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A dynamical analysis of nonlinear optical resonators is performed in the framework of a single-mode
formalism in the plane-wave regime, taking the finite response time of the nonlinear medium into ac-
count. We demonstrate that analytically solvable generic equations can be derived for the time evolution
of the output intensity, in the two limiting cases where the medium’s response time is either very large or
very small as compared to the cavity buildup time. The stability picture and the characteristic time
scales, important for applications in the field of optical information processing, are investigated analyti-
cally. This study reveals that a surprising effect may occur where an increase in the material-response
time leads to a decrease of the relaxation time of the nonlinear device. This effect is called the speeding-
up phenomenon. We also present a numerical study of the full nonlinear dynamics.

PACS number(s): 42.65.Pc, 42.65.Vh

I. INTRODUCTION

Nonlinear (NL) optical planar resonators have been at-
tracting much attention for some decades now, because
of their potential applications in optical information pro-
cessing and the wealth of physical phenomena they
display. Indeed, a host of interesting types of behavior
have been observed, depending on the configuration un-
der study (Fabry-Pérot or ring resonators, distributed
couplers, multilayered structures, etc.) and on the range
of parameters considered [finesse, angle of incidence,
finite beam width, type of nonlinearity (absorptive,
dispersive, saturating), absorption, material-response
time, etc.]. These exciting effects range from bi- and/or
multistability, self-pulsing and chaos [1,2], spatial soliton
formation [3,4], symmetry breaking, etc. The description
of most of these phenomena requires a numerical ap-
proach. Nevertheless, simple equations have been pro-
posed to model a wide class of nonlinear planar resona-
tors aiming to derive general analytic laws governing
their behavior. For example, Mandel [5] introduced in
an ad hoc way a generic equation for the transmitted in-
tensity, governing the dynamics of a one-dimensional
bistable system in the neighborhood of the switching
points. Thereby, he confirmed the existence of critical
slowing down in optical bistability, and predicted the
phenomenon on noncritical slowing down. These analyti-
cal results have been confirmed experimentally, for a
variety of bistable systems, including optical ones, both
with an absorptive [6] as well as with a dispersive [7] non-
linearity.

As shown by Haelterman, Vitrant, and Reinisch [8],
the steady-state response of nonlinear planar resonators,
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including transverse effects, can be adequately described
by a universal modal equation. This approach relies on a
single longitudinal-mode assumption in a high-finesse
resonator, and its validity has been numerically con-
firmed, even for resonators with a finesse as low as a few
units. A similar equation has been derived from the
Maxwell-Bloch equation in a mean-field approach [9].
The same approximation can be used in the time domain
leading to a dynamical modal equation [10,11].

We report here results concerning the nonlinear dy-
namics of planar optical resonators, using this modal ap-
proach in the plane-wave regime, and taking a finite
medium-response time into account. The theoretical
framework is presented in Sec. II. We will discuss in Sec.
IIT under what assumptions a simple equation for the
transmitted intensity only can be derived, thereby gen-
eralizing the results of Mandel [5] to systems with more
than one phase-space dimension. This will also allow us
to discuss, among other things, the dependence of the
switching dynamics on the Debye time. In Sec. IV, the
existence of stable and unstable domains along the sta-
tionary S-shaped curve is discussed, as well as the nature
of the different solutions and the influence of the Debye
time on the characteristic time scales. Finally, Sec. V is
devoted to a numerical study of the full nonlinear dynam-
ics, exhibited by these systems, thereby extending the
asymptotic results obtained in Secs. III and IV.

II. DYNAMIC MODAL THEORY

The general dynamical modal equation of a nonlinear
optical resonator in the single-mode approximation has
been shown to be [10]
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id, F=02F+3 F —[i—mA+n|F(x,y,t)|*]F(x,y,1)
+S(x,y,t) . (1)

Here, F(x,y,t) is the complex output field envelope func-
tion of the transverse spatial coordinates x and y and of
time ¢, and S(x,y,t) is the driving field envelope. The
time has been rescaled to the cavity buildup time. The
longitudinal z coordinate does not appear in the equation
because of the single-mode approximation [8]. The de-
tuning A from the closest resonance is scaled to the width
of that resonance, such that the finesse does not appear in
Eq. (1). The sign of the nonlinearity is given by 7 (+1 for
self-focusing, — 1 for self-defocusing). It is important to
note that the finesse is the only parameter that limits the
range of validity of Eq. (1) in describing the response of
planar resonators. This equation can also be derived
from the Maxwell-Bloch equations in the single-mode re-
gime for a purely dispersive medium [9,11]. In this paper
we will concentrate on the plane-wave case where
diffraction phenomena described by the transverse Lapla-
cian in Eq. (1) disappear, reducing Eq. (1) to

i%z—(i—nA+n|FP)F+S. @)
In the more general and more realistic case where the
medium’s response is described by a Debye equation for
the nonlinear term, we get the following set of equations
[instead of Eq. (2)]:

i%=—(i——nA+nU)F+S ,

T, i U+|F|*,
where nU is the nonlinear term and T, the nonlinear
material-response time.

