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Conditions leading to intense low-frequency generation and strong localization in two-level systems
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A charged particle in a double well can emit, when driven by an intense laser, intense low-frequency
radiation or become strongly localized in one of the wells. By using perturbation theory and an asymp-
totic analysis, we determine the conditions for which these processes take place for a two-level model.

PACS number(s): 42.50.—p

The behavior of a charged particle in a symmetric dou-
ble well driven by a strong laser has been studied recently
in several articles [1-7]. Grossman, Dittrich, Jung, and
Hanggi [1,2] have shown that the laser can prevent a par-
ticle located initially in one of the wells from tunneling to
the other well. Bavli and Metiu [8,9] demonstrated that a
semi-infinite Gaussian pulse can take the electron from a
delocalized energy eigenstate of the double well, localize
it in one of the wells, and keep it there.

The emission properties of an electron in a double well
are also interesting. Numerical solutions of the time-
dependent Schrodinger equation [7] show that the
Fourier transform u(Q) of the induced dipole u(t) has
peaks at three types of frequencies: shifted even harmon-
ics (SEH) (Q=2nw=*A with n =1,2, .. .), pure odd har-
monics [Q=(2n +1)w, with n=0,1,2,...]), and the
frequency Q=A. The shift A is a function of the laser
frequency o and its intensity /. These parameters can be
chosen to make A arbitrarily small and () has a very-
low-frequency peak. The presence of this peak was called
[7] low-frequency generation (LFG). For certain values
of {w,I}, called [7] points of accidental degeneracy (AD),
A becomes equal to zero and u(t) acquires a static com-
ponent. In a symmetric double well the presence of a
static dipole, induced and maintained by the laser, is pos-
sible only if the electron density has a static part that is
asymmetrically distributed between the wells, i.e., if elec-
tron localization occurs.

The calculations also show [7] that when {w,I} ap-
proaches an AD point the LFG intensity is sometimes
very large, exceeding the intensity of the fundamental
(i.e., the component having the frequency Q=w); as
{w,I} reaches an AD point the system has, sometimes, a
very large static dipole. This means that the laser-
induced localization is strong.

Finally, it is also observed that if {w,I} is not at an
AD point then u() has no even harmonics (EH) (i.e., no
peaks at Q=2nw, n =1,2,...), in agreement with the
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selection rules which state that such peaks are forbidden
to all orders in perturbation theory. As {w,I} ap-
proaches an AD point and A—0, the SEH peaks (at the
frequencies Q=2nw=*A) get closer and closer and be-
come pure even harmonics; strong even harmonic genera-
tion is observed, in disagreement with the selection rules.

Clearly the shift A is a central parameter in describing
this phenomenology; interesting processes take place
when A is small or zero. In this article we use a combina-
tion of perturbation theory and asymptotic analysis to
provide a simple formula for A and to find the conditions
under which the LFG is intense and the localization is
strong.

To do this we assume that the processes described
above can be represented in the space spanned by the two
lowest-energy eigenstates |1) and |2) of the bare (i.e., no
radiation) Hamiltonian. Bavli [10] validated this assump-
tion by showing that the time-dependent wave function
for the double-well model used in Refs. [6] and [7] can be
represented at all times, with better than 90% accuracy,
by the linear combination a,(#)|1) +a,(#)|2).

We use the two-level Hamiltonian

H=e{|1)(1[—[2) 2D} — {11 2]+ [2)(1)}pE ()
ZEUz_ﬂle(t)O'x . (1)

Here |2) and |1) are the ground and first excited states
of the electron in the double well, respectively, and o,
and o, are Pauli matrices. The zero of energy is halfway
between the energy levels €, and ¢,, and 2e =g, —¢,.

