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Nonclassical vibrational states in a quantized trap
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The quantized center-of-mass (c.m.) motions of a single two-level atom or ion confined into a one-
dimensional harmonic potential and interacting with a single-mode classical traveling-wave laser field
are examined. We demonstrate that trap quantum states with remarkable nonclassical properties such
as quadrature and amplitude-squared squeezing and sub-Poissonian statistics can be generated in this
simple trap model when the c.m. motion is initially in certain coherent trap states. Our analyses also in-
dicate that there exist some time regions where the production of nonclassical vibrational states is possi-
ble even if squeezing or sub-Poissonian statistics do not appear.

PACS number(s): 42.50.Vk, 32.80.Pj, 42.50.Dv

Previously, laser radiation was used successfully to
reduce the relative motion of atoms or ions. It was
demonstrated that a single ion can be cooled down to its
zero-point vibrational energy [1] in a Paul or Penning
trap [2,3]. Two recent experiments [4,5] have observed
the transitions of laser-cooled neutral atoms between vi-
brational levels in one-dimensional (1D) optical molasses
[6], and proved that the trapped atoms could also be
cooled down to their vibrational ground states. There-
fore, the c.m. motion of ions or atoms in extremely low
kinetic temperature should be treated quantum mechani-
cally [7-9]. Ions in a Paul or Penning trap can be ap-
proximately regarded as being constrained to move in a
harmonic potential [10], while on the other hand atoms
in optical molasses are significantly trapped in optical po-
tential wells [11] when their temperature is low enough
[12]. This potential depends upon the atomic internal
states and is periodic. Hence, it energy spectrum consists
of bands [9,13]. Here, we concentrate on considering a
relatively simple case. An atom in a certain m sublevel
of the ground state in linllin 1D optical molasses, for ex-
ample, an *Rb 5s, ,(F=3) atom in the m;=3 sublevel
of the ground state, as has been investigated in Ref. [5], is
supposed to be well localized in the bottom of an optical
potential well. Then the c.m. motions of the atom behave
approximately as a harmonic oscillator.

In what follows, we take into account that a two-level
atom or ion in a harmonic potential, whose motions of
the external degrees of freedom are quantized, interacts
with a single-mode classical light field, which is tuned
resonantly to the internal transitions between the atomic
or ionic ground and excited state. As the classical light
field exciting or deexciting the two-level atom or ion, the
vibrational states of the c.m. motions change since atomic
or ionic stimulated absorption or emission processes al-
ways accompany with momentum exchanging with the
driven laser field. Theoretical calculations predicted that
the atomic or ionic inversion in this simple model exhibit-
ed quantum collapses and revivals [10], which is the same
as those in the ordinary Jaynes-Cummings model [14] ex-
cept that the role of the quantized radiation field is re-
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placed by the quantized c.m. motion. In this article, we
restrict our attention to the quantum fluctuations of the
position and momentum operators and show that
squeezed vibrational states can be generated when the
atomic or ionic c.m. motions are initially in some
coherent states. It is found that higher-order squeezing
such as amplitude-squared squeezing for the trap quanta
can also exist in some time regions during the time evolu-
tion of the system. The trap quanta distribution is exam-
ined quantitatively. The parameter Q turns out to be
negative in some ranges of time intervals, which charac-
terizes sub-Poissonian statistics. Extending a criterion
developed by Agarwal et al. [15] for characterizing the
nonclassical properties of the field even if it does not ex-
hibit squeezing or sub-Poissonian statistics, we test the
nonclassical character of the quantized c.m. motions. It
is interesting to note that there may exist some other non-
classical properties besides squeezing or sub-Poissonian
statistics.

