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Multiphoton ejection of strongly bound relativistic electrons
in very intense laser fields
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We investigate multiphoton ejection probability of strongly bound electrons in relativistically
intense laser fields. A solvable model of a Klein-Gordon electron bound in a finite-range separable
potential and interacting with a circularly polarized plane-wave field is used for the analysis. For
binding energies of the order of several keV the rates of electron ejection for m=100 eV are found to be
significant at relativistic intensities but are extremely small for m=10 eV. For lower binding energies
spectra are obtained for the available COz laser frequency (m=0. 117 eV) and Nd laser frequency
(~=1.169 eV) Numerical results show the stabilization efFect for both relativistic and nonrelativistic
intensities and subthreshold frequencies.

PACS number(s): 32.80.Wr, 32.80.Fb, 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Due to rapid developments [1] of laser intensity it is
expected to be possible to experimentally investigate the
interaction of deeply bound electrons (like those bound
in highly charged ions) with very intense lasers. In view
of the formidable mathematical difhculty of the neces-
sary nonperturbative analysis involving real systems, it
is of much interest to obtain a qualitative understand-
ing of such problems from solvable models. An exactly
solvable model for investigations of nonperturbative be-
havior of a bound electron interacting with a strong cir-
cularly polarized electromagnetic field is the well-known
b-potential model, which has been introduced by Berson
[2] and Manakov and Rapoport [3]. This model, however,
may not be used for intensities that are so high that the
energy of oscillation of the electron in the field (quiver en-
ergy) becomes comparable to the rest mass energy, mc2

of the electron. In other words, in the intensity domain

Equiver

mc
it becomes necessary to analyze the problem both rel-
ativistically and nonperturbatively. For very strongly
bound objects we need relativistic formulas also for the
binding force itself.

Recently, we have introduced [4] a relativistic model of
a bound Klein-Gordon (KG) electron interacting with a
circularly polarized electromagnetic field (with full mul-
tipolar interaction) and obtained the exact solution of
the corresponding KG equation. Since the KG equation
involves the squaring of the potential, the zero-range b
potential, used in the nonrelativistic model [2, 3], can-
not be used here. We have, therefore, chosen a separa-
ble finite-range potential that supports a discrete bound
state (and the full continuum) as does the b potential

in the nonrelativistic model. Note that, originally, sep-
arable potentials have been introduced to study nuclear
reactions [5—7] and more recently they have been used for
the laser-atom interaction problem, in the nonrelativistic
domain [8—12].

In this paper we investigate the total rate of ejection
of deeply bound electrons, as a function of the binding
energy and the field intensity, within the framework of
the KG equation.

II. THE BOUND-STATE MODEL POTENTIAL

The KG equation of the model system is

[('~t —&pl&)(&l)' —p' —~']l@(t)) = o (2)

& = &pl&)(41

and the potential functions P are taken in this work in
the Gaussian form

P(x) = jVpe (4)

2Awhere %p ——(
" )s~4 is chosen such that

(&I&) = 1. (5)

Note that the parameters A and Vo are arbitrary and can
be chosen to imitate the bound state of interest.

The eigenstate @(x,t) = e '+t4@(x) of Eq. (2) can be
readily seen to satisfy the integral equation

where the separable potential is defined in the form of a
projection operator
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0 @(x) = d g G@(x —y) P(y) Vo(2E —Vo)

x d z P(z)iII~(z),

The KG equation satisfied by the wave function 4 then
reads

[(icj" —eA")(iB„—eA„) —m ]iII(x)

and Gz(x —y) is the stationary Green's function of the
free Klein-Gordon equation

(E + E —m )G~(x —y) = 8~ l (x —y) .

If we now project both sides of Eq. (6) onto P(x) and
perform the integrals, we get the following equation for
the eigenenergy Ep of the bound state:

Vo (2Eo —Vo)
2A3 0

(8)

We can now fix one of the arbitrary parameters defin-

ing the potential by taking A = gm2 —Eo2, where Eo
is the solution of (8). In this way our energy eigenvalue
equation becomes

Vo(2Eo —Vo)( = —1
2(m2 —Eo2)

and hence

= Vo(2iBo —Vo)P(x) d z P(z)ill(xo, z), (11)

k = (ko, 0, 0, ks), (13)

where k = 0 and b is a certain arbitrary initial phase of
the field. We use the following notation for the products
of four-vectors: k . x = k"x~ = kpxp —k 3c.