The induced dipole is

w)=p{V,tlo, |V,t) , (2)

where |W,t) satisfies the time-dependent Schrodinger
equation with the Hamiltonian (1). By using standard
methods we derive for u(t) the equation of motion
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(4)
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where J,,, are Bessel functions of integer order, we can rewrite Eq. (3) as
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Equation (6) can be formally “solved” to give
u(r)=p, cos[Ar/w)
—(e/f0) [ 'd7 cos[Mr—1)F () . ()
We identify the frequency
A=[eJy(ey) /] (8)

appearing in the first term in the right-hand side with the
shift A discussed earlier in this article. Therefore, the
AD points are the points in the (,I) plane given by 2u,,
E,/#fio=r,, where r, are the zeros of J,. In going from
(5) to (7) we have used the initial condition u(t =0)=p,,
corresponding to an initially localized state. The
behavior of the system with the initial condition
p(t =0)=0 is very different [12] from the one found here;
there is no low-frequency generation and at the AD
points the system is completely delocalized.

In the zeroth-order approximation (i.e., if /%o —0)
Eq. (7) gives u(t)=p,, cos[ At] and the Fourier transform
©(Q) has a peak at the frequency A. When A is small this
corresponds to low-frequency generation. In this approx-
imation the intensity of the LFG peak is very high, as
compared to other peaks, since u,, is the highest ampli-
tude a Fourier component can have.

We must now examine the first-order correction u(#)
and try to answer several questions. Will the higher-
order terms modify the frequency A? Will they change
the amplitude pu,, of the zeroth-order term? Under what
conditions is the zeroth-order term larger than all the
others?

The first-order correction is

u;('r)z—(s/ﬁw)zfofdr'cos[r—r’]F(T’;,uo) . 9)

This is obtained by replacing u(7) under the integral in
Eq. (7) with p, The analysis of this term is tedious and
we present here only the conclusions. (i) We find no indi-
cation that the first- or the higher-order terms will renor-
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malize the shift A. Floquet theory [9] shows that in a
two-level system there could be only one shift frequency
[7]. Therefore, for all parameters for which the perturba-
tion expansion is valid the shift is given by Eq. (8). (ii)
The first-order correction contains terms whose time
dependence is given by cos[At]. As a result, the correct-
ed dipole has the form pu(t)=[u,,—(e/#w)%a]cosAt,
where a is a sum of Bessel functions squared and is al-
ways smaller than one. Thus as long as

e/ <<1, (10)

this amplitude correction is small. (iii) ‘!’ contains shift-
ed and pure harmonic terms. The amplitude of these
terms is of the form (& /#w)*b, where b is less than one; as
long as Eq. (10) is satisfied the amplitude of these terms is
smaller than p,. (iv) The first-order corrections contain
“secular” terms of the form t (¢ /#iw)?A sin(At), which be-
come infinitely large in time. This is a frequent nuisance
in the time-dependent perturbation theory. It does not
mean that u(¢) diverges, but only that as we increase t we
are stepping outside the radius of convergence of the ex-
pansion. Thus we are certain that u, cos(At) is the dom-
inant contribution in u(¢) only if Eq. (10) and

t(e/fiw)*A << 1 (11)

are satisfied. Note that Eq. (11) implies that the time
when the secular terms become important is longer and
longer as A—0; there are no secular terms if A=0.

The condition (11) implies that it is possible that LFG
is intense and the localization is strong only for a finite
time, even if (£/#w)><1. Our numerical experiments
found no evidence for this, which suggests that when cal-
culated to all orders, the secular terms add up to a well-
behaved function whose values are smaller than .

To see under what conditions the secular terms will
lead to corrections that are smaller than u, we have per-
formed an asymptotic analysis of u(¢). We start from
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which is obtained by integrating Eq. (3), then using Eq.
(4). This equation can be solved by successive iterations.
The first-order term in the iteration scheme is obtained
by putting pu(7,)=1 under the integral in the right-hand
side. Performing the integrals leads to an expression of
the form

1— (/i) Joe)X(T)2/2+7d +g +f(1)] .

