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A many-body theory of quantum fluctuations in the optical parametric oscillator is given. Dyson
equations and diagrammatic representation of photon Green functions are derived from a combination
of quantum Langevin and many-body techniques. Single-photon Green functions are used to compute
dynamic spectra of the output using a self-consistent scheme which incorporates nonlinear, many-
photon polarization effects. The latter scale with system size and their influence on the nonlinear quan-
tum dynamics is addressed. We present results of dynamic output spectra and quantum-noise properties

beyond the adiabatic approximation.
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I. INTRODUCTION

The quantum statistical properties of electromagnetic
fields produced by nonlinear mixing processes in dissipa-
tive cavity systems are now quite well understood in the
semiclassical limit of nearly coherent fields. The observa-
tion of squeezed states of light falls into this category [1],
and theories based on a linearization of quantum fluctua-
tions around the classical Maxwell field accurately de-
scribe the dynamics [2]. In order to produce strongly
quantum-dynamical behavior the coherent coupling of
field and matter must be significantly increased. Efforts
are underway to achieve this quantum limit in cavity
quantum electrodynamics using the resonant interaction
of atoms in an optical cavity [3]. Technological advances
in the construction of monolithic cavities [4], and cavities
with ultrahigh-reflectivity mirrors [5], suggest that it may
eventually be possible to investigate the quantum limit in
other nonlinear optical systems, though this will also de-
pend on the availability of materials with large nonlinear-
ity and low absorption. The theoretical treatment of
such nonlinear quantum dynamics is difficult because
linearization theory breaks down, and a more sophisticat-
ed analysis is necessary. This is true also in the vicinity
of a nonequilibrium phase transition where fluctuation
effects are generically large.

Here we present a nonlinear quantum-dynamical
analysis of the degenerate optical parametric oscillator
(OPO). Earlier theoretical investigations of this system
have appeared [6,7]. The transition from the semiclassi-
cal to quantum limits was studied in the adiabatic limit
by Wolinsky and Carmichael [7] and Reid and Yurke [7],
who discussed coherent-state superpositions and mix-
tures, while quantum tunneling rates between metastable
states were computed by Kinsler and Drummond [7].

The quantum noise in a dissipative system has an in-
trinsic scale, the system-size parameter. In the case of an
OPO, this parameter is physically the number of intra-
cavity pump photons required to reach the oscillation
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threshold n.,. Clearly, if n, >>1, as is commonly the
case, the quantum noise is a small perturbation to the
classical dynamics; this is the semiclassical limit. If n, is
reduced, the quantum noise grows, and new physics is to
be expected in the quantum limit. Reduction of ny, is
achieved by increasing the operating-frequency medium
nonlinearity and cavity Q, and reducing the cavity-mode
volume to provide tight confinement [8]. In this regime
the OPO presents the possibility for investigation of
quantum dissipative phenomena far from thermal equilib-
rium. In addition to nonlinear optical systems,
Josephson-junction parametric amplifiers are good candi-
dates for observation of system-size effects, since the in-
trinsic nonlinearity is large [9].

The quantum limit is theoretically challenging because
of the need to treat the dynamics nonperturbatively in
the following sense. If one regards the classical
Maxwell-field analysis as zeroth order, and linearized
quantum theory as first-order perturbation theory in the
inverse system-size parameter, then in the quantum limit
we must in principle sum the perturbation series to high
or infinite order. Ideally one hopes for a technique that
allows physical insight into the nonlinear quantum fluc-
tuations, or many-body photon processes, as well as
presenting a systematic method for the calculation of the
observables of photodetection-based experiments. Here
we present a many-body nonequilibrium Green-function
approach, which fulfills both of these criteria [10-13].
The method was partially outlined by Zaidi [14], though
we go considerably further here in developing a self-
consistent scheme. Certain discrepancies between Ref.
[14] and the present work will be pointed out in the fol-
lowing. We have confirmed that our results are in agree-
ment with those known from adiabatic theory in the ap-
propriate limit [6]. With suitable definitions, the Green
functions are themselves spectral quantities observed in
power and homodyne spectral measurements. One ad-
vantage of Green functions is that, with the aid of di-
agrammatic techniques, they allow a nonperturbative (in
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the sense discussed above), self-consistent formulation.
The diagrams themselves help considerably towards an
understanding of the nature of the nonlinear photon-
scattering processes, which are significant in the quantum
limit. They also present an interesting alternative per-
spective on the phase-dependent squeezing in an OPO.
Although Green-function methods have been applied in
some contexts to quantum radiation problems [12], sys-
tematic application through self-consistent perturbation
theory has not. This alone is significant, because of the
limitations of other techniques [15].

Here we outline the application of the many-body
method to the OPO by deriving the basic equations
analytically from the familiar standpoint of the quantum
Langevin equations. While this is useful as an introduc-
tion, in practice diagrammatic methods alone can be used
to write down the Dyson equations, i.e., the equations
satisfied by one-particle or one-photon Green functions.
These are then solved numerically by self-consistent itera-
tion to convergence. To the previously uninitiated it is
helpful to see the diagrams derived analytically. The
basic Feynman rules and diagram topology can be found
by a few orders of interaction-picture perturbation
theory.