In order to prepare for both the stability analysis and
the discussion of the switching dynamics, we will further
simplify Egs. (3) for small variations of the nonlinear sys-
tem around the stationary state. The two real variables
(8|F|>=|F|>—|F,|*> and 8U=U—U,) are the distances
from the stationary states characterized by F, and
U,=|F,|? and can be shown to obey (up to first order)

(3)

d?|F|>  _d8|F|®> _ _ ETRY 2

e 2= {([14+(A—Uy)*18|F|
—2|F)|HA—Uy)8U} ,  (4a)

Td%=—sv+amz ) (4b)

Let us note that Egs. (4) apply whatever the sign 1 of the
nonlinearity. It is easy to uncouple these two equations
by deriving a third-order linear differential equation for
SU:

dsu d*su
T, 98Y | (1491
g g
+2+ T+ (= U, Y

=—{3U—4AU,+1+A%8U . (5)
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This equation will be the starting point of the analytical
results reported in this paper, concerning the switching
dynamics (Sec. III) and the stability analysis (Sec. IV).

III. SWITCHING DYNAMICS

In this section we will see under what assumptions a
simple equation for the output intensity can be derived
starting from the modal theory. It is useful to recall here
that Mandel [5] proposed a simple so-called generic equa-
tion [Eq. (3) of Ref. [5] ] in order to describe the switch-
ing dynamics of a bistable system. This model was
verified for a variety of experimental systems [6,7] [that
can be adequately described by a one-dimensional (1D)
model] and the analytical results obtained from the gen-
eric equation have been shown to be in good agreement
with the experimental results. Here, we will generalize
the results of Mandel to the three-dimensional system un-
der study here, and thereby we will show under what as-
sumptions such a generic equation can be derived. A
quantitative comparison between exact solutions of the
modal equation and the analytical predictions will be
given. We will also be able to discuss the dependence on
the Debye time of important dynamical phenomena such
as critical and noncritical slowing down. We will show
that Mandel’s generic equations can be derived from the
modal theory in two limiting cases, namely, (i) T, =0 and
(i) T, >>1.

(i) The case T;=0 corresponds to an instantaneously
nonlinear medium. The analysis here follows directly
from Eq. (2) [or from Eq. (5) by putting T,=0].
Therefrom, the following equation on the intensity |F|?
(for small variations with respect to the stationary state)
can be derived:

d*|F|? . d|F|?
+2 =
dr? dt o

On the right-hand side (rhs) one recognizes the expres-
sion for the stationary response curve, and therefore this
member can be interpreted as a measure for the distance
of the output intensity from its steady-state value, for a
given input field S. The existence of the second-order
derivative on the left-hand side (lhs) of Eq. (6) is funda-
mentally due to the fact that the basic Eq. (2) is complex,
i.e., that the phase space has two dimensions (phase and
amplitude, or equivalently, the parts of the field in phase
and out of phase with the driving field). This will be the
case for every dispersive nonlinear driven oscillator.
Therefore, Eq. (6) is much more general than the context
of nonlinear optical resonators in which it has been de-
rived here, and it can be written down for any two-
dimensional nonlinear system. If, moreover, slowing
down occurs (i.e., in a dynamical regime close to the un-
stable branch or close to the switching point), |F [? is a
slowly varying function of time, and a kind of slowly
varying intensity approximation in the time domain ap-
plies. The second derivative on the left-hand side of Eq.
(6) can then be neglected, yielding

Z—[14+(A—|F]??]F]?>. (6)

d|F|> _

2dt

S2—[1+(A—|F|»)?]|F|*. @)
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Before further simplifying this equation in order to derive
Mandel’s generic equation, it is convenient to treat first
the opposite case T; >>1.

