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Effects of ion pairs on the dynamics of erbium-doped fiber lasers
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Experiments with erbium-doped fiber lasers demonstrate cw, sinusoidal, and self-pulsing operation.
The obtained regimes depend on three control parameters: ion-pair concentration, photon lifetime, and

pumping rate. We present a theoretical model which describes the active medium as a mixture of isolat-
ed ions and ion pairs. Starting with the adapted laser rate equations we show that the description of the
dynamical behavior of this system can be reduced to only four first-order coupled equations. A linear
stability analysis demonstrates the existence of self-pulsing for a finite range of pumping rates. At both
ends of this range Hopf bifurcations occur: one located near the first laser threshold and the other at a
higher pumping ratio, whose position is closely related to the pair concentration. Results of numerical
calculations are in good qualitative agreement with our experimental data;

PACS number(s): 42.60.Mi, 42.55.—f, 42.50.Lc, 42.50.Fx

I. INTRODUCTION

Since the experimental observation of a train of un-
damped oscillations in the ruby laser [1], the dynamics of
lasers has been a stimulating field of investigation [2—5].
Recently, the field of nonlinear instabilities has grown
and attracted the attention of numerous workers [6]. In
particular, self-pulsing in lasers has been the subject of in-
tensive research [7]. Different physical origins have been
experimentally demonstrated in several self-pulsing laser
systems. It is well known that self-pulsing can be
achieved in any laser with an adequate saturable absorber
[8]. A more interesting case is when the laser itself
delivers an infinite train of pulses, as is the case, for ex-
ample, for the xenon laser [9], where the pulses are inter-
preted as an intrinsic instability of the cw solutions of the
laser equations [10].

We have recently reported the experimental observa-
tion of self-pulsing in erbium-doped fiber lasers [11]. In
the simplest experimental configuration (two-mirror cavi-
ty), the erbium-doped fiber laser (EDFL) operates with
A, =1.55 pm, in self-pulsing or in a cw mode for pumping
wavelengths of 514.5, 810, or 980 nm [11—13]. Diff'erent
hypotheses have been proposed in [11]to explain this in-
stability. Our experimental work led us to attribute this
behavior to the existence of ion pairs (or clusters), distri-
buted within the fiber, which act as a saturable absorber
[12].

Great interest was recently focused on ion interactions
in rare-earth-element-doped fiber or crystals [14—18]. As
the ion concentration is increased, the average distance
between ions decreases, which enhances ion-ion interac-

tions. Such interactions can occur among a11 the ions in a
fiber or only within a certain class of ions. Moreover,
two or more ions can interact, leading to several cross-
relaxation processes. For example, energy transfer be-
tween two adjacent ions (ion pair) has been successfully
used to obtain laser emission in doped crystals via an up-
conversion process [18]. In such cases it is important to
control the fabrication process in order to obtain a high
ion-pair concentration. The ion pairs can also involve
two different dopants. Codoping of silicate fibers, for ex-
ample, was also used to obtain a laser effect via energy
transfer [14]. Nevertheless, although the previous exam-
ples show that ion pairs are sometimes needed, there are
cases where their presence degrades the operating perfor-
mance of a device. Indeed, the presence of such pairs has
been identified as one important physical process which
can limit the gain in erbium-doped fiber amplifiers at 1.55
pm [16]. Moreover, in erbium-doped fiber lasers, this
phenomenon leads to both a reduction of the laser
efficiency and an increase in laser threshold [17].

The aim of this paper is to develop a theoretical model
describing the main features observed in EDFL. We as-
sume that there exist only two classes of ions: (i) isolated
ions and (ii) ion pairs. We demonstrate theoretically that
the quenching process associated with ion pairs can
drastically change the dynamical behavior of a laser:
without pairs, the laser operates in cw regime, while their
presence can lead to a self-pulsing instability. Section II
presents a summary of our experimental results obtained
with various EDFL's. In particular, the influence of the
ion-pair concentration, the photon lifetime, and the
pumping ratio are discussed. Section III is devoted to the
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construction of a simple theoretical model which de-
scribes the different behaviors observed experimentally,
depending on the ion-pair concentration. The isolated ion
is described as a two-level system and the ion pair as a
three-level system. In its simplest form, the model in-
cludes four coupled first-order differential equations: (i)
one for the isolated ions, (ii) two for the ion pairs, and (iii)
one for the laser field intensity. The stationary state is
derived in Sec. IV where we present the inhuence of the
ion pairs on both the laser output versus pumping ratio
and laser threshold. In Sec. V we perform a linear stabili-
ty analysis of the equations, which points out the emer-
gence of a self-pulsing instability through a Hopf bifurca-
tion. A numerical resolution of the equations is made in
Sec. VI. Both the asymptotic regime and the transient
evolution are investigated. In particular, we present a
stability diagram as a function of the ion-pair concentra-
tion. Theoretical results are compared with experiments
throughout the paper.