The remainder of this paper is organized as follows. In
Sec. II the basic theory of the OPO and the generating
functional for nonequilibrium Green functions are intro-
duced. In Sec. III we derive the Dyson equations for the
familiar linearized theory (semiclassical limit), which pre-
dicts perfect quadrature squeezing at threshold. In Sec.
IV we treat the quantum many-body phenomena neglect-
ed by the linearized theory and show how these scale
with system size. A useful approximation associated with
the bare vertex is discussed in Sec. V. Results of some
applications of the technique are given in Sec. VI, and
our conclusions are summarized in Sec. VII. In Appen-
dices A and B we discuss the application of Wick’s
theorem and list some useful identities and symmetry re-
lations for the Green functions.

II. BACKGROUND THEORY

A. Optical parametric oscillator

The OPO comprises two discrete optical cavity modes,
the subharmonic and pump, which interact due to the
presence of a nonlinear intracavity crystal with effective
nonlinearity « [16—18]. The nonlinearity enables pump
photons with frequency w,=2w, to split into two subhar-
monic photons of frequency w;, and vice versa. The
pump is driven by a resonant external field, and both
modes are damped due to loss through the cavity mir-
rors. This enables a nonthermal equilibrium to be estab-
lished.

Although our subsequent analysis does not use the re-
duced density matrix explicitly, it is useful to introduce
the notation and transformations on the master equation.
We begin by considering the OPO master equation given
by Drummond, McNeil, and Walls [6], in the rotating
frame with both modes at resonance

dp _

ﬁ[ 2
dt 2

a; az“alzra%’P]‘*‘fz[anr_az’P]

2
+ 3 vil2apal —alawp—paja} , 2.1
K=1

where p is the density operator, a; and al (k=1,2) are
annihilation and creation operators for the modes, « is
the nonlinearity, €, is the pump driving field, and y,
(k =1,2) are the mode damping rates. Below threshold
the subharmonic (mode 1) has zero mean value and the
pump (mode 2), which is driven by the external field e,,
has mean amplitude a, determined by the steady-state
classical equations. A unitary transformation with the
coherent-state displacement operator D («,) is performed
on Eq. (2.1), using D(aZ)TaZD(a2)=az +a,, so that the
subharmonic and pump operators have zero mean value
in the vacuum picture. The transformed master equation
is given by

9P _ Ly +H,p

dr iﬁ[ 1 2’P]
2
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where p is the transformed density operator, 7=yt is
time measured in units of the inverse damping rate y; !
of the subharmonic mode 1, and the Hamiltonians are
defined by

H, =il [a] —al],

— 1 12 2t
H,=ifi——[a“a,—aia,] .
2 1, [a1a;—aja;]

Here p, the normalized pump parameter, is proportional
to the pump laser amplitude €,. It varies in the range
0=<p =1, between zero pumping and threshold. The
system-size parameter n,, corresponds physically to the
intracavity pump photon number at threshold. In terms
of the parameters of Eq. (2.1), ng=(y,/k)* and
P =K€E,/Yy Y, At threshold the subharmonic undergoes a
phase transition and attains a nonzero amplitude. Above
threshold an additional Hamiltonian term proportional
to this amplitude must be included in Eq. (2.2). Here we
will consider only the region below threshold.

B. External currents, path ordering, and Green functions

Following the method introduced by Schwinger
[10,19], we add a Hamiltonian perturbation [12],

2
H§()=i#S [JE(D)ai () —JE*(D)a(1)], (2.4)
k=1

where J f (t), k =1,2, are prescribed classical currents and
t is understood to represent the dimensionless time intro-
duced in Eq. (2.2). The currents are introduced as a for-
mal device to enable correlation functions to be generated
by functional differentiation, and are finally set to zero to
obtain physical results. The index {=+ or —, labels the
four orderings of two Heisenberg operators that can be
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generated by this method, as we now describe. From the
two Heisenberg picture operators A4 (z) and B(t'), we
may construct the correlation functions { T( 4 (£)B(t"))),
(T(A(®)B(t'))), (A()B(t')),and (B (')A (1)), where
T and T are Dyson’s time- and antitime-ordering opera-
tors, respectively. The time-ordered function may be
visualized as arising from the operator ordering on a con-
tour directed in the positive sense ({= +) along the time
axis. Similarly the antitime-ordered function corresponds
to the ordering of operators on a contour directed in the
negative sense ({=—). To incorporate all four correla-
tion functions into a single prescription, Keldysh [11]
considered a contour running along the upper lip ({=+)
of the time axis in the positive sense, turning around at a
distant future time, and returning along the lower lip
(&= —) of the contour in the negative sense; see Fig. 1.
Time arguments are considered to be displaced onto the
upper or lower lip, according to which correlation one
wishes to consider. Explicitly,

(T(A()B(t')))=(Tc(A(t,)B(t". ),
<T(A(t)B(t')))=(TC(A(t_)B(t'_))> ,
(AWB(t"))=(T(A(t_)B(t'.))) ,
(B(t')A(t)>=(Tc(A(t+)B(tL))) ,

where T is the path-ordering operator along the contour
of Fig. 1.