(ii) In the limit T,; >> 1, the nonlinear material response
is much slower than the cavity buildup process. From
Eq. (4b) it follows in this case that the time derivative of
U needs to be small (of order T;;!). The time response of
the device is then governed by the material-response
time, and all the higher derivatives appearing in Eq. (5)
can be neglected, yielding

Td[1+(A—Uo)21%=sz—[1+(A—U)z]U .®

Equations (7) and (8) have the same structure and will
therefore be handled along with same lines. They still do
not present analytical solutions, due to the appearance of
the third-order term on the rhs. However, since Egs. (7)
and (8) have been derived from a local expansion around
an arbitrary fixed point, we introduce little extra errors
by further developing the rhs around an arbitrary fixed
point (I*,I*), e.g., one of the switching points. This is
done by putting

L=I*+M\, (9a)
I=I*+x , (9b)

where I;=S? and I =|F|? [Eq. (7)] or I=U [Eq. (8)]. De-
veloping the rhs of Egs. (7) and (8) assuming that A <<I*
and x <<I*, and keeping terms up to second order in x,
yields

K%=A—ax2—bx , (10a)
with

k=2 in the case T;=0, (10b)
or

k=T, [1+(A—U,)?] in the case T;>>1. (10c)

The parameters a and b of the rhs of Eq. (10a) depend on
the fixed point around which the expansion is made:

2¢2
a=—;- ddfz = _JA+3I*, (11a)
0 I*
2
b= %‘—;— =1+A2—4AI*+31*2 . (11b)
0 I*

We will now choose (I*,I*) in the up-switching point,
implying that b =0 and a <0 (all results reported hereaf-
ter can be extended to the down-switching point, taking
into account that then a > 0). The stationary solutions in
this region are then given by

172
A

a

A=axl—x,=+ (12)

We have in fact replaced the S-shaped stationary
response curve by a parabola in the vicinity of the switch-
ing points (see Fig. 1), x , being the upper branch (unsta-
ble for the up-switching point), x _ being the lower
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FIG. 1. Representation of the vicinity of the up-switching
point, for a detuning A=5. The dashed line is the parabolic fit
of the S-shaped stationary curve (full line). In order to study
the switching dynamics in Fig. 2, the device is initially biased on
the lower branch, corresponding to an input irradiance
I,,=I*+AX, (with in the numerical example here, Ao=—1.236,
corresponding to I;,,=19). Then a pulse of duration T is ap-
plied with an irradiance I,;=I*+A, (here A,=0.064, corre-
sponding to I, ;=20.3). A numerical solution of the time evolu-
tion of the output for these values and different pulse durations
is shown in Fig. 2.

branch (stable for the up-switching point).

Equation (10a) is the equivalent, for dispersive optical
bistability, of Mandel’s 1D generic equation. Following
the procedure in Ref. [5], it can be solved analytically,
thus yielding expressions for the critical pulse duration,
the switching time, and other lethargic times due to criti-
cal and noncritical slowing down. This calculation is
presented in the Appendix.

Let us look here at the response of the system to an in-
put pulse with a finite duration 7, assuming that the de-
vice is initially held in a stable state on the lower branch
(the situation is schematically depicted in Fig. 1). The in-
itial state is characterized by an input parameter A, <0
on the lower stable branch. During the pulse the system
is brought to an input A, >0 barely above the switching
point (.e., |A;| <<|Aq|). From physical arguments, it is
clear that there must be a critical pulse duration T,
separating switching behavior from relaxation back to
the initial state. This critical pulse duration can be
shown to be given by [see Appendix, Eq. (A9)]

2
T*=k N —
Yy Tar] V Tak

In order to check quantitatively the analytical results, we
present numerical solutions of the full nonlinear system
[i.e., modal equation and Debye equation, Egs. (3)] for
the case T, =10 in Figs. 2. The critical pulse duration
for up switching can be deduced from Fig. 2(a) to lie in
the interval 573 < T* <574. This agrees rather well with
the analytical result from Eq. (13), which yields T* =560.
We particularly want to draw attention here to the
dependence of T* (and of other dynamical parameters)

(13)
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on the Debye time through the parameter
k;=T,[1+(A—T1*)?] [see Eq. (A5)], as this could not be
included in earlier approaches [5,7]. Indeed, all times
that can be calculated will depend on the value of the De-
bye time T,;. Through the same parameter «, all times
will also depend on the location of the fixed point (I*,I*)
around which the time evolution is studied. This implies,
e.g., that the switching times for up and down switching
can differ significantly. The critical pulse duration for up
switching is seen to be of the order of 570 [Fig. 2(a)],
while it is about 59 for down switching [Fig. 2(b)]. This is
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FIG. 2. (a) Up switching for different pulse durations T, cal-
culated using an exact numerical procedure solving Egs. (3),
with a Debye time T,=10. An analytical formulation of the
critical pulse duration [Eq. (13)] yields T* =560, in good agree-
ment with what can be deduced from the numerical results.
The large plateau between ¢t =200 and 750 is a manifestation of
critical slowing down. The subsequent lethargic behavior for
pulse durations close to the critical one is due to noncritical
slowing down. (b) In the vicinity of the down-switching point,
the same parabolic fit can be used as for the up-switching point
(i.e., the values of |a|, |Ayl, and |A,| are the same). It can be
seen that the critical pulse duration for down switching, and
henceforth also the switching time, is very different from the
up-switching value (due to the different value of k). The analyti-
cal expression for the critical pulse duration now yields T* =50.
This still agrees rather well with the numerical result, although
the correspondence is less than in the up-switching case. This is
because the slowing down is less pronounced here.
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a difference of one order of magnitude. Generally speak-
ing, by plugging in approximate expressions for the
switching points in k, one can verify that the up-
switching time will be of the order of T,(1+%A?) (or
slower due to slowing down), while the down-switching
time will be of the order of T, (or slower). For device
considerations, it is also interesting to remark that the
critical pulse duration for up switching with a Debye
time T,=10 differs by nearly two orders of magnitude
from the critical pulse duration for the problem without
Debye time [12].

