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Amplitude squeezing from spectral-hole burning: A semiclassical theory
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Spectral-hole burning (SHB) profoundly affects the modulation and noise properties of laser oscillators
and amplifiers at high optical power. The present semiclassical theory of SHB shows that the optical
gain should be considered a function of the carrier number and photon rate (rather than photon number)
plus a fluctuation at the shot-noise level (for full population inversion). Constant-voltage-driven laser
diodes generate amplitude-squeezed light, a result not predicted by previous theories that treat gain
compression in a formal way. Amplitude and phase noise of oscillators and amplifiers are considered.

PACS number(s): 42.50.Lc, 42.55.Px, 42.50.Ar

I. INTRODUCTION

Amplitude and phase noise of laser oscillators and
amplifiers at high output power are analyzed in this pa-
per on the basis of a revised semiclassical theory. In the
context of the present paper "semiclassical" means that
only classical (commuting) functions of time are em-
ployed. Single-mode laser diodes are particularly con-
sidered, in which the polarization follows adiabatically
the optical field. The photon lifetime is usually small
compared with the carrier lifetime. For the sake of clari-
ty, spontaneous carrier recombination (radiative and non-
radiative) is neglected. This is a reasonable approxima-
tion for modern laser diodes that operate at, say, 20 times
the threshold current. Furthermore, only the zero-
frequency limit is considered in detail. To obtain the gen-
eral solution it suffices to restore the dX/dt and dm/dt
electron and photon storage rates. Nonessential effects
such as the I /f noise are ignored.

An oscillator of any kind essentially consists of an em-
itting and an absorbing element. The resonator that
defines the oscillation frequency is unimportant as long as
only slow amplitude Auctuations are considered. Stable
oscillation requires that the rate at which photons are
generated by the emitting element be a sublinear function
of the photon number if the absorbing element is linear.
The key question is how the primary noise sources are
affected by the nonlinearities, which are essential for os-
cillators as we just discussed, and important for
amplifiers as well.

Nonlinearities first arise from the dependence of the
optical gain on carrier number, or on the number of
atoms in the excited state in gas lasers. This kind of non-
linearity is well understood (see, e.g., [I]). But many ob-
servations made on laser diodes (e.g. , the strong damping
of relaxation oscillations at high power) are best ex-
plained by assuming that the gain decreases as the optical
field intensity increases, the carrier number being kept
constant. This effect, called "gain compression" or "non-
linear gain, " attributed to various mechanisms such as
spectral-hole burning (SHB), is not well understood. In
order to clarify how the primary noise sources are

affected by gain compression we have considered two
specific models. In one [2], a linear negative resistance is
followed by a lossless Kerr's medium. In the other, treat-
ed in the present paper, the nonlinearity is caused by
SHB. Both models lead to identical conclusions, namely,
that under idealized conditions the optical gain should be
considered a function of carrier number and electron-
photon conversion rate (not photon number), plus a fiuc-
tuation at the shot-noise level irrespectively of the non-
linearity. In an equivalent electrical circuit, the emitting
element is represented by a resistance whose value de-
pends on the nonlinearity, but the series-noise-voltage
spectral density (representing the intrinsic noise source)
remains at the shot-noise level [3].

Let us briefly discuss the nature of SHB. Interacting
carriers (i.e., carriers separated in energy by approximate-
ly h v, where h denotes Planck's constant and v the opti-
cal frequency) recombine quickly at high power levels,
electrons and holes are not in thermal equilibrium within
their respective bands, and a hole builds up in the gain-
versus-frequency curve while injected carriers accumulate
at higher energy (hot carriers). The rate at which the
spectral hole in the conduction band is replenished by
carrier interaction is approximately proportional to the
departure of the mean state occupation from its thermo-
dynamic equilibrium value. Similar considerations apply
to the valence band. Because we are interested in the
consequences of SHB rather than with the detailed mech-
anism itself, this simplified picture (see the Appendix)
should suffice. Detailed theories of SHB can be found in
[4-6].

Semiclassical concepts have been much used during the
last decade in the optical engineering literature. These
papers deal with rather complicated structures (strained
quantum wells, optical or electrical feedbacks, internal
gratings, etc. ) but the basic principles employed may not
be entirely consistent. It is therefore of interest to criti-
cally review three semiclassical concepts that may be
equivalent in special cases but should, in general, be dis-
tinguished. McCumber's quantum theory [7] ends up
with a semiclassical prescription that emphasizes the cor-
puscular aspects of light. Henry's theory (Chapter 2 of
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[8]) views noise as the interference between h strong oscil-
lating field and a spontaneously emitted field. From our
viewpoint, Lax s semiclassical theory [9] is easiest to gen-
eralize being based on the fluctuation-dissipation
theorem.

Following McCumber [7], consider any number of
boxes containing either electrons (number X) or photons
(number m). Electrons from one box may be converted
into photons of another box, or the converse. Time rates
of change of N or m are the sums of known functions of
the populations plus random functions of time called
Langevin's forces. The spectral density of the Langevin
force relating to a box is the sum of the absolute values of
the corpuscular rates entering or leaving that box (in ap-
propriate units). The cross-spectral density between
Langevin's forces relating to any two boxes is opposite to
the corpuscular rate from one box to the other.
McCumber's theory prescription applies only to conver-
sion of electron-hole pairs and photons: For example, the
electronic flow from a battery to the laser active material
through some resistor, far from being at the shot-noise
level, does not fiuctuate at all, if kT ((h v [10]. One must
also be careful to distinguish the fluctuations of the
detected outgoing photonic flow from the fluctuations of
the number of photons in the laser cavity.