Since the trap potential is assumed to be harmonic, the
position and momentum operators x and p can be written
in terms of creation and annihilation operators for the
trap quanta, a ', and a as
172

(a +aT), p=i

x=

2Mv

5 1/2
VZM} (at—a). )

Then, the Hamiltonian of our simple trap model in the
rotating-wave approximation (RWA) and in the rotating
frame takes the form

H=ﬁv(a*a+g)+ﬁzi+ghn<pa++F*a—), 2)

where 07, oF, and o~ are the Pauli spin matrices of the
atomic or ionic internal operators, v is the trap frequen-
cy, {2 denotes Rabi frequency, and 6 represents the de-
tuning between the internal transition frequency w, and
the laser frequency w;, §=w,—w;. Fand F* are defined
by: F=(F*)*=explie(a +aT)] with the parameter € be-
ing given by €e=1'E,/E,. Here, E,=#*k2>/2M and
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E  =#v are the classical recoil energy of the atom or ion
and the energy of the trap quantum, respectively. In the
Lamb-Dicke limit [16], € is small, which correspond to
the well-spaced trap states. In writing the above Hamil-
tonian, we have omitted the effects of spontaneous emis-
sions. This is reasonable only for the situation O >>T (T
denotes the spontaneous decay rate of atomic or ionic
internal excited state), i.e., only when the spontaneous de-
cay rate is very small compared to the Rabi frequency of
the classical driven laser field can we neglect the spon-
taneous decay terms. The first term in our Hamiltonian
corresponds to c.m. motion in a 1D harmonic potential;
the second one is the atomic or ionic internal energy; and
the third one denotes the coupling between the driven
field and the atom or ion. Note that for the c.m. motion
in the 1D harmonic potential, the vibrational states are
quantized with energy difference #v between each other.
Suppose |m ) is one of the quantized vibrational levels,
a'almY=m|m), and the vibrational energy (including
kinetic and potential energy) is (m + 1)#iv. If the energy
difference #v is larger than the natural width of the excit-
ed states and Rabi splitting, i.e., v>>Q, v>>T, the tran-
sitions between vibrational levels will dominantly affect
the atomic or ionic c.m. motion. For simplicity, we focus
on a heating transition involving the exchange of only

o
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one trap quantum. In such a case, the driven laser is
tuned to the first vibrational sideband on the blue side,
8= —v. Hence the internal transition from the ground
state to the excited state heats atoms or ions and there-
fore the trap quantum number m increases by 1
(Am =1), while deexciting decelerates the atomic or ion-
ic c.m. motion and reduces m (Am = —1). In the limit
v>>(), all other transitions oscillate with sufficiently high
frequencies. We ignore their effects in RWA. For e <<1
and not-too-large quantum number m (me> << 1), the as-
sociated matrix elements of operators F and F* approxi-
mate

(m+1|Flm)=((m|F*lm+1))*

=jieVm+1. (3)
Note that, in the last part of the above equations, m €’
and higher-order terms are neglected. It should be borne
in mind that such an approximation becomes unsatisfac-
tory when m is large (me®=1). Fortunately, for an ini-
tial coherent vibrational state with small average trap
quantum 77, the above approximation holds. In the fol-
lowing calculations, we therefore concentrate on consid-
ering such a situation. After some short algebra, we
derive the time evolution operators U(t)=exp(—iHt /#).
It can be expanded as

Ut)y=3 exp[—i(m+1)vt][cos(At)|e,m +1){e,m+1|+sin(At)|e,m +1){g,m|

m=0

+cos(At)|g,m )(g,m|—sin(At)lg,m){e,m +1|], A=1QeVm +1, 4

where |g ) and |e ) correspond to the internal ground and
excited state of atom or ion, respectively. |e,m ) and
|g,m ) are the entangle states of internal and external de-
grees of freedom, ie., le,m)=le)®|m),
lg,m)=|g)®|m). If the initial density matrix of the
system is p(0), the reduced density matrix p(¢) for exter-
nal degrees of freedom at time ¢ can be written as

Prea()={e|U()p(0)U(1)|e)
+{glU)p0UT(1)g) . (5)