We now turn to the Green functions.
the generating functional [12]

First we define

F[J]=exp zzgf _dt[Jf(t)a) L) —TE*(Day (0]
(2.6)
Thus we have, for example,
(a,I(t))=JliiI})(a,I(t§)>J ng ln(TC(F[J]))
= lim
J—0 (TC(F[J]))
2.7)

The J§(2) and J§(1)* are treated as independent functions
for the purpose of functional differentiation, and we ap-
pend an index to the operator time argument to take care
of the path ordering. Second functional derivatives gen-

(= —

FIG. 1. The contour C on which the path-ordering operator
T is defined. Operator time arguments are considered to be
displaced onto the upper or lower branch.
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erate the Green functions, which are of two types, propa-
gator Green functions ng (t,t') and anomalous Green
functions D§¢'(¢,¢'), and are defined as

iDEE(1,6)=(Tclaf(to),a(t}p)))
D (1,1")

k=1,2, where we use the notation < T( A,B))
=(Tc(AB))—(Tc(A)){Tc(B)). If one considers
Heisenberg equations, or quantum Langevin equations in
the case of an open system, for the single-time averages
(a(t)); in the presence of external currents, equations
of motion for the Green functions may be found by func-
tional differentiation using identities such as

L8 (ot

(2.8)
:<TC(ak(t§)’ak(t’§'))> ’

. _ — t ’
i Ny {Tela(ta) (i)
=iD&(1,t") . (2.9)

III. LINEARIZED THEORY OF
QUANTUM FLUCTUATIONS

A. Derivation of the Dyson equations

The input-output theory of Gardiner and Collett [20]
shows that a Markovian master equation theory, in the
rotating-wave approximation, may alternatively be cast
in the form of quantum Langevin equations in which the
input noise terms have simple causal properties. Applied
to the OPO master equation described in Sec. II A, one
finds the subharmonic satisfies the quantum Langevin
equation

¥

ial(t)=

1
- ——al()a, (1)

L
+JB8* (1)—V2a] (1), 3.1)

where =+ or —, al{,m(t) is the free input noise opera-
tor, with zero mean (the cavity driving is already ac-
counted for in the coefficient p) and free field commutator
[alyin(t),al{,in(t’)]=8(t —t'). If we take expectation
values of Eq. (3.1) in the presence of the external current
and functionally differentiate with respect to J5* (¢'), ac-
cording to (2.9) this brings down a factor [ —Ba,(t5)] in-
side the path-ordering operator. Then taking the limit as
J —0 one finds equations of motion for the physical prop-
agator Green functions of the subharmonic mode. An
identical procedure performed on the Hermitian conju-
gate to Eq. (3.1) yields equations for the anomalous
Green functions.

For simplicity we first consider the linearized theory of
quantum fluctuations in the OPO. This has received a
good deal of attention as it predicts perfect quadrature
squeezing in one quadrature of the subharmonic at the
oscillation threshold. Here we recover the standard re-
sults from an alternative perspective, and correct some
previous results of Zaidi [14]. However, we wish to stress
that the power of the many-body approach lies not in an
elegant reproduction of well-known results, but in
presenting a path towards an understanding of nonlinear

—al(t)+pa,()+
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quantum fluctuations. This is considered in subsequent
sections.

The linearized theory is found by dropping the non-
linear term in Eq. (3.1). Formally, this is justified in the
limit of ny— . The Green functions obey the equa-
tions

g;D'fB(t,t')=—D‘l"ﬂ(t,t’)-z’p@‘fﬁ(t,t’)-*-iBS(t—t')
+V2i{Tela] (2, ) a,(25))) ,  (3.2)

%@7ﬁ(t,t’)=—SD‘I"”(t,t’)HpD‘I’B(t,t’)
—V2i(Telay m(ty),a,(tp)) . (3.3)

The input-internal correlations that appear may be

simplified by using the causal relations [20]
[c(t),ay,()]=—V20(2'—t)[c(t'),a,(2)] ,
+ _ + (3.4)
[c(t'),a]n(D)]=—V20('—1t)[c(t'),a](D)],

where ¢ (¢) is an arbitrary system operator and O(¢) is the
Heaviside step function. Using these relations we may
simplify Egs. (3.3) to the matrix form

%+l D\(,t")= —ipD,(t,t') = A D, (1,1")
+ig;8(t —1t'), (3.5)
d "N A ’
71,?‘*'1 D(t,t")=ipD,(t,t")—ZD,(1,1') ,
where
Dt (t,t') D (4,t)
Dltt)= | p—+(1') D~ (1,1") (3.6

and similarly for ®,; g;=diag(1, —1) is the third Pauli
matrix, and the damping matrices are given by

—11
0 O

0 O
1 —1

A=2

]

(3.7)

’

As we are interested in steady-state properties, we
Fourier-transform Egs. (3.5) using time translation in-
variance f(t,t')=f(t —t'),

[A+(1—i0)1]D(0)=—ipD(w)+ig, ,

~ (3.8)
[E+(1—iw)l]D(0)=ipD,(w) ,
where 1 is the unit matrix, and the Fourier transform is
defined as
D¥(w)= [ dre" D (t+1,1), (3.9)
with o the frequency offset from resonance in units of ;.
In the absence of interaction p =0, we can identify the

empty-cavity-propagator Green functions (indicated by a
caret)

2377
B (@)= —igj[A+(1—i)]]
1 —2i
—w+i (o+i)w—i)
=D (0)= 1 (3.10)
0 w+i

A similar analysis for the pump mode gives the empty-
cavity propagator ﬁz(w), which is identical with the ma-
trix (3.10) upon making the replacement i —iy every-
where, where y=y,/y, is the ratio of the pump to
subharmonic cavity decay rates.