The fact that one is able to derive (under the above-
mentioned conditions) a 1D equation describing the origi-
nally 3D problem [the phase space of Egs. (3) is three di-
mensional] explains the good qualitative correspondence
between the analytical results of Mandel and the experi-
ments performed on nonlinear interference filters by Bi-
got, Daunois, and Mandel [7]. Indeed, the nonlinear in-
terference filters that are used in this work have a slow
thermal nonlinearity, and one can thus safely make the
assumption T, >>1. In the experiments we expect that
one could notice the different time scales for the up and
down switching, which will also depend on the detuning.
Unfortunately for our purposes, Ref. [7] only presents
figures for up switching.

To conclude this section, we have derived dynamic
generic equations for dispersive optical bistable systems,
starting from the general equation coupled with a Debye
equation. The main approximation made hereby is a
linearization around the stationary state, such that phase
and intensity, which are always intimately coupled in
dispersive optical bistability, can be decoupled. Further-
more, generic equations can only be applied under condi-
tions of slowing down. Scaling laws, e.g., a pulse area
scaling law (see Ref. [5]), critical and noncritical slowing
down have thus been established as being generic proper-
ties of bistable systems, whatever the system’s phase-
space dimension may be. A quantitative comparison be-
tween the analytical results and exact solutions of the
modal equation from which they were derived was made,
yielding a good agreement between both. Also, we were
able to discuss the dependence of dynamic properties re-
lated to switching behavior on the Debye time (in the
case T;>>1). This parameter induces different time
scales for the up- and the down-switching process, fur-
thermore depending on the detuning. We believe that the
method outlined above (i.e., decoupling the set of equa-
tions by linearizing around the steady-state curve) can be
applied to a much larger class of systems than the context
of nonlinear optical resonators we have treated here.

IV. LINEAR STABILITY ANALYSIS

The stability analysis of the modal equation as it stands
alone yields the well-known instability of the negative-
slope branch of the S curve. The inclusive of the
material-response time T;, however, increases the dimen-
sion of the phase space to three, allowing for a richer dy-
namics, as we will now discuss. This stability analysis is
done here starting from Eq. (5) dealing with the small
variation of the nonlinear term 8U, which, assuming an
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exponential time evolution for §U, results in the follow-
ing characteristic equation for the exponent A:

T+ (14+2T)A2+ {2+ T4 [1+(A—Uy)*]}A+R =0,

with (14)

ds?

R=3U}— +1+A2= .
U3—4AU,+1+A au,

Applying the Routh-Hurwitz criterion, one obtains that
the stationary solutions are unstable when one of the two
following conditions is satisfied:

R <0, (15a)

1427,

——1-;~—{2+Td[1+(A—U0)2]}<R : (15b)
d

The first inequality [Eq. (15a)] corresponds to the well-
known unstable negative-slope part of the (U,,S 2) sta-
tionary response curve and will not be further investigat-
ed here. On the contrary, the second inequality [Eq.
(15b)] can only be satisfied on the positive-slope portions,
and corresponds to a pair of complex-conjugate roots
crossing the imaginary axis (i.e., a Hopf bifurcation).
The existence of the unstable solutions derived from Eq.
(15b) is directly related to the three-dimensional nature of
the problem. Inequality (15b) can be solved analytically
in order to obtain the unstable domain in the U, variable
(i.e., the stationary output intensity |Fy|*=U,). Using
the expression of R given by Eq. (14) in Eq. (15b), one ob-
tains that unstable stationary solutions only exist if the
following inequality, involving only the detuning A and
the material-response time T, is satisfied:

1
1+ —
T,

D=A+4(1—T3) >0. (16)

This inequality (16) implicitly gives the dependence of the
unstable domain boundaries on the material and device
parameters. Indeed, the following result can readily be
deduced: for a given detuning A, instabilities only exist if
T, is smaller than a maximum value T, which is plot-
ted as a function of A in Fig. 3(a).

