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Bichromatic wave propagation in periodically poled media
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The energy-exchange process between the fundamental and its second-harmonic fields copropagating
in an optical medium is facilitated by the spatially periodic dc poling field. The nonlinear dynamics of
this system is investigated in the context of an effective Hamiltonian formalism. The explicitly included
cross-modulation and self-phase-modulation nonlinear terms lead to the bifurcation instability interpret-
ed as a new switching phenomenon in which both up- and down-conversion efficiencies can be precisely
controlled by the external field. Experiments testing predicted effects are suggested.

PACS number(s): 42.65.Ky, 03.50.—z, 42.65.Pc

Many interesting phenomena associated with the prop-
agation of electromagnetic waves in spatially periodic
nonlinear media have recently been studied in the context
of such diverse branches of physics as nonlinear dynam-
ics [1,2], semiconductor physics [3,4], and nonlinear op-
tics [5,6]. These investigations led to a fairly complete
understanding of the regular (periodic), localized (soli-
tons), and chaotic behavior of monochromatic waves in
one-dimensional geometries. However, the full picture of
spatiotemporal nonlinear phenomena is still missing.

As a first attempt toward understanding the propaga-
tion of pulsed classical waves, co-propagating fundamen-
tal and second-harmonic fields are studied in the slowly
varying envelope approximation, but with an explicit ac-
count for nonlinear phase modulation effects [7]. For in-
version symmetric systems, such as optical glasses, the
energy transfer between the two fields is due to third-
order susceptibility and must be mediated by an electric
dc field of the appropriate periodicity. This spatially
periodic dc field can be either internally self-generated or
externally imposed.

Indeed, such a self-generated dc field has been invoked
as a possible explanation of a anomalous second-
harmonic generation observed in glass optical fibers [8]
(for a review see Chap. 10 of Agrawal [9]). This spatially
periodic space-charge electric field strongly depends on
charge transport, and thus, it is sensitively time depen-
dent. In contrast, Kashyap [5] reported phase-matched
second-harmonic generation in externally poled optical
fibers, thus allowing much more control over the result-
ing phenomena. Our approach in this paper is meant to
model the latter situation.

We consider the case of two optical fields: E, of fre-
quency co and its second harmonic E2 of frequency 2',
copropagating along the z direction in an inversion sym-
metric medium poled by a static, spatially periodic elec-
tric field Eo. The coupled propagation equations for
these fields follow [6] from the macroscopic wave equa-
tion:

(a.'+n, )Ei+a[(Eo+ IEil'+2IE21')E,

+2EOE2Ef ]=0,
(1)

(~.'+4n 2)E2+4tc[(Eo'+ IEi '+2IEi I')Ep+EOE i ]=0

2

~(E, ) = g (Eo+ IE3, I'+ —,
' IE, I') IE, I'

j=l
+2EoRe(E,Ez ) .

(2)

In the above equation the nonlinear "potential" contains
the external, self- and cross-phase-modulation terms, as
well as the term responsible for the dc-field-mediated en-
ergy transfer between the fundamental and second har-
monic fields.

The Lagrangian of Eq. (2) is globally gauge invariant
and the associated conserved current can be identified as

(3)

Clearly, B„J=O, rejecting the constancy of the energy
fj.ow in the direction of wave propagation. This symme-
try of the Lagrangian suggests the use of polar represen-
tation for the fields:

E (J)x=QP (l)xn/expIij[n x+P (x)]] (4)

where the fast oscillating components of the fields (those
on the scale of wave number n ) have been explicitly
separated in preparation for the so-called slowly varying
envelope approximation (SVE); cf. Ref. [10].

Indeed, for the periodic dc field varying as

Eo(x)=Q8/n icos(2nox ) (5)

and with n2) n& ))no, the backscattering of the fields by
the long-wavelength periodic potential is negligible and
the SVE approximation is justified [10]. Consequently,
upon substitutions of Eqs. (4) and (5) the SVE Lagrangian
becomes

where x =z co/c, tc=12 i' ' measures the nonlinear po-
larization of the medium, and n stands for the linear re-
fractive index.

To present the main results as elegantly as possible, we
find it advantageous to treat Eq. (1) as arising from the
following Lagrangian for complex scalar fields with the
spatial coordinate x playing the role of time:

1I (E, ct E, ) = g ( I

—.t) E, I I n, E, I') —«(E, ),
J
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2

l.s«(P, , y, , a, y, )=2y P, a.y, nI
H(P , P .),

n

1.0

hs(p, +)=&Ep (1 —p )cos%+(1+25—p )p (8)

where 5=n, nzh/(~W) measures the phase mismatch for
the energy transfer term.

The equations of motion corresponding to the Hamil-
tonian of Eq. (8) can be easily written:

B~p =~/Ep (1—p)sin+,

8 ql= —,'i/e/p (1—3p)cos++(1 —2p)+25
(9)

with the independent coordinate rescaled as y
=(a W/n, n2)x. These equations can be decoupled using
the constancy of the Hamiltonian of Eq. (8). In particu-
lar, the first-order differential equation for the intensity of
the second-harmonic wave becomes

(B~P ) =Q(P) =EP(1 P) —[h&(Po, po) —(1+—5 P)P]—
(10)

with po and +o being the initial (y =0) intensity and rela-
tive phase, respectively. Although the solutions to Eq.
(10) can be written in terms of elliptic functions with pa-
rameters depending on the roots of the quartic polynomi-
al Q (p), these explicit expressions are not particularly in-
formative and shall not be presented here. Instead, we
proceed by "graphically" classifying the possible solu-
tions to Eq. (9).