Since [§+(1——im)i]= —igs(ﬁl (—w))T, where su-
perscript T denotes real transpose, Egs. (3.8) may be writ-
ten

D(@)=D(@)+D (o) —pa3)D;(@) , GiD
D(0)=(D,(—0)(—pg;)D;(w) . '

Equations (3.11) are the Dyson equations for the linear-
ized theory. These may be represented graphically as
shown in Fig. 2. A coupling between propagator and
anomalous Green functions is familiar in the quantum
theory of Bose gases [21]. However, in that case the cou-
pling arises from scattering processes involving the Bose
condensate. For the OPO the intracavity pump-field am-
plitude plays the symmetry-breaking role. The latter is
nonzero as a consequence of external driving rather than

k

A AT
— > =Dg ; —<«——=Dg

-_— - N
_——-— N

k k
—»—=Df | =Dk

= —p(j3

FIG. 2. Diagrammatic representation of subharmonic-mode
Dyson equations for the linearized theory. All lines directed
from left to right and two-way directed lines are Green-function
matrices as a function of w. Lines directed from right to left are
the transpose of Green-function matrices as a function of —w.
Thin and thick directed lines represent empty-cavity and linear-
ized propagator matrices, respectively, while the anomalous
propagator matrix is represented by a two-way directed line.
The mean pump field, given by a dashed line, has one free end.
Vertices represent parametric scattering processes involving two
subharmonic photons and the pump mean field, and matrix
multiplication is implied as defined in Eq. (3.11).
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condensation. Superconductivity is another example
where a condensed phase plays a qualitatively important
role. The attraction between electrons at the Fermi sur-
face binds electrons of opposite spin in a Cooper pair.
These constitute a condensate with nonzero amplitude,
given by the pair wave function or Ginzburg-Landau or-
der parameter. The resulting Gor’kov equations for su-
perconductivity have a similar topology to Fig. 2 [21,22],
though the Green-function lines are interpreted as ma-
trices in the nonequilibrium approach presented here.
The physics is also quite different. In superconductivity
the pair wave function is proportional to the supercon-
ducting energy gap, the threshold energy required to
break a Cooper pair, and is associated with the real part
of the Green-function poles in the complex @ plane. In
the OPO, the pump amplitude determines the distance to
the oscillation threshold, and this is manifest in the life-
times, or widths, of the squeezed and antisqueezed quad-
rature fluctuations, i.e., the imaginary part of the Green-
function poles, =i (1%p).

An alternative diagrammatic view is useful, which em-
phasizes the parametric nature of the scattering process-
es. We introduce the self-energy matrix [14,21]
2,(&)):@1 :

(0)—Di o), (3.12)

which accounts for the energy shifts and lifetime
modifications of the elementary excitations (damped cavi-
ty photons) due to the parametric scattering from the
mean pump field. The Dyson equation D,(w)=D,(w)
—l—ﬁl(w)Z(w)Ql(w) then follows from Egs. (3.11) and

(3.12), with
AT
3(w)=p?a;D;(—w)a;, (3.13)

and is illustrated in Fig. 3. The picture of repeated para-
metric interactions between subharmonic photons and
the mean pump amplitude arises in a natural way.

B. Quadrature fluctuation spectrum

The spectrum of output quadrature fluctuations of the
subharmonic with respect to unit shot noise is given by

- =N
=N
- =<

2 2
A \
| 1 |
P =l e

FIG. 3. Alternative diagrammatic representation of the prop-
agator in terms of the self-energy 2,(w) in linearized theory. In-
tracavity subharmonic photons are repeatedly scattered from
the mean pump field. These interactions are incorporated in the
self-energy as shown.
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V(Xp,0)= [ 7 dre' (X, (¢t +1),X,.(1)
=14+2{iD| T (@) +iD] T (—w)

+2Re[D] H(w)]} , (3.14)

where X, ~aq1,0ut +aI,out and X,_ :(al,out _aI,out )/i
are the output amplitude and phase %uadrature opera-
tors. The output operators a; ., and aj ,,, are free fields
that obey the commutator [aLout(t),a;ryout(t')]ZS(t —t').
From the Dyson equations (3.11) it follows that

i — 2p?

D T (w)= ,

1728 (@) [a)2+(1—p)2][602+(1+l7)2] (3.15)
D Hw)= p(@’+1+p?) '

[0*+(1—p)?[0®+(1+p)?] ’

and thus we find the well-known spectrum of quadrature
fluctuations [1]

P
V(X4,0) liw2+(1$p)2 R (3.16)
with perfect squeezing of the — quadrature and diver-
gence of the + quadrature at threshold p =1. We note
that the propagator and anomalous Green functions,
defined in terms of the internal interacting field opera-
tors, determine the observable spectrum directly. Proper
account of the boundary condition at the output mirror
has been made in deriving Egs. (3.14)-(3.16) by using the
relation a; o, (1)—a, ;,(1)=V"2a,(1) between output, in-
put, and internal fields. Equation (3.14) also corrects an
expression given by Zaidi [14]. The optical spectrum is
given by 2iD;V(w) directly. Integration  of
(V(X,4+,0)—1) and iD{ " (@) over all frequencies gives
the steady-state normally ordered intracavity variance in
quadrature fluctuations and subharmonic photon num-
ber, respectively,

1 0
(:(AXli)2:)=Z;f_wda)(V(X1i,w)—l) ,
| (3.17)
— b iy —+
<n1>—ﬁf,wda”D1 (w)+|ey]* .

