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Harmonic generation in ionizing systems by the complex scaled adiabatic-switch method
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An adiabatic-switch method for calculating harmonic generation under intense laser radiation is
presented. The adiabatic switch is first applied to nonbound (i.e., ionizing or dissociative) time-periodic
Hamiltonians when the energy spectrum is degenerate. Our derivation is based on the use of Floquet
theory combined with complex scaling and of a generalized definition of the inner product for non-
Hermitian operators. A model potential representing a Xe atom in the presence of a laser field is studied
as an example to illustrate the numerical advantages of the present method and its stability.

PACS number(s): 42.65.Ky

INTRODUCTION

High-harmonic generation (HG) (up to =51) has re-
cently been detected in a system composed of rare-gas
atoms in the presence of high-intensity laser fields [1].
Simulation methods based on a time-dependent Hartree-
Fock approach have been successfully applied to the cal-
culation of the harmonic-generation spectrum [2]. These
simulations have clarified the distinction between the
response of a single irradiated gas atom and the collective
response of many atoms. Indeed, Potvliege and Shake-
shaft [3] and DeVries [4] have calculated the harmonic
generation spectrum for a single hydrogen atom in the
presence of pulse laser. Moreover, the qualitative agree-
ment between HG spectra which were obtained in simu-
lations [5] and experimentally observed HG spectra had
demonstrated that the HG can be studied by studying the
dynamics of one-dimensional model Hamiltonians.

Recently [7] a simple time-independent expression for
the probability to obtain high harmonics were derived by
the use of Floquet theory combined with the complex-
coordinate method and of the generalized definition of
the inner product for non-Hermitian operators [6(a)].
The calculated HG spectra using the time-independent
expression [given also in Eq. (1.10) in Sec. I was in com-
plete agreement with the results obtained from motion of
wave-packet calculations [7]. These calculations utilized
the time periodicity of the laser source and the complex-
coordinate method [6] in order to analyze the system in
terms of quasienergy (Floquet [8]) resonance states. Cal-
culations were carried out by the time-dependent
complex-coordinate Floquet method [9] (TDCCFM)
(with the use of a Fourier grid representation) which re-
quires the solution of the evolution equation to obtain the
evolution matrix for one optical cycle, and the subse-
quent diagonalization of that matrix to obtain the eigen-
vectors associated with the quasienergy resonance states.

The first step in the time-dependent complex-
coordinate Floquet method involves the propagation of a
matrix such that the computational efT'ort scales as X lnÃ

[if fast-Fourier-transform (FFT) representation is used]
where X is the dimension of the matrix. The diagonaliza-
tion which is required in the second step scales as X .
For the one-dimensional model Hamiltonian which was
used in Ref. [7], where a faithful representation in Hilbert
space required not more than X =512 Fourier grid
points, it turned out that the propagation was the rate-
limiting step. For more realistic model Hamiltonians
having more than one degree of freedom, the computa-
tional effort will eventually be determined by diagonaliza-
tion.

Assuming that the dynamics of the system is dominat-
ed by the quasienergy resonance state with the largest
lifetime (as was done in our calculations), it is a waste of
computational efFort to propagate all of the basis vectors.
In Sec. I we present an alternative approach for this
problem. This approach is based on the complex-
coordinate method which enables us to isolate a reso-
nance state from the other states in the continuum and to
remove the degeneracy from the problem. Only because
of these facts can one turn on the external field adiabati-
cally during time propagation of a field-free initial state.
One can choose the initial state such that the resonance
obtained is the one with the largest lifetime. The present
approach involves the propagation of a single Uector (in
comparison with the time-dependent complex-coordinate
Floquet method which requires the propagation of a ma-
trix) such that the computational effort scales as N inN.

In Sec. I the complex scaled adiabatic-switch method
(CSASM) is presented. In Sec. II a model Hamiltonian
for the ionization of a Xe electron will be introduced. Il-
lustrative numerical results will be presented and com-
pared to results obtained by solving the complex scaled
time-dependent evolution equation [7] in Sec. III. The
final section will conclude.