We will now try to solve Eq. (11) similarly to the way
we have done it, without laser field, in Sec. II, with the
difference that the "eigenenergy" is now expected to be
complex since we deal with an unstable situation. We will
follow a path somewhat similar to that of Berson [2] and
Manakov and Rapoport [3], the difFerences originating
from the relativistic nature of the KG "electron" and
non-b character of the binding potential. The solution
of (ll) can formally be written as

in units where c = 6 = 1. The potential A" has only
spatial components

A(z) = Ao[ei cos(k x + h) —e2 sin(k . z + 8)], (12)

and eq, e2 are unit vectors in the directions of axes x and
y. The four-vector k" in the frame we use has the form

V2(2
Ep — m' +

4
Vo2( Vo(2+2 (10)

d x'G(x, x')P(x') Vo(2iBo —Vo)

x d y P(y) @(xo,y), (14)
where ( = 2 —+2vre[l —erf( 2 )] = 0.688641 and erf is
the error function [13]. If Vo is negative this potential,
according to (10), can support one positive-energy bound
state [14].

III. LEVEL VV'IDTH
IN A CIRCULARLY POLARIZED LASER FIELD

Let us now couple the system with the external laser
field characterized by the electromagnetic potential A".

I

where P is given by (4) and G(x, x') is now the Green's
function inside the field satisfying-

[(iB"—eA")(iO„—eA„) —m ]G(x, x') = 8~ ~(x —x'),
(15)

and containing for large r only outgoing waves. This
Green's function can be found by using, for instance, the
Fock-Schwinger proper time method [15, 16]. The result
is the following:

/ 1
G(x, x ) =— (x —x')'

2 cos k (x —x') —1—exp z 2e Ao, +e Ao+m
—OO 47

sin k x —sin k x' cosk z —cosk. z')
(» —z', ) „, + (*2 —*',)k z —x' k. x —x' (16)

If we put this into Eq. (14) and project both sides onto P(x), we come to the following relation:

x(t) = d x d x' dt'P(x)G(x, t; x', t')P(x')Vo(2iOg —Vo)y(t'), (17)

where y(t) = jd sPx( )x(ixli, t)
We do not filter out, in this place, the time dependence of the kind e' (n photons absorbed or emitted) as

has been dane previously in nonrelativistic works [2, 3] ta simplify the calculations, since the integration of the
Green s function with spherically symmetric P in (17) simplifies it automatically (more exactly, it is accomplished
by the change of integration variables, as shown below). This observation is confirmed by the fact that the object
J' d x f d z'$(x)G(x, t; x', t')P(x') depends only on t —t'. This is a great advantage of using circularly polarized. light.
To show this we rotate, around the third axis, the frames in which the integrals over x and x are performed by the
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angle —k (z + z') and make use of the fact that the form factor P is an s-type function:

4w

(19)

P sin~7 E —psdv d pe»' exp i7 (p + m + e Ao —E ) —ipi2eAo
Ld (E —ps)

sin ~ [ko(t —t') —k . (x —x')] l
x', —4eAp~ (18)4r

~
ko (t —t') —k (x —x')

where we use the old symbols z and z' for the new integration variables. In Eqs. (16) and (18), z s are ordinary
spatial three-vector components. If we now take the Fourier transform of Eq. (17) we obtain the relation, which plays
the role of the energetic eigenequation,

1 = Vo(2E —Vo) & P!Gxlg ),
where G@ is simply f d Te'@ G(T) and T = t —t'. We shall use the shorthand notation (P!G~lP) for

f d z f d z'P(x)Gz(x, x')P(x') below. The solution of Eq. (19) in general exists for a complex energy: E„ i —i~
and p is just the total ejection rate we are looking for.

In the momentum representation (P!G~!$) is given by

2 0

(&IG~I&) = —8q', (20)

We note here that there are two sources of relativity in
the laser-atom interaction problem. One of them corre-
sponds to very highly energetic photons with energies
comparable to the electron rest mass energy. This is
the situation for x-ray or p-ray interactions, in weak
fields, as in elementary-particle physics. The other source
is the very high laser field strength and nonrelativis-
tic photon frequencies, and this is the case we are con-
cerned with in this work. (The relativistic corrections can
be introduced by the binding force too. ) Consequently
we neglect, in the above formula, p3's in the last term
in the exponent. This corresponds to the assumption

+ms —Eo~, which can be seen already from (18)
by rescaling zs ~ zs/u, and similarly zs, and observ-
ing that exp[ —A (z + z' )] becomes a strongly dump-
ing factor if the above condition for w is fulfilled [17].
This condition is well satisfied by the photon energy of
presently available intense lasers. On the contrary, from
the point of view of the field strength, current laser inten-
sities are already on the border of the relativistic region
(10i —10~ W/cm~ depending on frequency). For exam-
ple, for m=1 eV and I = 10 W/cm, the electron quiver
energy is comparable to its mass.