According to a picturesque model often presented for
explaining the nature of laser noise, spontaneous emission
contributes a small randomly phased field component to
the steady-state oscillation field, the added photon rate
being equal to the reciprocal of the photon lifetime in the
optical cavity (for complete population inversion). The
important term in this picture is the cross-product of the
steady-state field and the spontaneously emitted field,
hence the occurrence of a factor of 2. This concept forms
the basis of Henry's semiclassical theory. The merit of
such "standard rate equations" is to describe phase as
well as amplitude fluctuations. The cross-spectral densi-
ties differ essentially by a factor of 2 from those appear-
ing in McCumber's theory (see [1]). Yet, Henry's and
McCumber's theories may give the same expressions for
measurable quantities provided adequate interpretations
are made and in special situations. In particular, a shot-
noise term (attributed to the detector photocurrent) must
be added in Henry's theory, which assumes that the elec-
trons are injected independently. The theory can be
modified to account for below-shot-noise injected-current
fiuctuations (modified rate equations (MRE), see Chapter
2 of [8]). But because intensity-noise spectral densities
may be negative the theory becomes conceptually un-
clear.

According to the semiclassical theory presented by Lax
[9], two independent noise sources drive the oscillator,
one relating to the emitting element ("dipole noise"), and
one to the absorbing element ("vacuum fiuctuation").
For (positive or negative) Linear resistances, the spectral
densities of the associated noise voltages are equal to the
absolute values of the resistances (fiuctuation-dissipation
theorem). The essential zero-point-fiuctuation term being
omitted in Nyquist's paper, it is more accurate from an
historical standpoint to refer here to Planck himself rath-
er than to Nyquist. The above prescription needs not ap-

ply to nonlinear elements. This is easily seen by modeling
the laser oscillator by a parallel rather than series circuit,
with a current-noise-source spectral density equal to the
conductance. If parallel and series circuits are treated
analogously, different expressions for amplitude noise are
obtained. This inconsistency shows that the primary
(voltage or current) noise sources in general depend on
the nonlinearity. The noise source is independent of the
nonlinearity, however, in the representation in Eq. (2)
below.

To pursue Lax's model, one may first consider that the
emitting resistance is linear but that its value depends on
the time-varying carrier number N. The dipole noise
remains stationary because the relative variations of N,
and therefore of the resistance, turn out to be small. Of
course, one must account for the variation of the resis-
tance due to changes of N, the latter being given by a rate
equation into which the dipole noise enters again. These
considerations lead to a semiclassical theory [1] that pre-
dicts spectral densities in agreement with the quantum
theory [10] for second-order correlations and large parti-
cle numbers. Note incidentally that other parameters be-
sides N, e.g. , temperature or strain, could be treated
analogously provided exact conservation laws are avail-
able.

It is tempting to account for gain compression in a for-
mal way writing the photonic rate R (number of photons
emitted per unit time) as

R=Q (X,m)m+~,

where 9 is the gain and m the photon number, and to as-
sume that the spectral density of the intrinsic noise
source ~(t) remains at the shot-noise level for full popula-
tion inversion (note that the approximation m + 1 = m
has been made on the grounds that m is a large number,
and thus spontaneous emission in the mode is omitted).
This assumption made in a previous paper by this author
[1] and indirectly in [11]unfortunately appears to be val-
id for weak nonlinearities only. The correct formulation
for one-photon processes, justified later in this paper, is
that 0 should be considered a function of R rather than
a function of m, if one insists that the noise source be at
the shot-noise level. The detailed expressions are then
also simpler. We therefore assert that

R =0 (X,R)m+r, S„=R,
where S denotes double-sided spectral densities. Let us
emphasize that the same rate R appears on both sides of
Eq. (2a). All the results in this paper are essentially based
on Eq. (2a). In the special case of constant-voltage drive
N is constrained to be a constant No and 0 is a function
of R only.

It may be helpful to exemplify Eqs. (1) and (2a) by con-
sidering No three-level atoms, n of them being in the
upper state. Stimulated emission causes these n atoms to
move to the lower state at rate R. There is instantaneous
decay to the ground state. The pump moves the electrons
back up regularly to the upper state at a rate J propor-
tional to the number No —n of atoms in the ground state,
i.e., at time intervals 1/(Xo —n). At low frequency the
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storage rate dn/dt can be neglected, and thus, omitting a
constant, J =R =To —n, or n =To —R. The stimulated
emission rate R being proportional to the number n of
atoms in the upper state and to the number m of photons
in the cavity, plus some intrinsic noise source ~, we can
write a relation of the form in Eq. (2a) (with X=Xo ),

R =(No —R )m/m, +~, (2b)

where m, is a constant. If this relation is written in the
form of Eq. (1),

Xo/m,
1+m/m,

fn+M
1+m /m,

the factor that multiplies m exhibits the usual saturation
form. The point is that, while the spectral density of ~ in
Eq. (2b) is likely to be proportional to n, this is not so for
~ in Eq. (1'). Furthermore, if ~ is at the shot-noise level
as we prove in Sec. II, the spectral density of ~ obviously
depends on the nonlinearity.

We will show that Eq. (2) predicts sub-Poissonian pho-
ton statistics from constant-voltage-driUen laser diodes as
a result of SHB, while Eq. (1) would predict that this can-
not be achieved if ~ is at the shot-noise level. Modified
rate equations are even farther off, predicting large inten-
sity noise in that situation [1].

The proposed formalism can be written in various
forms that are more or less convenient depending on the
laser model. If V and I are proportional to voltages and
currents at optical frequency v, evolution equations may
be written either for the admittance I/V, for V itself, or
for rates V I (the asterisk indicates complex conjuga-
tion). The first form was employed in most previous pa-
pers by this author [12]. The second one is closest to the
quantum theory in [10] that provides the evolution of the
internal-field operator A which, semiclassically, corre-
sponds to our V. The latter formulation is employed in

[1] and here. For spatially extended configurations a
wave formalism is to be preferred.