I. HARMONIC GENERATION BY THE COMPLEX
SCALED ADIABATIC-SWITCH METHOD

The creation of harmonic generation (as well as other
nonlinear effects which are observed when placing atoms
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in strong laser fields) can be explained in terms of the in-
teraction of a single electron with its nucleus and the
external driving force [2]. Furthermore, we recently
demonstrated that HG spectra are accurately obtained
when the pulse laser is approximated as a periodic source
[7]. With this approximation, the Hamiltonian (in radia-
tion gauge, and for A'=m = 1) can be written as

2

sin(cot) + V(x),

where E0 is the field strength parameter. The advantage
of such a Hamiltonian is its time periodicity which allows
solution, it(x, t), of the time-dependent Schrodinger equa-
tion

(1.2)

and a good set of references for it appears in the paper by
Reinhardt and Dana [13]. Adiabatic switching is also
discussed in the context of periodic systems by Potvliege
and Shakeshaft [8(f)] and by Breuer, Dietz, and Holthaus
[14]. A formal proof of the adiabatic theorem for the
case of a periodic Hamiltonian has been presented by
Young and Deal [15]. Hence we solve the time-
dependent Schrodinger equation (1.2) with the Hamil-
tonian given by Eq. (1.1) where the field intensity parame-
ter varies from 0 to its maximal value, E0, as time passes
and at t =0 the system is described by g(xe', t =0)
which is the ground state of the field-free Hamiltonian.

Having obtained g(xe', t), it is possible to calculate
the harmonic-generation spectrum (as well as the above-
threshold ionization spectrum and other properties) that
is defined as

in terms of Floquet states [8]

N (x, t)=cxs (x, t+nT), T= 2'
W

and quasienergies e

—iQtrr(Q) ~ —I e '"'D(t)dt
T 0

where

D(t)= ((, l/l(xe', t)~p~q(xe', t) ))

(1.5)

(1.6)

P(x, t)= g C 4 (x, t)exp (1.3)

Complex scaling of the coordinate x ~xe', divides the
quasienergy spectrum, e, into two groups [9] as follows.

(I) Continuum states: ~e con~e—'; n = —oo, . . . , oo

when con are the threshold energies. The rotating
"white" continua do not contain any information about
the resonance phenomena.

(II) Resonance states: e =e (pos) —iI /2 having po-
sitions, e (pos), and finite widths I =A'/r in the com-
plex energy plane. The width is inversely proportional to
the lifetime, ~ . The discrete resonance states are 0 in-
dependent provided that 0 is sufficiently large.

For sufficiently long evolution times (and for large
enough rotational angle 9) only the quasienergy reso-
nance state that has the largest lifetime —the narrowest
width —survives. Under such assumptions the sum in
Eq. (1.3) can be reduced to

)) res q)res( t) ))

((g ~

=e ' "' ((@"'(t)~,
(1.7)

where

~@res(t))) g ~pres(g)))e+iwkr
k = —oo

((cI&"'(t)~ = y ((y"'(g)~e
k = —oo

(1.8)

is calculated for one optical cycle T=2~/co. The inner
product (( )) stands for the complex product described in
Ref. [6(a)] (i.e., no complex conjugation of terms which
are complex as a result of scaling).

For calculating the complex inner product, D(t), in
Eq. (1.6), it is recommended to represent 4"'(xe', t) in
Eq. (1.4) as a Fourier series (using the time periodicity of
4&( xe ', t ) explicitly),

resg(xe', t) =cIs"'(xe', t)exp i e„,(pos) ——i t

(1.4)

Since in our studied case the Floquet Hamiltonian ma-
trix, &, is a symmetric one, and since ~g")) and ((P'k"~
are, respectively, the right and left eigenvectors of &
then

Prior to the application of the external field, the atom
is assumed to be in its ground state. Switching the Geld
on transforms this ground state into a metastable one.
This ground state will appear as the resonance state with
the largest lifetime (see, for example, the results presented
in Table 8 in Ref. [10]). It is therefore argued that in
many cases the dynamics of the system can be adequately
described by investigating the time evolution of this sin-
gle state. (Chu and Cooper [11]and later on Szoke [12]
had theoretically discussed this assumption and its limita-
tions. ) We therefore propose a procedure by which this
state is propagated in time as the external field is adiabat-
ically switched on. The idea of carrying out an adiabatic
switch, where E0 becomes time dependent, is an old one,

(( pres( I9)
~

pres( g) )) pres(xeie) (1.9)

(1.10)

As 0 trends to zero I/I,"(x)] get real values only. There-
fore Pk"=(Pk")* and Eq. (1.6) reduces to the usual
definition of D (t) = (f(t) ~p g(t) ).