The dynamical system given by Eq. (9) is clearly inte-
grable. Consequently, its phase-space representation
proves quite illuminating and it is shown in Fig. 1.
Specifically, we restrict our analysis to the perfectly
phase-matched propagation, i.e., 6=0. This condition
makes the special effects discussed below most pro-
nounced and otherwise it does not change the main con-
clusions. Clearly, all solutions are periodic. Moreover,
for initial conditions restricted to %'O=O (in phase), the

H(P, P, ) =P, QAP2cos2(gz —P, +Ax )+P,P2

where A=n2 —n, —no is the phase mismatch and the
second term in the Hamiltonian H represents the contri-
bution of the self- and cross-phase modulation terms
(their significance will be discussed shortly). In addition,
we have neglected small terms of the order of
(n2 n—, ) ((1 (applicable in most optical materials).

The global gauge invariance of LsvE becomes manifest
if we introduce new variables —the total and relative
phases

4=2(4 +4' » it=2(4' 0+~—

Clearly, under the SVE approximation, the conserved
current J of Eq. (3) is just the total intensity of the propa-
gating fields O'=P, +P2. Using this constancy of 8'
and upon further rescaling of the variables as p =P2/8'
and E= 6'/W, we arrive at a conservative single degree of
freedom system described by an effective Hamiltonian in
the relative phase coordinate, with canonically conjugat-
ed "momentum"p:
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FIG. 1. Representative phase-space trajectories of the solu-
tions to Eq. (9) for v=0. 15 and 5=0. Emphasized are the
separatrix (dashed line), zero energy boundary (thick line), and
elliptic fixed points (dots).

dynamics of the system resides on non-negative energy
manifold (h )0) and there are only two types of solu-
tions: librationlike inside the separatrix and rotationlike
outside of it. Notice also that the rotationlike solutions
exist only due to self- and cross-phase-modulation terms
and thus are absent in the usually employed approxima-
tions (especially, in the most frequently used undepleted
pump approximation; cf. Refs. [5,10]).

Based on Fig. 1, two interesting phenomena can be pre-
dicted. For a given strength of the external dc field c & 1

and initial conditions: 4'o =O,po &p„ the second-
harmonic intensity oscillates between the initial value of
po and the maximum which is limited by c and is always
less then p, (the saddle point). The period of these spatial
oscillations grows from the value of 2n at p0=0, to
infinity at the separatrix po=p, (solitonlike kink solu-
tions). As the seed intensity po increases past the critical
one p„ the solutions switch to librationlike, with nearly
doubled period and significantly increased-up conversion
efficiency up to the maximum as large as p (the upper
branch of the separatrix). This is illustrated in Fig. 2,
which shows p(y) for two seed intensities chosen to em-
phasize the period doubling upon crossing of the separa-
trix. We shall refer to this behavior as switching.

The second type of phenomenon we shall address is
down frequency -conversion. Since the energy flow direc-
tion between the cu and 2' fields is in itself periodic along
the propagation length (with the intensity of the funda-
mental mode given simply by 1 —p), then for po )p, o (cf.
Fig. 1) one can regard the fundamental mode as a seed for
down-frequency conversion. Consequently, similar to the
discussion above, the efIiciency of the down-frequency
conversion switches abruptly upon crossing of the upper
branch of the separatrix (i.e. , for po=p ), and is accom-
panied by the spatial period doubling. Notice, however,
a major difference between up- and down-conversion re-
gimes: for po=1, i.e., for zero initial intensity of the co

field, there is no energy exchange between the two fields.
This is obviously consistent with the well-known underly-
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portance of the phase modulation terms of libration-like
solution for larger values of c.

The switching behavior can also be observed for fixed
seed intensity by adjusting the strength of the dc field.
This situation is perhaps easier to realize experimentally
and is illustrated in Fig. 5. There again the solid curves
show the conversion gain (with pc=0. 05 only the up-
conversion takes place) as a function of E at different
propagation lengths: L = 3m and 4m. Clearly, the con-
version gain is sensitively dependent on propagation
length with narrower switching region for larger L or,
since L scales with. the total intensity 8', .for higher field
intensities.

In conclusion, the nonlinear cross phase modulation
that always accompanies the self-phase-modulation in the
case of more than one propagating field is shown to be re-
sponsible for a novel type of instability. The origin of
this instability can be traced to the dynamical bifurcation
of the system's fixed points and the emergence of the
separatrix isolating di8'erent types of periodic solutions.
Consequently, the energy exchange between the two

copropagating fields is highly sensitive to all externally
controllable parameters: the propagation length L (or al-
ternatively, total field intensity W) set by the sample
length, the phase mismatch 6 controlled by the periodici-
ty of the external static field, the initial seed intensity of
the second-harmonic field po, and the strength of the dc
field e.

Finally, it should be noted that even though the results
are presented in a fairly general context, the phenomena
of switching and down-frequency conversion should find
exciting applications in the area of integrated optoelect-
ronic devices. Moreover, the findings of this study
should encourage the reexamination of the experiments
already performed [8,5] on second-harmonic generation
in optical fibers.

This work was performed while the author participated
in the AFOSR Summer Research Program at the F. J.
Seiler Research Laboratory and continued under the
AFOSR Research Initiation Grant.
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