For the linearized theory we find
(:(AX,1)%)=1p/(1Fp),
(n)=p*/[2(1—-p")],

where : : denotes normal ordering. The definitions (3.14)
and (3.17) are also applicable in the nonlinear quantum
limit.

IV. NONLINEAR THEORY: MANY-BODY GREEN
FUNCTIONS AND DYSON EQUATIONS

If we do not assume the limit of infinite system size
ng = in Eq. (3.1), but proceed to the derivation of Egs.
(3.2) and (3.3) as before, we find extra nonlinear contribu-
tions, the many-body Green functions. These are famil-
iar from the analysis of many-body phenomena in
condensed-matter physics [21] and in quantum electro-
dynamics [19]. They are typically simplified into sums of
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products of one-body Green functions and vertex correc-
tions, by means of Wick’s theorem [21,22]. We reserve a
brief discussion of the latter to Appendix A.

A. Propagator Green functions

We first consider the nonlinear corrections to the prop-
agator Green-function equation. This leads to the addi-
tional contribution

<Tc(02 )al(ta)’al(tb))>

‘/nth
on the right-hand side of Eq. (3.2).
where (a,(t))=0, it is sufficient to consider only
(Telal(ty)a, (t,)a,( tp))). Following standard many-
body theory [21], we analyze the many-body Green func-
tion with unequal time arguments

In the steady state,

iGaB(tl’tZ;tii)

L (To(alityay(t)ay (1)), @D

L%y

|

where all operators are in the Heisenberg picture. To
proceed we transform to the interaction picture, in which
the operators evolve according to the (Hamiltonian)
cavity-reservoir coupling and the states according to the
intracavity Hamiltonian interactions. Equation (4.1) is
then written

———(T(Sal(t,,)a,
LY

iGaB(tlﬁtZ;tS) t2a)al(t35))> »

4.2)

where a caret denotes interaction picture operators and
i ©
_%zé"gf_wdt[li ] 4.3)

is the path-ordered S matrix. We now proceed through a
perturbative expansion of S, using Wick’s theorem to
simplify the multiple-time correlation functions.

To zeroth order S =1, G EZ(B =0, since an equal number
of annihilation and creation operators is a minimum re-
quirement for a nonzero result. To first order, only H,
produces a contribution

S=Tc {exp () +H,(1)]

iGg’B)(tl,tz;h):E:—-h—ny_w dt, ( Te(@](1,)a](1,)8,(1,)81(1,,)8,(124)8,(235)))
t 0

———Eﬂf dt [lﬁz (tl’ [ a(t‘u,’tz

(hp

DY (2,507, 4.4)

where Wick’s theorem is used in the second line and carets on Green functions denote empty-cavity propagators as in
Eq. (3.10). The diagrammatic representation of (4.4) is instructive, and is shown in Fig. 4(a). Continuing the perturba-
tion series to higher order we find additional contributions which represent corrections to the empty-cavity Green func-
tions [lines in Fig. 4(a)], plus other terms which represent corrections to the bare vertex of Fig. 4(a). To all orders in per-
turbation theory the Green functions are fully renormalized, and the vertex function is the set of all diagrams that can
be connected to one incoming mode-2 line and two outgoing mode-1 lines, excluding those diagrams that merely
represent corrections to the incoming and outgoing lines themselves. We represent this mathematically by

iG o5(t1, b3t Wb ot ID 5 (1 1) (4.5)

FﬁEummff drdrdry[iD3" (1), 7)][iD}* (15,1,)][iD
t n ®

and diagrammatically in Fig. 4(b), with T" the vertex part.

From time translation invariance the three-time correlation function and the vertex part are functions of two in-
dependent time differences, and since we may write ;7 +w,7, T 0373 =0 (1, — 73) t 0,(7,— 73) + 73(0, + @, + @3), it fol-
lows that

(w7t 0,7y Fwy73)

27801+ 0y + 03 T 0,0y, — (01 +0,)= [ * dridrydre | R PP (4.6)

with a similar relation for Gaﬁ(a)l,wz; —(w;+®,)). In frequency space Eq. (4.5) becomes

iG gp(@1, @5 — (@ @)= 2.“1.“2.“3 iD3" (@][iDY* (=)D (0, +0) I ()00 — (0 + 7)) . (4.7)
t

The diagrammatic representation of this equation is given
in Fig. 5.

The Dyson equation for the propagator is modified from
Eq. 3.11) to

D(0)=D,(0)+D,(0)—pg;)D;(w)

B. Anomalous Green functions

—f ® do D\ () —ig;)G(w,0—w;—o) . The procedure is the same as in Sec. IV A. The three-
oo point Green function that arises from the nonlinear cou-

(4.8) pling term is, by analogy with Eq. (4.1),
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igaﬁ(tl’tz;ts):“l——<Tc(aJl((tm)az(tza)al(tw))) .

nin
(4.9)

Again, this is evaluated perturbatively by transforming to
the interaction picture, expanding the S matrix in powers
of the interactions, and using Wick’s theorem to perform
the contractions. The lowest nonvanishing contribution
arises from a cross term between H; and H, at second or-
der, which yields

. 1 . .
ig qpl 01,09 — (01 +@,))= ne 2#1,112/43[sz“'(@1)][@*2‘2“(__
"

The full nonlinear Dyson equation in frequency space
then follows as

D(@)=D] (=) —pa,)D, (o)

1 © T
+—2;f_wdwlﬁ1 (—o)—g3)glo,0—0; —0) .