Substitution of Eqs. (1.7) —(1.9) to Eqs. (1.5), (1.6), and
(1.4) leads to the final result for the probability of the sys-
tem to emit radiation in frequency A=neo (see also Ref.
[7])
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This time-independent expression was obtained due to
the use of the generalized definition of the inner product
for non-Hermitian operators [6(a)]. To sum up we out-
line the proposed procedure as follows.

(i) The time-dependent Schrodinger equation (1.2) for
the (given) Hamiltonian (1.1) is solved when the lowest

I

ground state of the field-free Hamiltonian is taken as an
initial state. During the time propagation, the external
field strength parameter is initialized at zero and is adia-
batically increased to its maximal value, Eo.

(ii) For specific values of the field strength parameter,

; ~res
g„,(xe', t) =N"'(xe', t)exp i —e„,(pos) ' t

is propagated for one more optical cycle to give

g„,(xe', t + T) =4"'(xe', t + T)exp i e—„,(pos) ' t + T (1.12)

Dividing P„,(xe', t+T) by P„,(xe', t) and taking the
periodicity of 4 into consideration one obtains the Flo-
quet exponent A.„,=exp[ —i(e„„(pos)—iI „s/2)T].

(iii) Propagating g„,(xe, t) for one more optical cycle
for the chosen fixed field strength parameter, Eo, and us-
ing the known Floquet exponent, A,„„the Fourier com-
ponents P'k"(xe' ) for each time step are calculated. That
1s~

pres(xeie) e
—icok~y (xeie t) (g ~&/Tdt

~ 1

(1.13)

II. AN ILLUSTRATIVE NUMERICAL EXAMPLE

An inverse Gaussian potential was suggested by Bards-
ley, Szoke, and Comela [16] for describing the interaction
of a Xe electron with an external laser field,

V(x)= —Voexp[ —(x/xo) ] . (2.1)

For Vo=0. 63 a.u. and x =2.65 a.u. the field-free poten-
tial supports two bound states which mimic the two
lowest electronic states of Xe, Eo= —0.4451 a.u. and
E, = —0. 1400 a.u. , and a third weakly bound state with
energy of E2 = —0.000 14 a.u. The external field frequen-
cy in Eq. (1.1) was set very close to a three-photon reso-
nance co=0.0925 a.u. and the maximum field intensity
Io=(c/8')EO was 10' W/cm in most of the calcula-
tions.

As mentioned above, an adiabatic switch of the field in-
tensity was used. Theoretically a smooth function should
have been used [15]. Practically there was no numerical
difference between a linear switch [i.e., Eo(t) =bt, where
b is a small constant], and a cosine switch. This might be
due to the sin(cot) prefactor in the Hamiltonian, Eq. (1.1),
that had smoothed the sharp edges of Eo(t) at the initial
and final times of the turning-on process because the
turning-on time was set to integer multiples of the exter-
nal field period, T. Typically, a switch of Io = 10'
W/cm required 10—100 optical cycles. The coordinate

(iv) o (A=neo) is calculated by using the Fourier com-
ponents P'k"(xe' ) via Eq. (1.8).

I

was complex scaled by a nonphysical parameter 0 such
that x ~xe' . A typical value of 0=0.5 rad was used for
most of the calculations. The stability of such calcula-
tions with respect to changes in the nonphysical parame-
ter 8 is demonstrated elsewhere [7,9(b)].

Methods for solving the Schrodinger equation (1.2) us-

ing the time-dependant complex-coordinate Floquet
method are described in detail in Ref. [9(a)]. In this work
the Hamiltonian and wave packet were represented in a
Fourier grid (typically 256 grid points with a grid step of
0.8 a.u. were used). Solution of the Schrodinger equation
(1.2) was carried out in the integral form, where the evo-
lution matrix was evaluated at small time steps dt (a typi-
cal one being T/4096) for which the Hamiltonian was as-
sumed to be almost constant. f'exp[ i fH(—t)dt], where
f' is the time-ordering operator, was approximated by a
second-order Magnus series [17]. Matrices exponentia-
tion was carried out by Taylor expansion of fifth to tenth
order. Operation of the Hamiltonian on the wave packet
was carried out for the kinetic part and for the potential
part separately. Forwards and backwards FFT were used
for transforming the wave packet from momentum space
to configuration space and back [18]. Complex scaling
induces decay of the amplitude of the wave packet during
the time propagation. In order to avoid dealing with
very small numbers, the wave packet was renormalized to
an arbitrary value (1.0) after each optical cycle.