Here d and g are smaller than one and f(z) contains
sines and <cosines of nwt, where n is an
integer. As the iteration proceeds the term
1—(e/%0)*Jo(eq)** /2 leads to cos[ (A /w)t]. This cosine
will exceed the next fastest growing secular term if
7Jo(ey)/2>>d. For the series leading up to the cosine to
converge, we must also have

T(E/ﬁa})Jo(eo)<l . (12)

These two conditions give the time interval in which
cos(At) is the largest secular term in the expansion

1 <«<otly<1/(e/fo) . (13)

If J, is very small the asymptotic analysis ensures that
My, cos(At) is the dominant term in p(¢) at long times;
moreover, condition (8) ensures this dominance for short
times. Together, these conditions cover the whole terri-
tory. They state that if (e/fiw) <<1 and if A is small we
have intense LFG; if (e /#iw) << 1 and A=0 we have good
localization.

Bavli and Metiu [8] tested these results by solving the
equation of motion for u(¢) numerically. In Fig. 1 we
show u(t) for (e/#iw) << 1, when the predictions made by
the theory are expected to work. We find that if the pa-
rameters are such that Eq. (8) predicts that A=0 the cal-
culated u(t)/pu,, is equal to a constant which is close to
one, plus a term oscillating with a small amplitude and a
high frequency. u(¢)/u, is equal to one at all times only
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FIG. 1. Induced dipole u(t) divided by the transition dipole
1y, as a function of time obtained by solving the equation of
motion numerically. (1) ey=2u,,E,/fio=2.4, which corre-
sponds to a point of accidental degeneracy [i.e., A given by Eq.
(8) is zero], hence to localization; (ii) e =2u,Eo/fiw=2.7. The
population oscillates in accordance with Eq. (7). Since
e/fiw << 1, u(t) is dominated by the first term in Eq. (7).
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FIG. 2. Dependence of the shift frequency and of the ampli-
tude wu(A) of the low-frequency mode on ¢/%w for
2,[1«12E0 /fw=6.0.

if the electron is perfectly localized, at all times, in one of
the wells. The example shown in Fig. 1 comes very close
to this. We found no case in which the predictions of the
theory were in error. Figure 1 also shows a case in which
(e/#iw) << 1 and the value of A given by Eq. (8) is small.
The time evolution of u(¢) shows a large-amplitude—low-
frequency component and a high-frequency-low-
amplitude one; as predicted by theory the term
11, cos(At) dominates the behavior of u(¢) and LFG is in-
tense. We have also calculated the Fourier transform of
pu(t) and obtained from it the value of A and the absolute
value of the Fourier component pu(A). We varied the
laser frequency and the laser field intensity E, so that
eo=2u,Ey/fio=6. The theory predicts that as long as
(e/fiw)<<1 Eq. (8) is valid and A is proportional to
(e/%iw). The plot shows this to be true. The deviations
from this prediction are not large even for (e/#%w) of or-
der 2. Figure 2 also shows the absolute value of u(A)/u,
which is the intensity of LFG. As long as (e/fw) <<1
this is close to one which is the maximum intensity for
this model. In a double quantum well u,, is rather large,
leading thus to large LFG emission. The predictions of
the present theory also work well for almost all the AD
points discovered numerically in Ref. [7]. The few
discrepancies occur probably because the system studied
in Ref. [7] is approximately a two-level system.

Previous work [9,10] has used perturbation theory to
calculate the energy difference AE between the Floquet
quasienergies. LFG and SHG were not discussed, but the
connection to localization was made [1,2]: localization
can occur only if the Floquet quasienergies are equal; in
the present context this means A=0. However, previous
work used the high-field limit and obtained AE under
more restrictive conditions than those given here. The
question of how large a fraction of the electron density is
localized and how intense LFG is, to our knowledge, has
not been addressed before. We find that these effects are
large if (e /#iw) << 1. While the field strength is important
for making A small, it is not a player in determining
whether the LFG is intense or the localization is strong.

While we used quantum wells as an example, the two-



level analysis presented here is more general and these
processes may be detectable for other systems. For ex-
ample, Corkum and co-workers [13] have observed them
while exposing ions to a strong short pulse.
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