric system. Second,

(J, mlp—„'IJs —m)=( —1) ' ' (J,mlp„' J m) .

(33)

legitimate. The point is that Eqs. (29)—(31) are valid only
theoretically for the infinitely weak laser field (and large
detuning), under the assumption of infinite interaction
time. They also break down if Q,g is exactly zero because
our basic assumption about the existence of a unique
steady state would no longer be valid. In more practical
terms, Eqs. (29)—(31) apply only when optical pumping
dominates over other processes such as collisions and
that the laser-atom interaction time is long enough to en-
sure that the steady state can be reached. These condi-
tions are well satisfied in most laser traps, and can often
be forced upon other situations.

IV. OTHER RESULTS

Here I present some other results which can be derived
directly from our analytic solution. The derivations are
relatively straightforward. I will therefore simply give
the results. The total rate of photon scattering is directly
related to the total upper-state population I', (b, ) and is
given by

W, (b, ) =yP, (h) =y(g, Q,s/4)

X [6, +(y/2) +g, Q,s/2] (38)

The radiation pressure force on an atom moving with ve-
locity v by a linearly polarized plane wave is given by

F(b„v)=A'kL 8;(b, —kL v), (39)

where kl is the k vector of the laser field. The rate of
coherent scattering, which is related to steady-state
ground- and excited-state coherences (J,m p„' IJsm ),
is given by

W, (b)=(2J, +1)y(g, Q, /4)[b, +(y/2) ]

X [6 +(y/2) +g, Q, /2] (40)

Note that in the limit of large detuning, the total rate of
photon scattering 8', is not equal to the rate of coherent
scattering except for the case of J =0 (ideal two-level
system). This is because for all atoms with J %0 we have
the possibility of spontaneous Raman scattering (in addi-
tion to coherent Raleigh scattering) even in the limit of
large detuning. Finally, the force on a stationary atom at
position x in a linearly polarized standing wave is given
by

0
1

2
1

2

1
3
2
3
2

2
5
2
5
2

3
7
2
7
2

4

0.333 333
0.166 667
0.166 667
0.117647
0.03
0.093 333 3

0.078 091 1

0.012 410 4
0.067 346 9
0.059 268 5
0.006 774 54
0.052 943 4
0.047 847 4

F(b, )=2fikLhtan(kL x)[g,Q, (x)/4]

X [6 +(y/2) +g, Q,s(x)/2] (41)

where Q, (x) —=Q, (0)cos(kL x).

V. FURTHER DISCUSSIONS

For the properties discussed so far in this paper, an
atom with Zeeman degeneracy bears a great deal of
resemblance to an idealized two-level system. For exam-
ple, the expressions for the forces have exactly the same
form as the forces for a simple two-level atom with no
Zeeman degeneracy. All geometrical dependences are
contained in the parameter g„which simply scales the
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FIG. 1. Populations for the J~ =2 to J, =3 transition at zero
detuning. Solid line: population in the

~
J„O)state; dashed line:

population in the
~ J~, 1) state; dash-dotted line: total population

in the excited state.

Rabi frequency. This gives some explanation as to why
the two-level-system model has been so successful in
describing radiation pressure force on a real atom. How-
ever, this resemblance does not go very far from here.
The first thing that comes to mind is obviously angular
distribution of scattered radiation. It is not much of an
issue for an ideal two-level system (Jg =0, J, =1) mainly
because it is frequency independent, which will however
no longer be the case for any transition with J %0.
There are many other interesting differences. For absorp-
tion spectrum of a weak-probe beam, population
differences created by the pump beam among different
ground-state Zeeman sublevels give rise to narrow struc-
tures due to stimulated Raman scattering [4,5]. No coun-
terpart of these structures exists in corresponding two-
level-atom spectra [14,17]. Also, the radiative force by a
standing wave will be quite different from the simple
two-level-atom case when motion is to be considered.

Finally, Eqs. (29)—(31) present an interesting possibility
for population inversion between states

~ J,m ) and
~J m+1) (or ~J m —1)). This is somewhat surprising
since the total population in the excited state is always
less than the total population in the ground state. To be
specific, let us look at the case of J =2 and J, =3,
relevant for the cycling transition of the sodium atom.
The populations in

~ J,O) and
~
J 1) as well as the total

population in the excited state at zero detuning are plot-

FIG. 2. Same as Fig. 1 except for Jg =4 and J, =5.

ted in Fig. 1. One can see that as the Rabi frequency in-
creases beyond some critical value, the population in
~J, O) becomes greater than the population in ~Jsl).
From Fig. 2 we see that the same happens for the cycling
transition of cesium (J =4, J, =5). The critical Rabi
frequencies are achievable since they are still below the
value for saturation. With the setup that we have been
concerned with, this inversion does not yet lead to any
consequences such as light amplification, because it is
overshadowed by the population difference between
~J, —1) and ~JsO). This problem can be easily fixed,
however. For example, by adding a magnetic field in the
direction of the laser polarization we can shift these two
transitions out of resonance from each other. For such a
medium, what one would observe at this frequency (with
the presence of the magnetic field properly taken into ac-
count) is that as the pump-laser intensity increases, the
medium turns from absorptive to amplifying for the cir-
cular polarization component of a probe beam. This
amplification scheme, with its cross section roughly pro-
portional to fL, is expected to be more eScient at smalleg~

pump intensity than that based on population inversion
in the dressed states [14,17], which have cross sections
roughly proportional to 0,

ACKNOWLEDGMENTS

I would like to thank Jinx Cooper and Peter Zoller for
helpful discussions. This work is supported in part by
National Science Foundation Grant No. PYS90-12244.

*Present address: 2414 John R. Road, Apt. 206, Troy, MI
48083.

[1]J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B
6, 2023 (1989).

[2] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, J. Opt. Soc.
Am. 8 6, 2058 (1989)~

[3] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, J.
Opt. Soc. Am. 8 6, 2072 (1989).

[4] J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J.
Kimble, Phys. Rev. Lett. 66, 3245 (1991).

[5] D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, and G.
Grynberg, Europhys. Lett. 15, 149 (1991).

[6] A. Omont, Prog. Quantum Electron. 5, 69 (1977).
[7] P. R. Berman, Phys. Rev. A 43, 1470 (1991), and refer-

ences therein.
[g] E. Bonderup and K. Molmer, J. Opt. Soc. Am. B 6, 2125

(1989).
[9] D. Polder and M. F. H. Schuurmans, Phys. Rev. A 14,

1468 (1976).
[10]J. Cooper, R. J. Ballagh, and K. Burnett, Phys. Rev. A 22,

535 (1980).
[ll] See, e.g. , M. Trippenbach, B. Gao, and J. Cooper, Phys.

Rev. A 45, 6555 (1992).
[12] M. Lax, Phys. Rev. 129, 2342 (1963).



BO GAO 48

[13]B.R. Mollow, Phys. Rev. 188, 1969 (1969).
[14] B.R. Mollow, Phys. Rev. A 5, 2217 (1972).
[15]J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[16]C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy,

edited by R. Balian, S. Haroche, and S. Liberman {North-
Holland, Amsterdam, 1977), p. 3.

[17]F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys.
Rev. Lett. 38, 1077 (1977).