The spectral properties of the noise source ~ are given
in Sec. II. Equation (2) enables us to relate 5R, 5m, and
6Q, where 6 refers to first-order deviations from steady-
state values. It is shown in the Appendix that 0 may be
written as a function of X, minus a term proportional to
R. This enables us to relate 69 to 5X and 5R. The car-
rier rate equation in Sec. III provides the carrier-number
variation RV in terms of 6R. Considering all these results
together, a relation between 6R and 6m applicable to
both emitters and absorbers follows. This completes the
theory as far as intensity noise is concerned.

Section IV provides an expression for amplitude noise
for a simple oscillator model when SHB is significant,
considering particularly constant-voltage drives. In Sec.
V the output noise of laser amplifiers with SHB is given.
This author has shown previously that electrical feedback
from a linear amplifier of power gain 0 is capable of re-
ducing amplitude fiuctuations by a factor (2Q —1) below
the initial shot-noise level, thereby preserving minimum
uncertainty. This result is shown in Sec. VI to apply to
nonlinear amplifiers as well, and applications are suggest-
ed. Note that 0' represents the output-to-input power ra-

tio, while 0 in Eqs. (1) and (2) describes photon-number
time rates of change.

The general formulas pertaining to phase fluctuations
are given in Sec. VII. It is shown in Sec. VIII that the
material phase-amplitude coupling factor a should be di-
vided by a factor significantly larger than unity as a result
of SHB and low-impedance drive combined effects. Thus
SHB effectively reduces the linewidth, except at very high
power where the material a factor increases, a feature
that may contribute to linewidth rebroadening. A simple
relationship between the three measurable cross-spectral
densities (electrical voltage, amplitude, and phase fiuctua-
tions) is proven to hold in general in Sec. IX. The con-
clusion is in Sec. X.

II. BASIC NOISE SOURCE

To ensure that the same formulation applies to ab-
sorbers and emitters R is defined as the absorbed photon
rate and is therefore negative for emitters. This seeming-
ly unnatural sign convention proves convenient to treat
sequences of absorbing and emitting elements. We first
consider two-level atoms and then show how the results
can- be applied to semiconductors.

The rate R at which photons are absorbed by n two-
level atoms in the ground state through k-photon pro-
cesses (e.g. , two-photon absorption, k =2) is

R =GP"+~=kJ, G = An, (3)

where A is a constant, P denotes the square of the voltage
V at optical frequency v (proportional to the optical field
acting on the atoms), and J the electronic rate induced by
the transitions from the lower to the upper state. For
two-photon absorption, for example, two photons are re-
quired to generate an electron: R =2J. For detectors,
the upper state is the continuum and the emitted elec-
trons constitute the measurable external current.
represents some intrinsic noise source whose properties
will be discussed below. The relation in Eq. (3) reduces to
the first relation in Eq. (2a) for k =1 if we introduce the
capacitance C of a tuned circuit and the photon number
m =CP [see Fig. 1(b)]. The gain g =G/C for a conduc-
tance G= An. Thus 9 m =GP. In semiconductors, n

represents the number of states interacting with the opti-
cal field. The dependence of n on the total carrier num-
ber X and recombination rate R will be discussed later.

The spectral density of the ~(t) process may be derived
from a simple intuitive argument: Consider the special
case in which electron and photon numbers: n and m (or
P) are somehow constrained to remain constant (number
states). Stimulated absorption events should be indepen-
dent because the atoms cannot "communicate, " so to
speak, with one another through induced field Auctua-
tions. Accordingly, the Auctuations of J are at the shot-
noise level: S&J =J. In that situation ~=k6J according
to Eq. (3), and thus the spectral density of r is equal to
k J=kR. The photon-number variance calculated from
this expression can be shown to agree exactly with
Agarwal's master equation for k-photon processes [13] in
the large m limit. It follows that for some R (P) law the
spectral density of ~ is equal to PdR /dP.
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Laser diodes are usually driven through high electrical
resistances. The fluctuations of the injected rate J are
then specified from the outside, e.g., by raising the series-
resistance temperature, and some fluctuation in photon-
number results. The opposite situation of constant pho-
ton number results in Auctuations of J at the shot-noise
level. The above considerations also apply to stimulated
emission, all the atoms being in that case maintained in
the upper state. Cxeneralization to incomplete population
inversion with n& atoms in the lower state and n2 atoms
in the upper state is straightforward.

For one-photon processes (k =1) the result S„=Rin
Eq. (3) follows also from the fiuctuation-dissipation
theorem I9]. According to Eq. (3) with k =1, the first-
order variations of P, R, and G are related by

5P 6R
P R

n&+nzS„=gR, g =—1—2n
n& n2

(4a)

(4b)

Upper bars indicating average values are omitted since no
confusion with instantaneous values may arise. Up to
Sec. VII all the quantities are real. The conductances are
assumed to be frequency-independent, and therefore fre-
quency fluctuations do not react back on amplitude Auc-
tuations. For emitters n2&n„and g, G, R, and J are
negative. P and S„ofcourse are always positive.

In semiconductors it may happen that the upper and
lower states of equal electronic momenta are both filled
with electrons, or that neither state is occupied, in which
case interaction with the optical field cannot occur.
Therefore the number n, (respectively, nz) of state pairs
with one electron (respectively, none) in the upper state
and none (respectively, one) in the lower state can be
written as

n, =Ff„(1 f, ), n2=F—f, (1 f„), — (5a)

where f, and f, denote the probability that the
conduction- and valence-band states, respectively, are oc-
cupied. The number I' of interacting states is approxi-
mately

F =ph /(2vrr;„),

where p denotes the density of states (number of states
per unit energy interval) and &,„=0.1 ps the dephasing
time. The precise expression of F is not important for
our discussion. We consider here only states whose ener-
gy spacing =h v is appropriate for interaction with the
optical field, the other states being relevant to spontane-
ous carrier recombination (neglected in this paper) and
scattering.