(4.12)

The diagrammatic representation of Eq. (4.12) is given in
Fig. 6.

t1

2 ()

i3

(b)

FIG. 4. (a) Vertex representing the lowest nonvanishing con- .

tribution to the many-body Green function, in terms of the
empty-cavity Green-function lines. The vertex represents a
parametric scattering of two subharmonic photons and one
pump photon. (b) Fully renormalized many-body Green func-
tion. The empty-cavity propagators are replaced by exact prop-
agators, and the bare vertex is replaced by a vertex part, indicat-
ed by the solid circle.
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. 1 bt 1
zgﬁz}a’(tl,tz;tg)Zn—mE#f_mdtu[’ﬁ?”(’l’tu”
©

X [iD4*(t,,1,)]

X[D4A(t,,,13)] . (4.10)

Then, introducing a vertex function Y, by arguments
similar to those in Sec. IV A, the fully renormalized
three-time function may be written in Fourier space as

o) D0, + o) 0,00 — (0 + ) . (@11

V. BARE-VERTEX APPROXIMATION

A. Analysis

A relatively simple closed form set of Dyson equations
for the propagator and anomalous Green-function ma-
trices follows in the bare-vertex approximation. That is
when the vertex functions I' and Y are replaced by their
lowest-order contributions, which are of order unity, and
independent of system size n,,. The higher-order correc-
tions all involve a mode-2 Green-function line, propor-
tional to 1/ny,. Provided n,, is not of order unity or
smaller, it is reasonable to drop these corrections. A simi-
lar simplification with, however, a different physical ori-
gin arises in the theory of electron-phonon interactions,
and is known as Migdal’s theorem [21]. Many-body
effects are retained self-consistently and summed to
infinite order in the exact Green-function lines.

In the bare vertex approximation the vertex functions
are given by

(01,05, — (@, +©,)) =T "0, 0,, — (0, +,))
=gt (5.1)
This result is substituted into Eqgs. (4.8) and (4.12) to give
D(@)=D(0)+D (o) —pg;)D,(w)

+D,(0)(0)D;(0), (5.2)

- — >N

FIG. 5. Dyson equation for the propagator including quan-
tum fluctuations of the pump. The exact propagator has three
contributions: (1) the empty-cavity propagator, (2) renormaliza-
tion through repeated parametric scattering from the mean
pump field, and (3) repeated quantum parametric scattering
from pump photons. The intracavity pump field enters in both
condensate and noncondensate phases.
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FIG. 6. Dyson equation for the anomalous propagator in-
cluding quantum fluctuations of the pump, illustrating the re-
peated parametric scattering from pump mean field (condensate)
and pump photons (noncondensate).

Dy(0)=D (—0)—pg;)D, (o)

AT
+D,(—o)Il(—w)D(w), (5.3)

where the polarization function II; is defined by an in-
tegral of exact Green functions [14]

i
2Tn

()= an_:dmngﬁ(w,)D{’“(co,—w) (5.4)
and is represented by a bubble diagram. To determine
the “exact” pump Green function D, appearing in (5.4),
we need the corresponding Dyson equation. This is given,
in the bare-vertex approximation (see Fig. 7), by

D,(0)=D,(0)+D,(w)(0)D,(e) , (5.5)

where II,, the polarization function for the pump mode,
satisfies the convolution integral

i
2mTny,

n¢¥w)= aBf” doD¥(0)D¥(0—w,) . (5.6)
Another way to write result (5.3) is to introduce the par-
tially renormalized Green function D,(w) [14], for which
II, is the self-energy, i.e.,

/\_1 =~
I(0)=D, (@)—D; (@) . (5.7)
Equation (5.3) may then be written in the form
T
Di(@)=D,(—w)—pa3)D () . (5.8)

B. Numerical methods

The Dyson equations are coupled nonlinear integral
equations in frequency space. The important simplifying
feature is that the polarization functions (5.6) and (5.7)

FIG. 7. Dyson equation for the pump-mode (noncondensate)
propagator. Diagrams represent the empty-cavity propagator
and subharmonic induced polarization via repeated parametric
scattering.
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are convolution integrals and may be computed from
known Green functions quickly and efficiently by using
fast-Fourier-transform (FFT) methods. The self-
consistent solution of the Dyson equations is initiated at
a given operating point p by computing the polarization
functions from the linearized Green functions via FFT.
The polarization functions are, in turn, used to update
the Green functions according to Egs. (5.2) and (5.3).
This procedure is then repeated until convergence is ob-
tained. The relations listed in Appendix B may be used
to check the numerics.

Since the linearized Green functions diverge at thresh-
old, they do not provide a useful starting point for the
self-consistent solution in the immediate vicinity of
threshold. However, it is possible instead to initiate the
iteration scheme using the converged Green functions
from a nearby operating point, and simultaneously im-
prove the convergence rate. In this way the threshold
may be approached from below or above, using the
linearized Green function to start the procedure outside
the threshold region.