The quadrature and amplitude-squared operators for
trap quanta are defined in similar forms as those for
quantized radiation:

_a+aJr a—a'
Xl_ ) ’ Xz— 2i ) (63.)
A2+AT2 AZ__A""Z
Y = = -
1 2 ’ Y2 21. > (6b)

where A4 =exp(ivt)a and AT=exp( —ivt)a' are slowing
varying operators of the trap quanta. For the harmonic
potential, the trap operators a and al obey [a,aT]=1,
which confirms the following commutation relations for
X, and X,,and for Y, and Y,:

[X,,X,]1=i/2, [Y,,Y,]=i(2N+1), ¥

[

where N= A" 4 is the number operator of the trap quan-
ta. The uncertainty relations, then, are

(AX){(AX,) =1, (AY)(AY,)Z(N+L). (®)

The minimum uncertainty states with
((AX)*)=((AX,)*)=1 and ((AY,)?)=((AY,)*)
=(N+1) are the vibrational coherent states |a),
ala)=ala). Unambiguously, vibrational ground state
|0) is a coherent state. The quadrature squeezing in X;
or amplitude-squared squeezing in Y; for c.m. motion ex-

ists if
((AX;?) <L or ((AY;)?) <(N+1), i=1,2. (9

The quantum fluctuation can be calculated from

((AK;)?)=tr(p()K})—[tr(p()K;) %,
K=X,Y, i=12. (10

To measure the trap quantum number distributions, a
parameter Q is defined as

_ (aTzaz>—(aTa >2
(a'a)

For sub-Poissonian statistics, Q is negative. We next
introduce a quantity as a measure of the nonclassical

(11)

Q



property for the quantized c.m. motion even if it does not
exhibit squeezing and sub-Poissonian statistics, which
takes an analogous form as that for quantized radiation
in Agarwal et al. [15]:

Ay=detm® /[detu'> —detm¥] , (12)
where the matrix m ® is defined by

1 m; m,

(3)

m3=\m, my, my|, m,=(a"a") . (13)

m, mjz; my

The matrix “(3> is obtained from m ®’ by the replacement
m, —u,={(a’n)"). It was demonstrated that in the
nonclassical region —1< 4; <0.

Numerical simulations are performed in accordance
with the above formulas. We assume that the atom or
ion is initially in its ground state |g), while the c.m.
motion in a coherent state |a) with an average vibration-
al quantum number 7 =|al|?, i.e., p(0)=|g,a){g,al. In
Fig. 1, {(AX,)*) or {(AX,)?) is plotted for a different in-
itial vibrational state |e’?) with the phase ¢ being given
by O (curve a), m/18 (b), /4 (c) for {(AX, »*); or w/2
(curve a), 4m/9 (b), w/4 (c) for {(AX,)?). It is clear
that, when ¢ varies between O and 7/18 (or between
47/9 and w/2), there exists time regions in which
{((AX)?*) [or {(AX,)?)] turns out to be less than 1. In
this region squeezing in X, (or X,) occurs. The max-
imum squeezing in X, (or X,) is at the point ¢=0 (or
¢=m/2). Figure 2 shows F,=((AY;?)—(N+1L)
(i=1,2) as functions of the dimensionless time Q¢ /27 .
Again, we find that amplitude-squared squeezed states in
Y, (or Y,) can be generated and last for a short while,
when 0<¢ =<7/15 (or 87 /45=¢ = /4). The maximum
squeezing in Y, (or Y,) arrives when ¢ =0 (¢ =m/4). In
Figs. 3 and 4, we illustrate the quantum fluctuations of
X, for a=4 (curve a), 6 (b), 8 (c), 10 (d) and of Y, for
a=6 (curve a), 8 (b), 10 (c), respectively. It is indicated
that the initial coherent states |a) evolve to be quadra-
ture or amplitude-squared squeezed states in some ranges