According to Eq. (5), 6 may be written

6=~(f,(I —f, ) —f, (1—f.))=~(f. f, ) . —

The positive constant 3 depends on the semiconductor
considered and operating temperature. In the case of
weak transverse guidance, the confinement factor and
thus 3 would decrease as the total carrier number X in-
creases because the plasma e6'ect reduces the refractive

where subscripts denote partial derivatives. Go& is nega-
tive, and therefore g is negative for an absorber (G )0)
and positive for an emitter (G (0). It is shown in the
Appendix that in the limit of large carrier densities

P=(1 f, +f„)l(f—, f„). — (loa)

For symmetrical conduction and valence bands, we
have f, =1 f„andE—q. (10a) may be solved for f, ac-
cording to

1+P/2
1+P

If we eliminate 5G from Eqs. (4) and (8), we obtain

5P (1+P)5R g5N
P R N

(10b)

When the emitting element is constant-voltage driven,
5N=O, and the carrier equation derived in the next sec-
tion is not needed. In that special case, intensity noise
follows in a straightforward manner from Eq. (11).

For completeness, we give the expression of the popu-
lation inversion factor n defined in Eq. (4),

f, (1 f. ) f,'—
n (12a)

n2 n, —f, f„2f,—1—

If we use the expression in Eq. (10b) applicable to symme-
trical bands, n may be written in terms of p

(1+P/2)
1+P

This relation rests on the assumption that population in-
version is complete at low power levels, i.e., n =1 if

=0.

III. CARRIER RATE EQUATION

The purpose of this section is to derive a relation be-
tween 5N and 5R, using the law of conservation of elec-
tron number and Ohm's law applied to the electrical cir-
cuit connected to the element. The expressions apply
equally to absorbing and emitting elements, but absorb-

index and the confinement. But from now on, strong in-
dex confinement is assumed.

According to the discussion in the Appendix, G has the
approximate linear form

6 (N, R) =60(N) BR—

the dependence of B on X being neglected for simplicity,
although it may significantly enhance the di6'erential
gaili.

If we use the relation R =GP applicable to average
values, Eq. (7) reads to first order

5G g 5N P5R
G X R

where we have introduced the di6'erential gain parameter
g =2, and the SHB parameter P=0. 1, defined according
to

g:—(N/G)60~ p:BP—
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ing elements (e.g., saturable absorbers or photovoltaic
cells under intense illumination) are first considered.

The carrier rate equation

R =J+ +S+a
dt

(13)

J=[U(N) U, ]/eR—, , (14)

where e is the absolute value of the electron charge. U, is
less than hv for an absorber (and is usually negative to
shorten the detector response time) and U, exceeds h v
for an emitter.

To first order, we obtain by combining the relation
R =J and Eq. (14)

—g, 6N

2V

6R
R

AU~
g, (15)

expresses the fact that the absorbed photon rate R pro-
vides an output electronic rate J and spontaneous recom-
bination rate S, the remaining carriers being stored at
rate dN/dt. The spectral density of the noise term s is
equal to the average rate S in the case of radiatiUe spon-
taneous recombinations. For simplicity, as indicated ear-
lier, we neglect spontaneous recombination, and consider
only the zero-frequency limit, in which case Eq. (13)
reduces to R =J.

Consider next the electrical load of the absorbing ele-
ment. It consists in a battery of voltage U, defined as
positive for a forward bias, and a series resistance R, (in-
cluding the device series resistance). Let U denote the
voltage across the intrinsic diode, a known function of
the carrier number N. According to Ohm's law

g /g, vanishes, but the spectral-hole-burning term P
remains. For an oscillator with linear absorbing element,
stable operation is then possible only as a result of SHB:
P) 0. If R, = 1 0 for example, we obtain g/g, =4. As
shown in the appendix, P is proportional to the output
power P,„„andis of the order of 0.1 for a typical
vertical-cavity diode delivering 6 mW. The term g/g, is
also proportional to the output power according to the
definition of g, in Eq. (15) since R =J is proportional to
P,„,. Thus the nonlinearity factor ~ is of the form
( AR, +BR„)P,„,where A and B are constants. In that
respect, SHB simply augments the external series resis-
tance. But the effect of SHB on phase fluctuations is dis-
tinctly different from that of external resistances.

IV. OSCILLATOR NOISE

Figure 1(a) represents a laser oscillator emitting light
fully converted into an electrical current by an ideal
detector. The laser oscillator, driven by a battery of volt-
age U, in series with a resistance R„consists of a direct-
band-gap semiconductor enclosed in a Fabry-Perot cavi-
ty. For near-unity mirror reAectivities a simple lumped
circuit representation is appropriate. The laser oscillator
is then represented in the schematic of Fig. 1(b) by an em-
itting element in parallel with a resonating circuit tuned
at the oscillating frequency vo and an absorbing element.

The steady-state admittance of the emitting element is
a negative conductance G =I, /V. The d—etector, or ab-
sorbing load, is a linear positive conductance 6,:—I /V,
and we have 6+6, =0 in the steady state. As long as
the load is perfectly matched optically, the physical sepa-

the minus sign being introduced so that g, is positive for
emitters.

At room temperature, XU&=50 mV, and the current
eR may be of the order of 0.1 A. For an emitting element
submitted to a constant-voltage power supply, R, reduces
to the diode internal series resistance (unless some active
electronics is used), of the order of 1 A. With these
values, g, =0.5. Nyquist's noise associated with the
series resistance is neglected.

When Eq. (15) is introduced in Eq. (11), we finally ob-
tain

5P ( I+~)5R ~ g
P R R '

g,

Laser

U R
S S

4L

Detector

eQ

Let us clarify the significance of this result, considering
first a linear absorbing element, e.g. , an ideal detector. P
is proportional to the square of the optical field to which
the element is submitted, while R denotes the rate at
which photons are absorbed. i5P/P is then equal to
5R /R (+=0), plus a noise term whose spectral density is
the photon rate reciprocal.