VI. RESULTS

In this section we wish to illustrate several points: (1)
The many-body approach produces results in agreement
with the coherent-state adiabatic theories [5—8]. The
comparison is made by frequency integration of the
steady-state Green functions obtained by the self-
consistent solution of the Dyson equations (5.2)-(5.6),
with the adiabatic parameter y=vy,/y,>>1. (2) The
many-body approach goes well beyond the adiabatic
theory in two respects. First, since y is arbitrary we are
not restricted to the adiabatic limit. In the adiabatic lim-
it the system-size scaling arises only in the combination
ny v. Secondly, the theory is a dynamical one since ob-
servable spectra are found directly in terms of Green
functions. By contrast, adiabatic theory provides an ex-
plicit solution for the steady-state quasiprobability distri-
bution, and this only allows the calculation of single-time
averages. In principle, stochastic simulation can be used
to yield dynamical results, but this procedure has so far
proved difficult to implement in nonlinear quantum prob-
lems, adiabatic or otherwise.

In Fig. 8 the intracavity photon number versus pump
parameter p is shown in the adiabatic limit ¥y =100 and
ny4, =10, and is compared with the adiabatic theory of
Ref. [5]. The linearized theory, for which the photon
number diverges at threshold, is also shown for compar-
ison. Here the Dyson equations (5.2)—(5.6) are iterated to
convergence for each p, and the converged Green func-
tions integrated according to Eq. (3.17). The smooth
dependence of photon number with pumping shown in
Fig. 8 indicates how system-size quantum fluctuations
have an important role in smoothing out the nonequili-
brium phase transition predicted by the classical theory,
for which the photon number is identically zero below
p=1

Monolithic resonators with n,, as low as 10°~107 have
been employed in the laboratory [23]. It is possible that
with careful design this could be reduced by a few orders
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INTRACAVITY PHOTON NUMBER

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pump Amplitude p

FIG. 8. Comparison of the intracavity subharmonic photon
number vs pump parameter p for the adiabatic complex P-
function method (solid line), the Green-function method (%),
and linearized theory (— — —). The oscillator threshold is at
p=1. Parameters are y=100, n,=10. Marked deviations
from linearized theory are apparent near threshold where it
diverges.

of magnitude, e.g., by increasing pump frequency, cavity
Q, and medium nonlinearity (without increasing intracav-
ity absorption) and reducing the mode volume. Note,
however, that reducing mode volume by decreasing the
cavity length reduces the light round-trip time, and thus
the cavity Q. New materials, or any method of obtaining
large nonlinearity with low loss, are potentially important
in approaching the quantum limit in the optical domain.
However, Josephson-junction parametric oscillators
which have a higher intrinsic nonlinearity than non-
resonant optical processes are more promising candidates
for investigations of the quantum limit at this time.

The many-body approach enables investigation of the
scaling behavior which distinguishes the quantum and
semiclassical regimes. In Figs. 9(a) and 9(b) this is illus-
trated by showing the zero-frequency quadrature fluctua-
tions of the subharmonic mode as a function of n,,. The
operating point is arbitrarily fixed at 95% (p =0.95) of
threshold throughout, and y =1, well outside the adiabat-
ic limit. Quadrature noise is independent of n, in the
semiclassical limit, and thus system-size effects become
significant below n,~10°. Closer to threshold,
1>p >0.95, one expects scaling to set in at higher values
of ny,. In addition, Fig. 9(c) illustrates the convergence
of the self-consistent scheme for the antisqueezing quad-
rature and n,, =48.3. We note that at each order of
iteration classes of diagrams are summed to all orders in
n,, and this greatly improves the convergence properties.

In Fig. 10(a) we show the spectrum of squeezing for
three values of ny, from Fig. 9, representing the semiclas-
sical limit, the transition region, and the quantum limit,
respectively. As expected, the squeezing is reduced in the
quantum limit, due to the many-body parametric scatter-
ing of subharmonic and pump photons. Notice also the
emergence of a central peak in the spectrum for
n., =48.3, as indicated in Fig. 10(b). This phenomena be-
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comes even more pronounced when the nonadiabatic lim-
it is probed further. Figure 11(a) shows the squeezing
spectrum for ¥ =0.1 and n,, =600, 1000, 10000, and .
Note that the many-body processes polarize both the
subharmonic and pump modes. The influence of pump
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FIG. 9. System-size scaling for the zero-frequency com-
ponent of the output quadrature fluctuation spectra, at 95% of
threshold (p =0.95), y =1, for (a) the squeezed quadrature, (b)
the antisqueezed quadrature, and (c) the convergence of the an-
tisqueezing quadrature for n,, =48.3.
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polarization has a quantitative effect on the data shown.
We confirmed this by comparing the data obtained by
setting the pump polarization to zero in Eq. (5.5) and re-
calculating the subharmonic Green functions self-
consistently, as illustrated in Fig. 11(b) for n, =600.
This is one of the advantages available to the many-body
approach. The diagrams enhance physical insight and
enable the role of particular many-body processes to be
evaluated quantitatively.

VII. CONCLUSIONS

We have developed a self-consistent many-body
Green-function approach for the study of quantum dy-
namics beyond the semiclassical limit. For the parametric
oscillator the quantum limit is characterized by large
quantum fluctuations and small photon numbers. A
small number of pump photons is required to reach oscil-
lation threshold, precluding a semiclassical understand-
ing of the system behavior. The pictorial advantages of
the diagrammatic approach enable a clear delineation of
the scattering processes at work in the semiclassical and
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FIG. 10. Spectrum of squeezing at 95% of threshold
(p =0.95), y=0.1, for (a) ny,=48.3 (solid line), 4.28X10*
(dash-dotted line), and 2.1X 10° (dashed line), and (b) n,, =48.3.
Note a half-range scale is used in (a) for the sake of clarity.

quantum limits: quadrature squeezing, a semiclassical
phenomenon, is due to repeated parametric scattering of
subharmonic photons from the mean pump field, or “con-
densate.” In the quantum limit polarization of the pump
and subharmonic modes due to repeated parametric
scattering involving the pump ‘“noncondensate” becomes
increasingly important. The quantum limit may be inves-
tigated through the system-size scaling behavior these
processes introduce.