III. RESULTS

In previous studies [7,9], we demonstrated the advan-
tages in the representation of the Floquet characteristic
resonances, A,„,=exp[ —i(e„,(pos) —il „,/2) T] on the
complex A, plane instead of examining the actual complex
resonance eigenvalues [e„,(pos) —il „,/2]. In such a
representation, the "distance" of a resonance from the
origin (0,0) is proportional to its lifetime such that bound
states with infinite lifetimes are situated on the unit circle
curve, while resonances with short lifetimes are situated
closer to the origin (0,0). The angle in this complex plane
describes the energy position (modulus co). The depen-
dence of k„, of the resonance correlated with the ground
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Re( X~)

0

state on the intensity of the field, Io, is shown in Fig. 1.
Figure 1(a) shows the results obtained by the complex
scaled adiabatic-switch method, (2048 time steps per opti-
cal cycles, and 100 optical cycles for switching on Io by
10' W/cm in a cosine way). Figure 1(b) shows the re-
sults obtained (for the same model) by diagonalizing the
whole complex scaled time evolution matrix calculated
by the time-dependent complex-coordinate Floquet
method [7] for one optical cycle.

Comparing the two figures, one can clearly see the
agreement for field intensities in the range from Io =0.0
to 22 X 10' W/cm . The slight "swerve" around
ID=12.5X10' W/cm in Fig. 1(b) is a direct result of an

avoided-crossing event of the ground resonance state
(shown) and another resonance state [see Fig. 2(b) of Ref.
(7)]. Following an avoided-crossing event in an adiabatic
way [Fig. 1(a)] requires a gradual switching on the field.
Indeed, for example, when the field intensity was
switched on 10 times faster (i.e., 10 optical cycles per
switch of 10' W/cm ) we were not able to obtain the
correct results around the first avoided-crossing event at
Io = 12.5 X 10' W/cm .

For intensities higher than Io =22X10' W/cm, there
are some discrepancies between Figs. 1(a) and 1(b). A
very drastic avoided-crossing event appears around
I0=22.5X10' w/cm [see Fig. 2(b) of Ref. [7]]. In this
case the ground-state resonance undergoes two avoided-
crossing events with other resonance states, one followed
by another. These frequent avoided-crossing events cause
the ground-state resonance to undergo a 180 turn in the
complex A. plane [Fig. 1(b)]. This sequence of events is
too drastic to be followed even by the gradual adiabatic
switch used here. Presumably, this avoided-crossing
event can also be traced by a more gradual switching pro-
cedure.

The harmonic-generation spectrum obtained for
ID=10' W/cm is presented in Fig. 2. These results are
in perfect agreement with results obtained by diagonali-
zation of the complex scaled time evolution matrix calcu-
lated by the time-dependent complex-coordinate Floquet
method [7], for one optical cycle. Since the potential is
symmetric (parity is a good quantum number), and since
the dipole approximation was used, even harmonics are
suppressed [19]. This phenomenon is clearly seen in the
figure. Looking at the odd harmonics, one can see an ex-
ponential decay (note the logarithmic scale) from the first

l * lO W/cm
l4

22.0

l&.5

l2.5

{3)
0-4—

{5)
[7)(9)c 0

(4)
-8 —0 (6)

O O {Ioi
(2) OO0

(8) 0 ~~ii~a~i- -~&

Re( X)

FIG. 1. Dependence of A,„,=exp[ —i(e„,(pos) —iI „,/2)T]
on the maximum field intensity, Io, for the model Hamiltonian
in Eqs. (1.1) and (2.1) (co=0.0925 a.u. , V0=0.63 a.u. , X =2.65
a.u. ). The field intensities Ip (c/SENT)Eg are given in units of
10' W/cm . The results presented in (a) were calculated by the
CSASM with a cosine switch (2048 time steps per optical cycle,
100 optical cycles per switching Io by 10' w/cm ), and those
presented in (b) were calculated by the TDCCFM [7].