Consider next an emitting element. The proportionali-
ty factor is 1+g/g, +P. The term g/g, is proportional
to the driver series resistance R, . If R, is infinite, it fol-
lows from Eq. (16) that M =0, irrespectively of SHB.
This is the driving condition employed by Yamamoto,
Machida, and Nilsson [10] to generate amplitude-
squeezed light. If, in contradistinction R, =O, the term

emitter cavity

(b)

absorber

FIG. 1. (a) A "vertical-cavity" laser driven by voltage U, and
series resistance R, emits light, fully collected by an ideal detec-
tor. (b) Schematic representation, consisting of an emitting ele-
ment, an optical cavity, and an absorbing element, shown sepa-
rately. V and I are voltage and current at optical frequency v,
divided by &2hv. I, relates to the emitting element, I, to the
absorbing element.
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ration between the laser and the load is immaterial. For
the absorbing element the photonic rate is denoted by Q
instead of R, and the noise source is denoted by y instead
of r . Since, according to the schematic in Fig. 1(b), the
emitting and absorbing elements are connected together,
the P parameter (equal to the square of the voltage V
across the circuit at frequency vo) is the same for both
elements. We have at low base band frequencies

5P ( I +a )5R
P R R
5R 5Q
R
5P 5Q
P Q Q

(17)

(18)

(19)

where Eq. (17) coincides with Eq. (16), while Eq. (19), ap-
plicable to the absorbing element, is obtained by setting
Ir=O. Let us recall that the g factor defined in Eq. (4) is
equal to —1 in the case of complete population inversion.
The cavity Eq. (18) is the same as Eq. (3) of [1] for Q=O,
and we need not distinguish —R and Q.

Subtracting Eq. (17) from Eq. (19) we obtain

—a5Q=~+y . (20)

5Q represents the fiuctuation of the detected current if
the absorber is identified with a detector. Its spectral
density follows from Eq. (20) if we use the expressions for
the spectral densities of r and y in Eqs. (17) and (19). It
is now convenient to introduce the population inversion
factor n in place of g=—1 —2n .

Ssg =2Qn~ /Ir (21)

For constant-voltage drive, R, =0 and Ir =/3 according
to Eqs. (15) and (16). Using the expressions given for n

in Eq. (12b) applicable to symmetrical bands, Eq. (21) can
be written

predict that amplitude squeezing cannot be achieved with
zero-impedance drive, since n ) 1. Using for n the ex-
pression in Eq. (12b) and setting I/y= 1+I/P, Eq. (23)
can also be written explicitly in terms of P.

Figure 2 shows the variation of Q Ss& (relative pho-
tonic or amplitude noise) as a function of P, as given by
Eq. (22) (plain line), and as given by Eq. (23) (dotted line)
for constant-voltage drive. The exact result for a 1-Q
series resistance is also shown.

As is well known, SHB is detrimental to modulation
bandwidth in the usual high-impedance drive conditions.
However, SHB enhances the modulation bandwidth in
the case of low-impedance drive. For a constant-voltage
drive, the —3-dB modulation bandwidth is P/( I+@)
times the cold cavity linewidth. Thus the modulation
bandwidth may approach the cavity linewidth at high
power if low-impedance drive proves practical.

V. AMPLIFIER AMPLITUDE NOISE

2a=V+I, 2b=V —I (24)

assuming without loss of generality that the characteris-
tic impedance is unity. V and I are voltages and currents
divided by V2h v. From the steady-state values we define
the field gain

104

The amplifier model consists of an emitting element,
i.e., a negative conductance, the separation between in-
cident and rejected waves being eft'ected with the help of
an optical circulator [14].

According to the wave formalism familiar to mi-
crowave and optical engineers input and output waves a
and b are defined by

Q 'Ssg =2(1+P/2) (1+/3) '/3 (22)

This expression shows that sub-Poissonian statistics is
achieved (Ss& (Q) if the SHB parameter P) 1.63. Ac-
cording to Eq. (22), the fiuctuations of the detected
current would vanish in the limit of infinite P values.
This is, however, a rather extreme situation since the op-
tical gain tends to zero in that limit, and the population
inversion factor n goes to infinity. Let us recall that the
result in Eq. (22) that predicts the possibility of amplitude
squeezing for a constant-voltage-driven laser diode rests
entirely on the formulation in Eq. (2) and Ohm's law.

For the sake of comparison, consider the previously re-
ported expression for photonic noise based on the formu-
lation in Eq. (1). The result [Eqs. (27) and (20e) of [1]]
reads

Q)
(I)

1

CL
E
(U

CD

0.01

1

spectral-hole parameter

(

2

Q 'Ssg= 1+2(n —y)/y

Comparison of Eq. (16) and Eq. (28) of [1], in the zero-
irnpedance drive limit (Ir=P, g~ae ), reveals that the
1 —y nonlinearity factor of [1] is the reciprocal of I+P.
The limit @~ac thus corresponds to y~ 1, and the re-
sult in [1] (which coincides with the result in [11])would

FIG. 2. Variation of the relative photonic (or amplitude)
noise Q Ss& (unity at the shot-noise level) as a function of the
spectral-hole burning parameter P, proportional to optical
power. R, denotes the series resistance. The zero value corre-
sponds to constant-voltage drive. Plain lines are from the exact
results [Eq. (22), and Eqs. (21), (16)] essentially based on Eq. (2).
Dotted line: result [1,11],essentially based on Eq. (1).
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1+6 I6 (25) ~nb =~zsa/& . (31)

For an emitter, 9—=g ) 1 is the power gain, while for an
absorber 0( 1.

The photonic rate R and the square P of the voltage V
are, using Eq. (24),

R = VI=a b—, P= V =(a+b)
The first-order variations of R and P are

(26)

5R =2a5a 2b5—b, 5P=2(a +b)(5a+5b) . (27)

Using Eq. (27), Eq. (16) is readily converted into

(a +~b )25b =(b +ra )25a —~,
S„=gR=rl(a —b ),

(28a)

(28b)

where q= 1 for an absorber and g= —1 for an emitter
with complete popu1ation inversion. The spectral density
of 25a (or 25b ) is unity when light is in the coherent state
and it vanishes when light is in the number state. The
small-signal power gain (2b5b/2a5a) follows from Eq.
(28a) without the noise term. It is equal to &9 if a.= 1,
for example.