If we now perform the above-mentioned approximation
together with the d p integral, we come to

(&IG~I&) = —e "
8A6 o (T —i ~E

) s/&

m2+ e2~2
x exp —z~

cuE

2 2 2e Aosin
(uE(7- —x „~)

I

where 7. has been rescaled: 7 —+ E 7.. For
2+ 2~2 @2

)& 1, we can find the w integral using the
saddle-point method. The approximate position of the
saddle point is

gm~ —E' ( I m' —E' l
70 — z 1 ——

eAo ( 9 e~Ao )
2E2e3g3

+ 0

8A(m —E)& (22)

under the conditions [18]

e2/2
Pi—= q )& 1

2mB) Fp

eE'0
p~ =

25&2m'/'2&'/'
0

e4Fp'

2 128(d m~8

(23)

where we have introduced the external electric field fp ——

cuAp and binding energy cp ——m —Ep. The conditions
for Pi and Pq are equivalent to those considered in the
nonrelativistic model [2] (V )) m, V « 1) and in [3]
(p &) 1, I" « Eo). The condition for ps is new and arises
due to the finite-range potential used here. Actually it is
more severe than that for Pq and, therefore, it suffices to
consider only Pi and Ps [19].

We now choose the steepest path for the integration
in (21), which goes down along the imaginary axis up to
~0 and then along a distorted curve to complex infinity.
Inserting the result of the integration in (19), we obtain
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V, (2E —V, ) gm2 —E2
23/2P3

+(real nonleading terms) .

e2A2p ( u)EeAp1+
4A2 gm2 —E2 )

e Vp (2E —Vp )eA p cu Edz, , +i 7r
(z + vn2 E—)3/2 2P/2$s(m2 E2)

2 (m2 E2)»2 f
X exp 1 ——

3 eAo~E
~

15 e2A2o j
(24)

In the above formula "real" means "real for p = 0." The solution of this implicit transcendental equation in the first
approximation ReE —E0 leads to the formula

2A2(m2 —E2)
x 1—

Ep[m —Eo + A + Vp(2Ep —Vp)/4](2Ep —Vp)

2(m —E)/ ( (u m —E l eZ eFoEoxexp ——
~

1 ——
2 ~

— 1+
3 «oEo ( 15 e ~o ) 2~'&' i 4A'gm' —E'

&

(25)

Putting A = V m2 —Eo2 and expressing Vp through Ep [cf. Eq. (10)], we find

((m2 —Eo2)eE'0

gm2 —E,'
1

y—
8

efoEp
2(u'(m' —E') ( 4(m' —E')'/')1+

Eo Eo + Ep2 +
~

(m2 —Ep2)

2(m2 —E2)/ ( ~ m —E l
xexp ——

/

1 ——
3 eFpEp ( 15 e2Fo2 ) (26)

Equation (26) is reminiscent of the nonrelativistic forrnu-
las obtained by Berson [2] and, independently, by Man-
akov and Rapoport [3]. It is efFectively a generalization
of the zero-range nonrelativistic case to the finite-range
relativistic case of present interest.

—13
pz = 2.5 x 10 —)) 1,

~0

I
ps 2x10 —«1,~40

(27)

IV. QUANTITATIVE RESULTS

Before proceeding with the numerical results let us look
briefly into the regions of intensity where conditions for
Pq and Ps for the applicability of Eq. (26) may be en-
sured. Thus, if we take, for example, m=1 eV, the fol-
lowing restrictions for P's must hold:

where I should be expressed in W/cm2 and ep in elec-
tronvolts. For strongly bound electrons; for example, in
highly ionized atoms with atomic number Z 10 or, in

2x10

') 1.5x10
(D

1.2x10
0-s

) 9x10
(D

2
5x10

c 6x10 4.2 4 4 4.6 4.8 5.0
'og 1 0('/'0)

5.2 5.4

D
y 3x10

1000 1200 1400 1600 1800 2000 2200 2400 2600
binding energy eo (eV)

FIG. 1. Width of the bound state as the function of bind-
ing energy for I = 10 W/cm and ~ = 100 eV.