Now, for a given detuning A and provided that T, lies
in the interval [0, T ,.,(A)], only a part of the Uy(S?)
stationary response curve is unstable. This part can be
analytically calculated, looking at the values of U, for
which the inequality (15b) is satisfied. This procedure
leads to an unstable domain that, characterized by the
variable U,=|F,|?, is given by

U, if0<T,<1 (17a)
— <
Yo Sly,<ud if1<T,<T,. , (17b)
where
s
Ut —a+2EYD

In other words, for a Debye time in the interval
0<T,; =1, there is an unstable domain extending from a
lower boundary called U, to infinity, whereas in the case
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of 1=T,=T4,., the unstable domain has lower and
upper bounds U, and U, respectively. Furthermore,
U, and U are both negative if T, > 1 and A <0, so that
in this case the unstable domain vanishes. As a result, for
T, <1, instabilities exist in the bistable domain of the sta-
tionary bistable characteristic (bistability exists in the
case A>V'3), as well as in the switching domain (where
the nonlinearity allows for a self-retuning of the resona-
tor, which is the case if 0 < A <V'3), and even in the lim-
iting domain [where every increase of the nonlinear term
induces a decrease of the coupling efficiency of the driv-
ing field (S) with the resonator field, for A <0]. In the
case T,;>1, there exists a finite (bounded) unstable
domain or no unstable domain at all, depending on the
values of A and T, (see Table I).

It is possible to characterize more precisely the posi-
tion of the unstable domain on the Uy(S?) stationary
response curve. Indeed U, is found to be larger than A,
if A>0. The point Uy=A corresponds to the situation
where the resonator is self-retuned, i.e., the initial detun-
ing A is compensated by the nonlinearity (the device is on
resonance). So, when A >0, the inequality U, = A shows
that the unstable domain is entirely located on the upper
part of the UO(SZ) response curve, i.e., after the retuning
or resonance point. In particular, in the case where bista-
bility exists (A >V'3), the unstable points are located on
the upper branch of the bistable loop (the localization of
the unstable points is summarized in Table I).

Some important characteristics of the unstable domain
are visualized in Fig. 3(b). Indeed, the boundaries
separating the stable and the unstable domains are plot-
ted in the (U,,T;) plane, for some values of A. The
analytical results described above are illustrated there.
Moreover, one can deduce some interesting results re-

20
(b)
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T

FIG. 3. (a) Minimum value of T, allowing for the existence
of instabilities is plotted vs the detuning A. (b) The limit be-
tween the stable and the unstable domains is characterized by a
critical output intensity U,=|F,|?, which is plotted vs the
response time T, of the nonlinear material, assumed to obey a
Debye equation. The detuning A is considered as a parameter.
Instabilities are due to the existence of two time scales in the
system and are found to occur for a bounded domain of T,.
The time unit is the cavity buildup time.
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TABLE 1. Positions of the unstable portions on the stationary response curve (characterized by the
stationary output field intensity U, ).
Case A<O A>0
0<T,;<1 unstable for unstable for
Uy>U; (>0) Upy>U; (>A)
1< Ty < Tymax no instability unstable in the interval
UF >Uy>Us (>A)
Timax < Ty no instability no instability
garding the shape of the curve Uy(T,). Indeed, the sys- i 1+(A—U,)?
tem is unstable if 0<T,<1 whatever A. But the f Ty >1=T.=—T, . (19b)

minimum cavity field U, that can lead to instability
diverges when T, decreases to zero. As a consequence,
for a given driving field S related to U, through the sta-
tionary relation Uy(S?), the resonator is unstable in a
window of the material-response time T, < 7Ty < Ty,
It is of practical interest to note that the stability proper-
ty of the stationary solution is very sensitive to the
material-response time as this quantity is close to zero:
this could be used to measure the material-response time
T,.

These results seem in contradiction with numerical re-
sults of Ikeda [13] and Abraham and Firth [14], who,
considering a full model without the single-mode approx-
imation, showed that instabilities also occur on the lower
branch of the bistable curve U,(S2). As a consequence
we can deduce that instabilities appearing on the lower
branch arise due to mode competition, when several
modes are simultaneously excited in the resonator. This
situation is excluded in our single-mode description ap-
plying to high-finesse resonators only. We have shown
here that unstable regions located on the upper branch
can exist in the single-mode regime, at least in certain re-
gions of parameter space depending on the cavity detun-
ing and the material-response time. This result confirms
in a general feature the one obtained by Lugiato et al. for
a different set of equations describing a single-mode reso-
nator [2]. However, in Sec. V we will see that the full
nonlinear dynamics presented by our system here is quite
different from the one described in Ref. [2].