The spectral density of the output wave fluctuations
can be obtained in a straightforward manner from Eq.
(28). Assuming that the input wave fluctuation 5a is in-
dependent of the internal noise source ~ we have

(I +xp) S~sb =(p+~) etwas, +q(1 —&) . (29)

eVpgb 2n& /K (30)

As we have seen, nonzero K values can be obtained with
constant-voltage drive because of SHB. The output is
amplitude squeezed if K &2n .

For finite gain values, the simplest situation is when a
constant current is injected, in which case 5R
=2a5a 2b5b =0 (implyin—g ~~ Oo ). Then

For linear amplifiers or absorbers a=0 and Eq. (29)
reduces to known results (but here the derivation is semi-
classical). For example, if the input wave is in the
coherent state (Szs, = 1), the attenuated output wave is in
the coherent state as well (Szsb =1) at zero temperature
(g= 1): Random decimation leaves the Poissonian statis-
tics unchanged except for the average rate. More gen-
erally ( T )0), Eq. (29) coincides with the master equation
result [15] when the photon number is much larger than
N~ /(N, N~ ). —

For an ideal amplifier with a coherent state at the in-
put, Sz&b =29—1 can be interpreted as the sum of the
signal shot noise plus the beat between the amplified wave
and the field spontaneously generated in the mode (see,
e.g. , [16]). The so-called spontaneous-spontaneous beat
noise not accounted for here can be neglected when the
input photon rate is much larger than the optical
amplifier bandwidth [17].

Let us now turn our attention to nonlinear amplifiers.
For input light in the coherent state (Szs, = 1) and any a.

value we obtain in the large gain limit from Eq. (29),
remembering that q = 1—2n,

Amplitude squeezing is perfect in the limit of infinite
gain.

VI. AMPLIFIERS
WITH ELECTRICAL FEEDBACK

The result in Eq. (31) is not the best that can be
achieved for a given gain because the fluctuation of the
electrical voltage across the diode is information not em-
ployed so far. This author has shown [18] that when the
voltage across the series resistance R, driving an ideal
linear amplifier is fed forward to an amplitude modulator,
one can achieve in place of Eq. (31) the better result (with
S~s, =1)

Spsb = 1 /(2Q 1 ) (32)

This result is easily established from Eq. (28a) for any a.

value by minimizing the spectral density of

25b F5R =—25b+F(2b5b —2a5a ), (33)

VII. PHASE FLUCTUATIONS

According to simple theories neglecting gain compres-
sion, a laser diode cannot be frequency modulated by
varying slowly the injected current, aside from thermal
effects. Indeed, the frequency deviation is proportional to
af, where a denotes the phase-amplitude coupling factor
(ratio of changes of the imaginary and real parts of the
optical conductivity for a small change of carrier density)
and f the base band frequency. Experimentally, a pla-

with respect to the feedback factor I'.
The other quadrature, multiplied by 29—1 by the

linear amplifier, is not otherwise affected. Coherent
states at the input also remain minimum-uncertainty
states for multiphoton processes.

Quite generally, schemes employing atoms in the upper
state (optical amplifiers) are potentially more useful than
conventional detectors because they are sensitive to vacu-
um fluctuations [19]. One must ensure, however, that
spontaneous carrier recombination is negligible compared
with stimulated recombination, a condition best fullfilled
with microcavities. The "squeezing amplifier" just de-
scribed can be inserted from place to place in a phase-
modulated optical link to prevent conversion of ampli-
tude fluctuations into phase fluctuations through the fiber
Kerr's effect. The alternative use of parametric
amplifiers [20] is at the moment difficult to implement.

At the output end of a lossy fiber light is essentially in
the coherent state. High-gain squeezing amplifiers insert-
ed before phase-shift-keyed balanced homodyne receivers
may enhance somewhat the signal-to-noise ratio. Note,
however, that the neglect of the spontaneous-spontaneous
beat noise made in the above theory is permissible only
when the signal-to-noise ratio is already rather high. Be-
cause the phase fluctuations are amplified and the statis-
tics may not be Gaussian [21], a detailed system analysis
is required to establish whether improvement in bit-error
rate can be obtained.
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5R—:5R '+i 5R "=5(V'I ) =5( YP)+ ~'+i r ",
5Y=5G+ia5Go .

(34a)

(34b)

We have introduced in Eq. (34b) the phase-amplitude
coupling factor a, whose value is of the order of —5 at a
wavelength of 1.55 pm. For the reason mentioned earlier
(symmetrical hole), the imaginary part of Y is considered
proportional to the thermal equilibrium conductance de-
viation 5GO rather than to the actual conductance devia-
tion 5G. We do not consider here the unsymmetrical
effect of hot carriers.

From Eq. (34), the imaginary part 5R" of 5R is given
by

teau of the order of 0.1 GHz/mA is, however, measured
in the low-frequency range (10—100 MHz) for index-
guided laser diodes. This is a further indication that a
mechanism such as SHB unclamps the carrier number.
Spectral holes being symmetrical, they are not expected
to affect much the refractive index at the operating fre-
quency according to the Kramers-Kronig relationship.
The actual gain is clamped at the loss value, however,
and the carrier number N increases as the injected
current increases, the spectral hole getting more pro-
nounced. This leads to a decrease of the refractive index
and an increase of the oscillation frequency because of
the plasma effect and gain curve shift to higher optical
frequencies (band filling and hot-carrier injection).