I I

40 50

FICr. 2. Harmonic-generation spectrum: lno. ( n co ) vs

n =A/co [Eq. (1.8)] calculated by the CSASM for the model
Hamiltonian given in Eqs. (1.1) and (2.1) for ID=10' W/cm'.
A linear switch was used (4096 time steps per optical cycle, 10
optical cycles per switch of 10" W/cm ), 256 Fourier grid
points with a grid step of 0.78 a.u.
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harmonics to the fifth one, followed by a (short) plateau
between the fifth harmonics and the ninth harmonics.
This plateau ends up in a final exponential drop. The
same qualitative behavior (i.e., an exponential decay to a
plateau that ends up in a final drop) was also detected ex-
perimentally [1].

CONCLUDING REMARKS

A quantum-mechanical method (complex scaled
adiabatic-switch method, CSASM) for calculating har-
monic generation was presented. The backbone of the
method is the adiabatic theorem. This theorem is
phrased for a Hamiltonian which depends on time only
through the adiabatic parameter (i.e., nonexplicitly), and
which has a nondegenerate energy spectrum. For such
Hamiltonian the Gell-Mann and Low theorem [20,21]
states that by adiabatically (slowly, b ~0) turning a per-
turbation on, the ground state of some Po Hamiltonian
at time t = —ac evolves in such a way that at time t =0 it
becomes an eigenstate (not necessarily the lowest one) of
another Hamiltonian 8=Do+ exp( b~ t

~

)8—, .
In our case the Hamiltonian, Eq. (1.1), has an explicit

dependence on time, and all resonance states are embed-
ded in a degenerate continuum. A priori it seems inade-
quate to apply a computational scheme which is based on
an adiabatic switch, because of these two difficulties.

For time-periodic Hamiltonians, such as the Hamil-
tonian given in Eq. (1.1), and for a gradual enough
switch of the external field, the ground state of the field-
free Hamiltonian (at time t =0) is forced to stay on a sin-
gle quasienergy shell. Therefore, as proved by Young and
Deal [15], one is allowed to use the adiabatic switch for
this form of time dependence, which lies beyond the con-
ventional range of applicability of the Gell-Mann and
Low theorem, such that the first difficulty in applying the
adiabatic switch to our system is overcome. The use of
complex scaling separates between the resonance states
and the continuum states [22] such that the degeneracy is
removed, and the second difficulty is overcome.

The numerical results obtained by the complex scaled
adiabatic-switch method were in agreement with the re-
sults obtained by an accurate numerical method [7]
which requires a time propagation of the time evolution
matrix for one period. Here only one vector is propagated
so the computational effort usually reduces drastically.
The adiabatic switch is, therefore, a promising solution
for problems with several degrees of freedom. The pro-

cedure has a disadvantage in describing an avoided-
crossing event in the complex A, plane, since one observes
only one branch which is connected with a single reso-
nance state. The full avoided-crossing picture will be ob-
tained by repeating the adiabatic-switch calculation when
different eigenstates of the field-free Hamiltonian are tak-
en as initial states.

Here we used the complex scaled adiabatic-switch
method to study the harmonic-generation spectrum.
Other interesting multiphoton phenomena observed for
atoms or molecules interacting with intense laser fields
(such as above-threshold ionization or dissociation) can
be treated by this method as well.

It is worthwhile to consider the issue of relating the
Floquet analysis which is basically a cw approach to the
short pulse experiments which are required to obtain the
high field intensity. Two extreme situations can be en-
countered depending on the rate of the turnon of the
pulse. In the sudden limit the pulse will create a superpo-
sition of resonances and continuum states. Then as time
passes the continuum states will scatter off, followed by
the short living resonances. Due to the high kinetic ener-

gy acquired by the electrons they move fast out of the in-
teraction region. This means that after a short induction
period the longest living resonance will dominate the dy-
namics. The other extreme is a pulse with the adiabatic
turnon. In this case the system will "stay" on the reso-
nance state which is correlated with the ground state of
the field-free Hamiltonian.

In the sudden-limit approximation the complex scaled
adiabatic-switch method suggests a representation of the
real system up to field intensities where an avoided-
crossing event causes a drastic decrease in the lifetime of
the resonance state correlated with the ground state of
the field-free system (Io =22. 5 X 10' W/cm in our case).
In the other extreme case the complex scaled adiabatic-
switch method suggests a precise way to follow the exper-
imental reality.
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