It is interesting to look at the solutions of Egs. (3) that
are valid in the vicinity of the stationary solution (first-
order expansion) and that yield information on how the
system returns to (stable case) or departs from (unstable
case) the stationary solution when S is kept constant. Let
us call T, the characteristic evolution time of the system.
Then

T,={max[Re(};)]} !, (18)

where A; denotes the solutions of the characteristic equa-
tion (14). The stable and unstable cases correspond re-
spectively to 7, smaller and larger than 0. Besides we
notice that simple analytical expressions for 7, can be de-
rived in the following two asymptotic cases T; <<1 and
Td >>1:

R<1=T,=(V1—-R —1)7!,

ifT;<<1=— R>1—T.=—1; (19a)

R

Some interesting features concerning the general case
can be seen in Figs. 4 where numerical results are
presented. The situation considered here corresponds to
a detuning A=3>V'3 so that the stationary response
curve shown in Fig. 3(a) is indeed bistable. The hatched
region shows the portion of the curve on the positive-
slope part that can be unstable, depending on the value of
the material-response time (see Sec. III). In Figs.
4(b)—4(d) the characteristic time T, defined above is plot-
ted as a function of the medium-response time 7;, respec-
tively for the points 4, B, and C shown in Fig. 4(a). The
exact value of T, is plotted by the full line, while the ap-
proximate value, given by Eq. (19b), is shown by the
dashed line. The comparison shows that a good agree-
ment between the approximate expression and the
rigorous one is indeed obtained for T; >>1. The opposite
limit T, <<1, given by Eq. (19a), only applies for very
small values of the Debye time (T, < 10™2, not shown in
Fig. 4). In Fig. 4(b), for the point A4 close to the switch-
ing point, T, is negative and |T.| is much larger than T,.
This is related to the critical slowing-down phenomenon
close to switching points discussed earlier. In Fig. 4(c),
for the point B close to the unstable region, the charac-
teristic time reaches a (negative) peak value for 7, =0.76.
In the Debye-time domain 0.8 <T, <12 we observe a
very surprising effect, since the characteristic time of the
nonlinear resonator decreases when the material-response
time increases; moreover, the characteristic time of the
system stays much shorter than the response time of the
nonlinearity of 7, > 12. We call this effect the speeding-
up phenomenon. This can be seen directly on the dashed
line of Fig. 4(c), which corresponds to Eq. (19b). Figure
4(d) is plotted for point C, which can be unstable, i.e., T,
is larger than zero in the window 0.267,;<1.2. Also
here, the speeding-up phenomenon still exists for longer
material-response times, similarly to what was observed
in Fig. 4(c). To link these results with the discussion of
the switching times in Sec. III, it is useful to calculate the
characteristic times in the vicinity of the switching
points. These are in a first approximation (A >>V'3)
given by

A

Uglz?(zil), (20)

yielding
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FIG. 4. (a) Steady-state response is plotted (output intensity U,=|F,|? vs the incident intensity S?), for A=3 in order to have bi-
stability. The hatched region is the portion of the curve that can become unstable, depending on the value of the Debye time. (b) The
characteristic response time is plotted by the full line vs the material-response time 7, corresponding to point A4 of Fig. 2(a). Critical
slowing down can be deduced as the characteristic time is much larger than the Debye time. The dashed line shows the asymptotic
limit T; >>1. (c) Same as (b), but now for point B [Fig. 4(a)]. The speeding-up phenomenon is displayed: (i) the characteristic time
|T.| decreases as the Debye time T, increases, and (ii) also in the asymptotic limit (7, >>1) the characteristic time is still about five
times smaller than the Debye time. (d) Idem for point C. Notice that the system becomes unstable for a Debye time in the interval

0.26 < T; < 1.2. Also, here speeding up can be noticed for T, > 5.

’ (21a)

(21b)

These values exactly correspond to the value of « dis-
cussed in Sec. III. So, the results presented here are in
agreement with those previously obtained from the dis-
cussion of the generic equations. They are thus seen to be
general, since they do not only apply in the slowing-down
case but also in the general case (provided T; >>1), how-
ever).

V. NONLINEAR DYNAMICS

The speeding-up phenomenon has been predicted here
from a stability analysis that has led to Eq. (5). It can be
checked by numerically solving directly the set of Egs. (3)
for suitably chosen initial conditions. An example is
shown in Fig. 5 where the cavity intensity |F|? is plotted

versus time for conditions that correspond to point C on
Fig. 4(a). The nonlinear system is left free to evolve un-
der a constant excitation starting from an initial condi-
tion (on |F|?) that is not very far from the stationary
solution. For T;=1, according to Fig. 4(d), the system is
unstable. Indeed, in Fig. 5 one sees that the system starts
to oscillate and the oscillation amplitude grows at a rate
that corresponds to a characteristic time of the order of
10. For T,=1.68, the system is stable [see Fig. 4(d)].
Indeed, in Fig. 5 the system is seen to return to its sta-
tionary state after oscillations that are damped with a
characteristic time also of the order of 10. For higher
value, e.g., T;=10, the system is seen to return more
quickly to its equilibrium than it would do having a
characteristic time of the order of 1. This surprising
property of Egs. (5) is the speeding-up phenomenon,
which could probably be observed experimentally.