<(AX4)?>

"0 20 40 60 80 100
t/2n

FIG. 1. The quantum fluctuation ((AX;)?) (i=1,2) as func-
tions of dimensionless time 7=Q¢ /27 for €=0.05, v/Q=50,
8/Q=—50. Initially the two-level atom or ion is assumed to be
in its ground state |g ), while the center-of-mass motion is in a
coherent state |e’®). The curves a, b, and ¢ correspond to ¢=0,
¢=m/18, and p=1/4, for ((AX,)?); or (curve a) p=1/2, (b)
¢=4m/9, and (c) p=m/4, for {(AX,)?).
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FIG. 2. The quantum fluctuation F;=((AY;?)—(N+1)
(i=1,2). Y, and Y, are the real and the imaginary part of the
amplitude-squared operator. The initial density matrix is sup-
posed to be p(0)=|g,a){g,al, a=e', and ¢ is chosen as (curve
a) $=0, (b) ¢=m/15, and (c¢) ¢=mu/8, for F,; or (curve a)
o=m/4, (b) $=117/60, and (¢) ¢=m/8, for F,. Other param-
eters are the same as those in Fig. 1.

of time intervals. The meaning of trap quantum squeez-
ing can be outlined qualitatively as follows: The squeez-
ing in X, means that the position variations of the atomic
or ionic c.m. motion in a harmonic potential is less than
those of minimum uncertainty wave packet; states
squeezed in X, can be interpreted as states with homo-
geneous c.m. velocity distribution, in fact, their quantum
fluctuations are smaller than those of zero-point vibra-
tional or ground trap states. Squeezing in Y, or Y, mani-
fests the reduction of quantum fluctuations of the real or
imaginary part of the slowly varying amplitude-squared
operator.

The parameter Q is evaluated for initial density matrix
p(0)=|g,a){g,al, @=1,2. The results are depicted in
Fig. 5, curves a and b. The diagrams clearly show that Q
oscillates and reaches a negative value many times in the
time range Q¢ /27=0-100. In Fig. 6, curves a and b, we
give the plots of the time variation of the parameter A4;.
Comparing Figs. 5 and 6, we immediately see that there
are some ranges of time intervals where Q is positive
while A, is negative. This ensures the existence of a non-

0.2 \J\/ d
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FIG. 3. The time evolution of quantum fluctuation of opera-
tor X,;. The initial density matrix is p(0)=|g,a){g,al, a=4
(curve a), 6 (b), 8 (¢), and 10 (d). &, v, Q, and 8 are the same as
those in Fig. 1.
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FIG. 4. The time variation of quantum fluctuation of
F;=((AY,)*)—(N+1). The curves g, b, ¢ correspond to the
case of initial density matrix p(0)=|g,a){g,al, a=6, 8, 10.
Other parameters are the same as in Fig. 3.

classical property for the quantized c.m. motion in re-
gions where it does not exhibit sub-Poissonian statistics.
Let us discuss briefly the physical mechanism underly-
ing the generation of the above-mentioned nonclassical
features. Approximation adopted in the above considera-
tions implies that the involved transitions in our
configuration are between |g,m ) and |e,m +1), with

m=0, 1, 2,..., which leads to a simplification of the
laser-atom coupling terms in the Hamiltonian H:
kup1=éem(afa+ —ac7). (14)

The first term and the second term in the right side of
the above equation are associated with heating and cool-
ing of the particle, respectively. These two processes
arise coherent redistribution of the trap quanta with the
particle being in internal upper or lower state and estab-
lish coherences between trap quanta creation an annihila-
tion. These two-photon coherences are in turn responsi-
ble for the appearance of such nonclassical features as
squeezing and sub-Poissonian trap quanta statistics.