To discuss phase fluctuations, let us introduce a com-
plex rate R = V'I = YP +~, where the notation P—:

~
V

~

is used, and the conductance G is now considered more
generally an admittance Y whose steady-state value
remains real. The deviation of R from its (real) steady-
state value is denoted 5R =—5R '+i 5R ". Thus the quanti-
ty previously denoted 5R is now denoted 5R'. Similarly,
the noise source ~ is now a complex quantity
~=~'+i ~", where ~' and ~" are independent and have
the same spectral density as given earlier for r . We ob-
tain

Let us recall that P is the SHB parameter, proportional
to the output power P,„,=h vQ, g is a differential gain
parameter, and g, is inversely proportional to the driver
resistance R, . Equation (16) for ~ has been used.
w =C/6, is the photon lifetime, C denoting the capaci-
tance of the tuned circuit shown in Fig. 1. —5R'=5Q' is
given in Eq. (20). In the steady state, R +Q =0.

The (full width at half power) linewidth bv is equal to
2' times the spectral density of 5v. Because the noise
sources in Eq. (36) are independent, and the spectral den-
sities of y' and y" are both equal to Q, while the spectral
densities of ~' and r " are both equal to qR = (2n —1 )Q,
we obtain from Eq. (36)

'2
n a2mQbv= 1+

2 P c
(37)

5R "= Im I 5[(a +b )*(a —b) ] ] =b 25a "—a 25b", (38)

Equation (37) shows that Lax's expression [9] for the
linewidth of a laser diode is preserved. But the material
a factor is divided by a factor c larger than unity as a re-
sult of SHB and low electrical drive impedance (or, al-
most equivalently, high threshold current, if spontaneous
carrier recombination is considered). Since usually
a »1, SHB may importantly reduce the laser linewidth
[22,23]. If R, =l 0, XU&=50 mV, g=2, eQ=5 mA,
P=0. 1, the c parameter in Eq. (36b) is equal to 1.5 and
the laser linewidth is reduced by SHB by a factor =2.25
at low and moderate powers. At high optical powers,
carrier-number enhancement entails an increase of the in-
trinsic o. factor that may contribute to linewidth re-
broadening. Other causes have been invoked (mode in-
stability, side modes, TM modes, 1/f noise, induced grat-
ings, etc.) to explain this effect.

Let us now consider the wave formalism. From the
definition of R —= V*I, V=a+b, I=a —b, and remember-
ing that the steady-state values of a and b are real, we ob-
tain

5R" ag5N
R X+R

—a(g /g, )5R '

R R
(35)

5a" —5R"
2ab

(39)

where g and g, were introduced according to their
definition in Eq. (9), and Eq. (15) was used.

For vanishing a, the linewidth Av of a unidirectional
ring-type laser with concatenated (emitting or absorbing)
elements is, from Eq. (39) and (35), a simple sum

VIII. OSCILLATOR PHASE NOISE

5R"
4~~ 5v= a(g /g, )5R '

R Q R

+
Q

—(~"+g") (a/c )(~'+y')

5Q lt It

(36a)

c =1+Pg, /g . (36b)

We consider the same laser diode model as in Sec. IV,
again in the limit of small frequencies and negligible
spontaneous recombination. According to Eq. (35) ap-
plied to the emitting element and to the linear absorbing
element (with R changed to Q), the optical frequency de-
viation 5v is

2~6vv = 1

k

1

a
(40)

where ~ is the round-trip time. Note that all the terms in
this sum are positive because g is positive when a & b
(loss), and negative when b )a (gain).

Equation (40) can be shown to coincide with Eq. (47) of
[24] when a=0. For nonzero a factors one must first
solve for 5R'. The linewidth expression then involves in
addition to the term shown in Eq. (40) a sum over prod-
ucts of the form a;e . The case of shot-noise injection,
however, is remarkably simple because only squares (a; )

enter. The results in [24] are most easily obtained by con-
sidering concatenated absorbing and emitting elements as
we do here.

The Green's-function method used by many authors
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[25—27] may not be quite accurate above threshold.
Indeed, unless the mirror reAectivities are near unity, it is
not permissible to assume that the optical field factorizes
into a modal function and a function of time: the in-
dependent noise sources distort the mode profile. This
conclusion has also been reached by Nilsson and others
(Chapter 3 of [8]), and Prasad from a different viewpoint
[28].

IX. CORRELATIONS

The important relation between normalized cross-
spectral densities, denoted by C, established in [29]
without SHB,

in thermal equilibrium within the conduction (valence)
band and obey Fermi's statistics. The conductance G
then depends only on the total carrier number N, the op-
tical frequency being considered fixed. But at high opti-
cal power, G is a function of both X and the absorbed
photon rate R.

Within the relaxation-time approximation [4], the rates
at which spectral holes in the conduction and in the
valence bands are replenished are proportional to the
respective deviations of mean state occupancy from the
thermal equilibrium values. If we neglect the storage rate
for interacting carriers, spectral-hole-filling rates must be
equal to the interband generation rate R from electron-
rate conservation. Thus

Cog s.=c~g svc~vs

or equivalently

(41)
R = (f, —f,o)= (f,o f, ),—F F

(Al)

+sg zgs~'~susu =~sg'zgsu+svsv ~

where 5Q', 5v, and 5U represent, respectively, photon
rate, frequency, and electrical voltage fluctuations, fol-
lows quite generally from the fact that 6v is the sum of a
term proportional to 5N (or 5U) and a noise term
(~"—q") uncorrelated with both 5N and 5Q'. Since the
spectral densities in Eq. (42) are independent of the at-
tenuation [1],Q can be replaced by the detected rate D.

(42)

X. CONCLUSION
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APPENDIX: SPECTRAL-HOLE BURNING

Spectral-hole burning is described for an absorbing ele-
ment but the expressions also apply to emitting elements.
At small and moderate optical power electrons (holes) are

We have presented a theory of amplitude and phase
noise of high-power index-guided laser diodes that ac-
counts for spectral-hole burning. The gain must be con-
sidered a function of carrier number and photon rate
(rather than photon number) plus a fiuctuation that does
not depend on the nonlinearity. Examples of application
have been worked out relating to both oscillators and
amplifiers. It is shown in particular that amplitude-
squeezed light can be generated by constant-voltage laser
diode, a result not predicted by previous theories that
treat gain compression in a formal manner (i.e., without
investigating specific mechanisms). Quantum results for
atoms (see, e.g. , [30]) can alternatively be obtained from
the semiclassical theory.