As shown by one of the curves in Fig. 5, in the unstable
domains the system settles in a self-pulsing regime, a
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FIG. 5. Nonlinear dynamical response for point C of Fig.
4(a). The output intensity is plotted against time for three
different material-response times. The system is unstable for
T,=1.0 and stable for 7,=1.68 and 10. In the unstable
domain a self-pulsing behavior is observed. The response for
T,;=10 clearly demonstrates the speeding-up phenomenon since
the system returns more quickly to equilibrium than for
T,=1.68.

behavior typical for a Hopf bifurcation. In Figs. 6(a) and
6(b) the bifurcation diagrams are shown for this particu-
lar situation, and for two values of the Debye time,
T,=1.0 (infinitely extending unstable domain) and
T,=1.53 (bounded unstable domain), respectively.
These illustrate that the periodic solutions branching off
at the Hopf-bifurcation points are themselves stable, and
that the Hopf bifurcations we are dealing with are super-
critical.

The occurrence of self-pulsing here needs to be as-
cribed to the two time scales appearing in the equations,
and not to mode competition since the theory was
developed here in the single-mode approximation. Con-
trary to Lugiato et al. [2] for a very similar set of equa-
tions, and to Yefimov and Shkerdin [15] for another set
of equations describing the same physical system, we did
not find a bifurcation cascade eventually leading to chaot-
ic behavior. All the periodic solutions we found are
themselves stable.

VI. CONCLUSION

In this paper, we discussed both analytically and nu-
merically the dynamics of nonlinear optical resonators, in
the high-finesse limit when only one longitudinal mode is
excited. Such resonators can be adequately described by
the so-called modal equation, which we considered here
coupled with a Debye equation to account for a finite
response time of the nonlinear medium.

By expanding this set of equations around the steady
state, we found that the three-dimensional problem (in
phase space) can be reduced to one effective dimension
describing the dynamics in the vicinity of the switching
points. In so doing, we generalized Mandel’s generic
equation describing the switching dynamics of a 1D bist-
able system to two- and three-dimensional bistable sys-

2331

] (a)

Max U(t)

1(b)

Max U(t)

FIG. 6. Bifurcation diagrams, again for a detuning A=3
(Figs. 4 and 5) and for two Debye times: (a) T, =1.0, displaying
an unstable domain (dashed part) extending to infinity, and (b)
T,=1.53, showing a finite unstable region. We always found
that the Hopf bifurcations delimiting the unstable regions are
supercritical, while the periodic solutions branching off are
stable (no further branching points).

tems. We have shown explicitly that this can be done in
the limits 7;,=0 and T, >>1, under the assumption of
slowing down. Although very simple, the generic Eq.
(10) can thus be applied to a much larger class of non-
linear optical resonators than was hitherto thought.
Fundamentally due to the presence of two characteris-
tic times, namely the Debye time and the cavity buildup
time (taken equal to unity here), a linear stability analysis
pointed out the existence of supplementary regions of in-
stability, located above the resonance point of the
steady-state response curve. These unstable domains are
delimited by supercritical Hopf bifurcations, and their lo-
cation can be described analytically. The unstable
domain extends from a lower boundary to infinity in the
case T,<1, moving to infinity in the limit 7,-—0,
whereas it is finite in the case T, > 1, disappearing above
a threshold value of T, depending on the detuning. In
the unstable domains, the system presents a regular self-
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pulsing behavior. The bifurcation diagrams never
showed supplementary branching points where the
periodic solution would itself become unstable.

The influence of the Debye time on the switching dy-
namics (under slowing-down conditions) has been dis-
cussed using the generic equation. The Debye time
indeed strongly affects the switching time of the device,
and furthermore introduces a large difference between
the up- and down-switching times. On the other hand,
our study of the characteristic time scales with which the
system relaxes to or departs from the steady state (far
from slowing-down conditions) revealed a surprising
effect where the time constant of the device is observed to
decrease when the material-response time is increased; we
called this the speeding-up phenomenon.
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APPENDIX

The main result from Sec. III is the derivation of a gen-
eric equation [Eq. (10)] governing the switching dynamics
from the modal equation (coupled with a Debye equa-
tion). The generic equation and its solutions have been
discussed in the literature by Mandel and co-workers
[5,7] (for a review, see Ref. [16] ). For the sake of com-
pleteness, however, we present here the main results,
leading to Eq. (13).