FIG. 2. Width of the bound state as the function of laser
intensity for u = 100 eV and atomic number Z = 12 which
corresponds to ro ——1963 eV. Io corresponds to the value
10 W/cm . Here and also in Figs. 3, 5, and 6, the dotted
line constitutes the continuation of the curve to the region
where the conditions for the derivation of Eq. (26) are not
well satis6ed.
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FIG. 3. Width of the bound state as the function of laser
intensity for u = 100 eV and atomic number Z = 20 (ep
5472 eV). Ip ——10 W/cm .

FIG. 5. Dependence of p on the laser intensity for the Li
atom. ep ——5.390 eV and w = 0.117 eV (CO2 laser).

other words, so ——m, [1 —gl —(Zcr) ] 1 keV, both the
conditions for P's (23) are satisfied in the wide relativistic
region of intensities 10 —10 W/cm . For Z ) 20 they
are satisfied for I to 10 —10 W/cm . For a higher
frequency; for example, ~ = 10 eV, the relativistic re-
gion of intensities starts from 10is —10i W/cm2. The
restrictions on the intensity and the binding energy now
take the form

-~5 I
P, =2.5xlo "—&&1,

E'0

(28)
I2

P, =2x 10 "—((1,~40

again with I in W/cm and e'o in eV. These conditions are
again satisfied for a range of values of Z and intensities
(10 —10 W/cm ) [20].

In Fig. 1 we present the total rate p as a function of the
binding energy cp, for the frequency w = 100 eV and in-
tensity I = 10 i W/cm . (In these conditions the quiver
energy constitutes about 10% of the electron rest mass. )
It is interesting to observe that the rates first increase
with increasing binding energy, reach a maximum around
1.7 keV and finally give rise to a bell-shaped curve.

In Fig. 2 we show the intensity dependence of the rate
for a fixed binding energy Ep = 1963 eV, which corre-
sponds to an effective charge of 12, and for w = 100
eV. It is evident from the figure that the rate shows a
maximum with increasing intensity and then decreases

rapidly beyond I = 6.3 x 10 W/cm . This behavior
is similar to the well-known stability efFect discussed ex-
tensively for the nonrelativistic systems recently [21—28].
Note that in the present case the stability effect occurs
for a frequency much below the threshold of electron ejec-
tion. Similar behavior is found for effective Z = 20, but
the absolute values are very much smaller in this case
(Fig. 3). At the maximum the values of the parameters
are Pi = ( z") / and Ps ——2(zs, ) / . In the analytical
formula (26) the presence of the second term in the expo-
nent is responsible for the decrease of p for very large I.
It should be noted that in the nonrelativistic b-potential
model mentioned earlier only the first term in the expo-
nent in (26) is present, causing a monotonical increase of
p with I without the stability behavior seen here.

Investigations of the rates of ejection of deeply bound
electrons at lower frequencies show extremely low prob-
abilities at relativistic intensities. As an illustration,
in Fig. 4 we present the data for ~ = 10 eV and
I = 10is W/cm, where the rates are shown as a func-
tion of the binding energy. We observe that the rates are
distributed over a bell-shaped curve as before (cf. Fig. 1),
but are extremely small (ten orders of magnitude smaller)
in absolute values. We found also that the rates decrease
even more drastically at this frequency with a further in-
crease in intensity and are, therefore, not demonstrated
here.

Equation (26) may be applied to the nonrelativistic
region of intensities as well. The main features in this
intensity domain are found to be the same as those shown
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FIG. 4. Width of the bound state as the function of bind-
ing energy for I = 10 W/cm and w = 10 eV.

FIG. 6. Dependence of p on the laser intensity for the He
atoirl. ep —24.581 eV and w = 1.169 eV (Nd laser).
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above. Below we present some plots of p as a function
of laser intensity for the binding energy corresponding
to that of a neutral Li atom (eo ——5.390 eV, u = 0.117
eV) (Fig. 5) and of a neutral He atom (eo ——24.581 eV,
w = 1.169 eV) (Fig. 6). They are, as dictated by Eq. (26),
the bell-shaped curves showing the same stability efI'ect.

In conclusion, we have shown, with the help of the so-
lution of a relativistic model based on the Klein-Gordon
equation of a deeply bound electron, that the probability
of ejection of electrons for binding energies in the range
of several keV can be significant for u = 100 eV, at rel-

ativistic intensities, but is extremely small for w = 10
eV. It is also shown that the so-called stabilization efFect
can occur for deeply bound electrons for subthreshold fre-
quencies and relativistic intensities similarly to the way
it occurs in nonrelativistic conditions.
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