Our approach goes beyond earlier theories of the OPO
in two essential respects: (1) It enables phenomena out-
side of the adiabatic limit y,>>y; to be studied, and (2)
like the tunneling-time calculations of Refs. [5,7], it pro-
vides fully quantum dynamical results. Earlier work re-
lated to single-time observables only, while we compute
spectral information directly. The method may obviously
be applied to other quantum optical phenomena. It is
still an open question whether intracavity nonlinear op-
tics, based on off-resonant processes, will enable the
quantum limit to be achieved experimentally. Resonant
intracavity excitation of atoms in cavity quantum electro-
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FIG. 11. Spectrum of squeezing at 95% of threshold

(p =0.95), y=0.1, for (a) ny, =600 (solid line), 10® (dash-dotted
line), 10* (dotted line), and linearized (dashed line), and (b)
ny, =600 for polarized pump mode (solid line) and unpolarized
pump mode (dashed line).
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dynamics is currently being pursued and the quantum
limit is certainly attainable. The system-size effects we
discuss are likely to be observed in Josephson-junction
parametric amplifiers because of their large intrinsic non-
linearity [9]. The possibility of generating coherent-state
superpositions in the quantum regime was suggested by
Wolinsky and Carmichael [7]. However, a careful inspec-
tion of the homodyne detection of the OPO output by
Reid and Yurke [7] reveals the superposition is absent, at
least in the steady state and adiabatic limit. This still
leaves open the possibility in the nonadiabatic regime.
More detailed studies of the quantum limit and system-
size scaling will be reported in future work.
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APPENDIX A: WICK’S THEOREM

We refer to Refs. [20,21,24] for discussion of Wick’s
theorem. In its most familiar form, Wick’s theorem
arises in connection with the interaction-picture expan-
sion of the S matrix, in which annihilation and creation
operators have a simple exp(+iwt) time dependence.
Since the average with respect to the ground state of a
normal product vanishes, and the two-time commutator
of interaction picture operators is a ¢ number, it follows
that (for Bose annihilation and creation operators)

(T(ABCD ---XYZ))
=(T(AB)){T(CD)) ---{T(YZ))
+{(T(AC)){T(BD)) ---{T(YZ))+ ,

(A1)

the average decomposes into sums of products of all pos-
sible contractions. The diagrammatic representation and
Feynman rules then follow.

In our application to dissipative nonequilibrium situa-
tions, the time ordering is replaced by path ordering [11].
To establish the usual lemmas [24] on which a path-
ordered version of Wick’s theorem depends, it is neces-
sary to consider the time evolution of operators in the in-
teraction picture. To establish this we start from a Ham-
iltonian theory of system and reservoir and their coupling
in the Schrodinger picture [8]. First perform unitary
transformations to the rotating frame and vacuum pic-
ture to remove free evolution and the classical mean-field
averages, respectively. Then split the Hamiltonian into
two parts, V=H,+H,, as defined in Eq. (2.3), and
H,(t), the residual, which contains the system-reservoir
couplings. The interaction picture is then defined so that
operators and states evolve according to the interaction-
picture representations of H,(¢) and ¥, respectively. At
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this stage the Markov approximation is made on the
interaction-picture equations of motion, resulting in the
quantum Langevin equation for the damped harmonic os-
cillator [20],

da,

— =yt

I ~ V27 1 inlt) - (A2)

We assume that the cavity input is a vacuum state,
representing a zero-temperature heat bath coupled to the
cavity mirror, and that the system was in the vacuum
state in the distant past. One can show that normally or-
dered averages of @,(¢) and @,(¢'), with respect to the
vacuum state vanish, and that their commutator is a ¢
number,

(8, (1),a] (t")]=exp{ —y |t ="}, -

This is sufficient to establish the path-ordered version of
Wick’s theorem necessary for the application here, name-

ly,

(Tc(ABCD - - - XYZ))
=(T-(AB)){Tc(CD)) - - {Tc(YZ))
H{Tc(AC)){T(BD)) -+ - {T(YZ))+ -

(A3)

APPENDIX B: GENERAL RELATIONS AMONG
MANY-BODY FUNCTIONS

We list some general relations that are useful in the
analysis and implementation of the theory. As these rela-
tions are true for both modes we suppress the mode index
in the formulas.

D *(t,t,)+D T (t;,t,)=D " " (t;,t,)+D T (¢,t,),
(B1)
DT H(t,t)=—(D ™ " (ty,t))*, (B2)
T, t)=— (D T (1, 1)),
(B3)
D (t,t,)=— (DT (ty,t ¥
In frequency space, we have similarly
D Mw)+D" (0)=D " (0)+D " (w), (B4)
DY (w)=—(D" "(0))*, (B5)
D Y w)=—(D" T(w)*, B6)
DY (w)=—(D" (w))* .

Note that (B6) implies D~ " (w) and D " (w) are pure
imaginary. Furthermore, the polarization matrices II,
(k =1,2), introduced in the text, can be shown to satisfy
the relations

I (o) +1; “(0)+ 1 (0)+1; "(w)=0. (B7)
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