The solutions of Eq. (10) can be written as follows.

x_(xg—x,)eP—x  (xg—x_)e P

x(t)= (A1)

(xg—x4)eP—(xg—x_)e P

In this expression, x are the stationary solutions in the
vicinity of the up-switching point given by Eq. (12), x, is
the initial value of x(¢#=0), and the governing time ex-
ponent 3 is given by

p=Yar (A2)

K

We see that the limit x(z— o )=x_, confirming indeed
that x _ is the stable branch of the stationary state (in the
vicinity of the up-switching point). However, the solu-
tion given by Eq. (A1) diverges when the denominator
vanishes. This occurs at a time ¢t =t *, given by

1

_ 1 (XO'—'X—)
= 2B n|l————

t* (A3)

(xg—x4)

This time ¢* can be associated to the switching time [7]
(for times 7 >t*, the solution is finite again, but is physi-
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cally irrelevant). Obviously, this divergence can only ap-
pear if the argument of the logarithm is positive. In the
vicinity of the up-switching point, this is the case when
xg>x, (as x4 >x_, always). If at t=0, x,=x, then
x(t)=x ., for all times . The unstable branch is seen to
act as an separatrix, separating switching behavior from a
relaxation back towards the lower branch.

Let us, e.g., look at the response to an input pulse with
a finite duration 7, assuming that the device is initially
held in a stable state on the lower branch (see Fig. 1):

For t =0,

172
Ao
A=Ay<0 and x,=— - (A4)
ForO0<t =T,
A=A,>0,
with x(t) given by
(xp—iQ)e™ +(xy+iQ)e '’
x(t)=—iQ —— P (A5)
(xg—iQ)e' " —(xy+iQ)e '
with
172 T
A V' laa|
o= ||=L , w=_____;’
a Ky
where «; is in good approximation given by

T,[1+(A—T*)).
Fort>T,

A=2Ag,
with x(¢) given by

x_[x(T)—x, 1eP*"D—x_ [x(T)—x_Je Bt~

x(t)=
(xo__x+ )eB(t—T)_(xO__x_ Ye —B(t—T)
(A6)
with
172 T
Ao Vi 0akl
xj:—+ - ’ = ’
a Ko

ko=Ty[1+(A—T*—2,)?] .

Physically, it is clear that if the pulse is too short, the de-
vice will fall back onto its initial state, where as for a
sufficiently long pulse duration, it will switch up. Ac-
cording to the separatrix property explained above, up
switching will occur only if x(7)>x,(i,). So there
must be a critical pulse duration T*, implicitly defined by

X(T*):x_'_(lfo) . (A7)
From Eqgs. (AS5) and (A7), one finds
B (xo+iQ)
1a)T*=+ 0 A
e i) (A8)

One limit is particularly interesting, namely, the limit
A,—0 (or, equivalently, Q—0), while |Ao << [Agl(x3
>>Q?), i.e., for a pulse bringing the device barely above
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the up-switching point. It yields the following equation
for the critical pulse duration T*:

ey T _ 2
" VTax] v Takgl

A divergence with the inverse square root of the pulse
height above switching condition (A;) can be noticed.
The closer the device is biased above the switching point,
the longer the pulse duration must be in order to assure a
commutation of the device. This can be interpreted as a
critical slowing down of the critical pulse duration. The
issue of the switching time of the device, once the pulse
duration exceeds the critical one, can now also be ad-
dressed. It is determined by the time t* for which the
denominator of Eq. (A5) vanishes:

[x(T)—x_]

e e A10
e x(T)—x1 ] (A10)

(A9)

If the pulse duration barely exceeds the critical one, i.e.,
T=T%*+¢, with e<<T*, then we know that the value of
x(T) will be just above x(T*)=x, (to within order €).
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This implies that the switching time ¢* is given by
1 C
t*=T+—1In|— |, All
2B n - ( )

where C is a constant that does not need to be specified.
Here, a logarithmic divergence of the switching time is
displayed, if the pulse duration just exceeds the critical
one necessary to induce switching. This slowing-down
phenomenon has a different behavior than the critical
slowing down discussed before, as it is logarithmic in-
stead of algebraic. It also has a different physical origin:
it arises even if the device is not biased in the immediate
vicinity of the switching points. Noncritical slowing down
is physically due to the fact that the critical pulse dura-
tion brings the device right on the unstable state of the
intermediate branch. This state, even though unstable,
can accommodate the system for a finite time interval,
even a long one. The two slowing-down mechanisms are
displayed on the curves in Fig. 2. The large plateau is
due to critical slowing down, while the subsequent (small-
er) lethargy for a pulse duration (very) near the critical
one is due to noncritical slowing down.
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