As examples, we next estimate briefly the experimental
possibilities of our analyses. For ions in a Paul or Pen-
ning trap, we consider a typical situation used in a
Diedrich [1] sideband cooling scheme: *Hg™ ions in-
teract with classical laser field which is tuned resonantly

0.4
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FIG. 5. Parameters Q as a function of dimensionless time
7=t /2. Initially the system is assumed to be described by
p(0)=lg,a){g,al, (curve a) a=1, (b) @=2. Other parameters
are the same as in Fig. 3.
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FIG. 6. Parameters A4; as a function of dimensionless time
7=Qt/27. The initial density matrix is p(0)=|g,a){(g,al,
(curve a) a=1, (b) a=2. Other parameters are the same as in
Fig. 3.

to the narrow %S ,->Ds ,, electric quadrupole transitions
with wavelengths A=281.5 nm. The experimental
relevant parameters are as follows: the trap frequency is
v=2.96 MHz, the decay rate is I'=11 Hz [17]. These
give €=0.07. Allow for the trap quantum number distri-
bution of a coherent vibrational state with small average
trap quanta 7, the large m terms can be neglected.
Hence, me®<<1 holds. Clearly there exists an extensive
domain for Q to be chosen to fulfill both the conditions
v>>Q and Q>>T simultaneously. While for atoms in
1D optical molasses, an important experimental con-
sideration is the requirement of negligible population
transferring out of the involved levels. Take, for exam-
ple, the experiment of Jessen et al. [5] into account. Two
counterpropagating laser beams (linllin) were tuned red
of the 5§, ,,(F=3)-5P;,,(F'=4) transition and formed
the 1D optical molasses. It was shown that optical
pumping out of the m;=3 sublevel of the F =3 hyperfine
level was strongly suppressed and that the atomic motion
in the bottom of the optical well approximated an un-
damped harmonic oscillator. Because the ratio of the
squared Clebsch-Gordan coefficients for the transitions
mp=3-mp=4 vs mp=3-mp=2 is 28 to 1, the latter
transitions can be omitted and the atomic internal de-
grees of freedom can be described sufficiently as a two-
level system (my=3 and mgz=4). An additional single-
mode o * polarized laser light, which is tuned to the blue
side of the mp=3-mg =4 transition, provides coupling
between the two internal levels. Carefully set the Rabi
frequency and the detuning of the two counterpropagat-
ing laser so as the trap frequency v satisfies v>>T. A
choice of the Rabi frequency  of the classical driving
laser field can then be made to satisfy v>>Q and Q >>T.
In conclusion, previous discussions demonstrate that
both quadrature and amplitude-squared squeezed vibra-
tional states can be generated for the quantized center-
of-mass motion of two-level atoms or ions constrained to
move in a one-dimensional harmonic potential. We point
out that some initial coherent states of the quantized c.m.
motions will evolve to be states exhibiting sub-Poissonian
statistics in some ranges of time intervals. It was proven
by Agarwal and others [18-21] that nonclassical states
could also be produced in a harmonic oscillator with a
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time-dependent frequency, which described the quantum
motion of particles in a Paul trap. Our results here pre-
dict the existence nonclassical properties, such as squeez-
ing, higher-order squeezing, and sub-Poissonian statistics,
for the quantized c.m. motions of ions in a Paul or Pen-
ning trap and atoms in optical molasses. We remark that
nonclassical vibrational states can be obtained even if the
parameter Q is positive.

Note added. A very similar investigation has been re-
cently published by Cirac, Parkins, Blatt, and Zoller [22].
Therein, they proposed to exert multichromatic excita-
tion of a trapped ion by standing- and traveling-wave

light fields for preparing coherent squeezed states of
motion in an ion trap [22]. Particularly, they offered a
mechanism to detect actually the nonclassical character
of the vibrational states of a trapped ion. Therefore, it is
reasonable to believe that the results predicted here are
experimentally observable. This appears to be quite
promising to the study of the nonclassical properties of
the center-of-mass motions in a quantized trap. On the
other hand, along with the early predicted quantum col-
lapses and revivals in a quantized trap, the time-
dependent dynamics of the c.m. motions described here
confirm again its quantum nature.
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