In conventional edge-emitting lasers, side modes are
separated from the main mode by approximately 100
GHz, and symmetrically located. The frequency separa-
tion being small compared with the scattering-time re-
ciprocal, SHB is essential to mode competition [31]. This
important subject has not been treated in the present pa-
per. Statistical fluctuations of the optical gain should
also be considered in an improved laser-diode noise
theory.

G= A(f, f, )=-Go(N) B(N—)R, —

Go —= ~ (f.o —f,o»

(A2)

(A3a)

B—= (~, +~h ) =2~
ph

(A3b)

7, =~,„(~,+r) ) . (A3c)

As the carrier density increases, carrier-carrier scatter-
ing events become more frequent and the SHB parameter
B, proportional to ~„decreases, i.e., dB/dN(0. The
dependence of B on X, which is usually ignored, may
inAuence significantly the laser diode properties. Howev-
er, for simplicity, this dependence is neglected in the
main text.

Using the expression for R in Eq. (Al), G in Eq. (A2),
and the relation R =GP applicable to average values, the
dimensionless parameter /3= BP can be written—

P=(f,o f, +f. f,o)/(f, —f. ) . — —(A4)

If the population inversion is complete at low fields, we
have f,o= 1, f,o=0.

where the 0 subscripts refer to thermal equilibrium
values, and f, and f, denote the mean occupation of the
conduction and valence bands, respectively. For ab-
sorbers f, )f,o, but for emitters the converse holds. An
approximate expression for the number F of interacting
carriers was given in Eq. (5b) of the main text. The elec-
tron and hole relaxation times ~, and ~h are of the order
of 0.1 ps. Measured electron and hole mobilities give
only lower bounds to ~, and ~& since near-elastic scatter-
ing events reduce mobilities without much affecting ~,
and ~& that depend mostly on carrier-carrier scattering
[32]. In the case of rare-earth ions in a perturbating glass
matrix, inhomogeneous broadening may be accounted for
by summing up the various gain contributions, leading to
a (1+m/m, )

' saturation law, where m is the photon
number. This seems to be the approach in [33]. Howev-
er, when the strong coupling between interacting states is
considered a behavior closer to the usual form in Eq. (1')
obtains [6].

If the expressions in Eq. (Al) are substituted into Eq.
(6), G assumes the form
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A practical expression for P is

0. 15P,„,(A.o/A )r,
ln(1/% )

(A5)

where the total output optical power P,„,is expressed in
mW, and the scattering time ~, in ps. A.o denotes the
free-space wavelength, A the active emitting area, and A
the mirror reflectivities. The numerical factor has been
calculated for GaAs at room temperature but is approxi-
mately applicable to other III-V compounds as well. The
details relating to this estimate of P are too lengthy to be
given here.

For a vertical-cavity laser diode of 6.4 pm area,
%=0.99 and r, =0. 1 ps, we calculate P=0. 1 at a total
generated power of 6 mW. P is expected to increase at
lower temperatures because of lower carrier densities and
reduced optical-phonon population. There is much un-
certainty on the scattering times. However, scattering
times much larger than those quoted above would imply
deep spectral holes in the spontaneous emission spec-
trum, a feature rarely observed.

Spatial diffusion in many respects mimics SHB. In par-
ticular, carriers in the high-band-gap layers separating
quantum wells diffuse in and out, with characteristic
times in the order of tens of picoseconds. The compara-
tively slow spatial carrier diffusion may explain the
mediocre modulation bandwidth of quantum-well lasers
at high power. The introduction of a single phenomeno-
logical P parameter perhaps suffices to account for the
observed dynamics of single-mode index-guided laser

- diodes.
Let us make a few observations relating to spontaneous

carrier recombination and intraband scattering fluctua-
tions. Consider first a simple example: Light-emitting
diodes (LED) generate light by the process of radiative
spontaneous recombination, each electron being convert-

ed into one photon. For a constant-voltage drive, the
electrical current fluctuations are thus at the shot-noise
level. But consider q light. -emitting diodes in series sub-
mitted to a constant voltage. Elementary circuit theory
shows that the fluctuations of the current flowing
through this chain of LED's are now at a much lower
value: 1/q times the shot-noise level.

This observation suggests that, generally, the spectral
density of current fluctuation relative to shot noise is of
the form s=(n/S)(dS/dn), where S(n) represents the
recombination rate and n the number of carriers that can
contribute to spontaneous recombination (to be dis-
tinguished from the total carrier number N). For exam-
ple, s =2 for Augers's effect, and s =

—,
' for recombination

with impurity levels half-way between the valence and
the conduction bands (deep-level traps) [34]. It is usually
considered that the rate at which carriers recombine
spontaneously radiatively is proportional to the square of
N, while Auger s recombinations would exhibit a third-
power law. These conclusions, however, hold only at
high temperature. As far as noise is concerned, the im-
portant fact is that radiative recombination is a one-
photon process, and Auger's effect is a two-electron pro-
cess.

For Ohmic current leaks, the above expression gives
s =2kT/hv in agreement with Nyquist's formula if we
use the generally accepted value NdU/dN =2kT, where
U denotes the voltage across the diode, and n =N.
Nyquist's formula is indeed preserved to first order when
a direct current flows through a resistor [35,36]. Thus
Ohmic leaks or spatial diffusion do not introduce new
significant noise terms. Similarly, carrier-carrier scatter-
ing within a band does not introduce intrinsic noise,
while intraband scattering by optical phonons introduces
noise only at the low 2kT/hv level. The above con-
siderations appear to be consistent with observations
made by various authors.
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