II. EXPERIMENTAL RESULTS

In this section, the experimental results obtained with
various erbium-doped fiber lasers are summarized [11,12].
Several erbium-doped fibers have been used, their main
difference being the ion-pair concentration x. This con-
centration has been measured by a pump-transmission
method [21]. In our case, x varies from 0.008 to 0.23. A
schematic view of the experimental setup is shown in Fig.
1. A laser is used to optically pump an Er -doped opti-3+

cal fiber inside a two-mirror cavity (reflection coeffi-
cients R, = 100%, R 2

= 80% ). The doped fibers had
lengths between 3 and 6 m and were single mode at
A, =1.55 pm. The pump lasers were (i) a cw argon-ion
laser operating at 514.5 nm, (ii) a cw titanium:sapphire
laser operating at 810 or 980 nm. The pump is time
modulated by a chopper (f = 10 Hz) in order to observe
the transient regime. A dispersive prism is placed inside
the cavity allowing a spectral narrowing of the laser
linewidth, together with a spectral tunability. The laser
output around 1.55 pm is incident on a high-speed ger-
manium photodiode (2 CxHz). The signal is stored in a
numerical oscilloscope and then transferred to a comput-
er.

Figure 2 represents the energy levels of Er' . At 1.55
pm, Er + operates as a three-level system. The low level
of the lasing transition is the ground state, which makes
it necessary to optimize the fiber length [19] in order to

16)
Is)

14)

13&

2G

S3/2

19/2

l2)

laser

4
lisv.

FIG. 2. Energy levels of Er + showing the lasing transition,
the pumping levels, and the relaxation processes.

avoid too much reabsorption of the laser signal along the
propagation axis. Note that a quasiresonance at the las-

4 4ing wavelength occurs between levels I,3/2 and I9/2
[201.

In [11] we have reported that, for a fiber having an
ion-pair concentration of about x =0. 18, self-pulsing
occurs for any pumping ratio and for any of the pump
wavelengths mentioned above. Figure 3 gives an example
of such pulses obtained with this fiber in the cavity
configuration of Fig. 1. The period of the pulses is a de-
creasing function of pumping ratio r, varying between 80
and 30 ps when r changes from 1.1 to 2.3 as shown in
Fig. 4. The pulse width decreases from about 20 to 5 ps
when r increases. In addition, a modification of the dy-
namics appears when the oscillation is obtained between
the output mirror and the 4% Fresnel reflection at the
fiber end face located near the prism ("bad"-cavity
configuration). In such conditions, the output intensity is
quasistationary near threshold and becomes self-pulsing
for higher pumping ratios.

More recently [12], we have reported the experimental
influence of ion-pair concentration on the dynamics of
erbium-doped fiber lasers. In particular, we have demon-
strated that for x + 0.06 the output intensity is cw for any
pumping ratio. Around x =0.075 the output intensity
varies continuously from self-pulsing to cw when r is in-
creased. For higher pair concentrations (x ~0. 10), the
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oscilloscope

M2

= Ge

M

C4

O

0.1 0.2 0.3 0.4 0.5

FIG. 1. Schematic representation of the experimental setup:
the pump laser is injected via the microscope objective O. The
laser oscillation is obtained between M& {R,=100%) and M2
{R2=80%).

T (ms)

FIG. 3. Self-pulsing output of the erbium-doped fiber laser
for a pumping ratio r =2.3. The fiber used had a pair concen-
tration x =0.18, a length l =3 m, and was pumped at 810 nm.
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FIG. 4. Experimental evolution of th p pe ulse eriod vs r. The

r was used in the experimental setup of Fig. 1 and pumped at

810 nm. The pair concentration is x =0. an

m.

laser is self-pulsing for any of the pumping rates used; we
expect that a cw operation can be obtained for higher
pumping ra es nt ot achievable in our experiments. Figure
5 shows typical output signals observed for x =0.075 for
three pumping ratios, in the experimental configuration
of Fig. 1: the laser evolves from self-pulsing to a
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FIG. 6. Transient behavior of a 5-m erbium-doped fiber laser
with x =0.075: (a) r =3.5, (b) r =5.0 (A.~ =810 nm).
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sinusoidal output and then to a cw operation when in-

creasing the pumping ratio.
The transient regimes leading to these self-pulsing,

sillusoi a, OI cwd 1, operations are also very different. This
is clearly seen in Fig. 6, which gives examples of the tran-
sient behavior of a doped fiber laser for different pumping
rates. The ion-pair concentration of the fiber used is
x =0.075. For a self-pulsing regime, the transient evo u-
tion is a succession of increasing pulses as is shown in
Fi . 6(a). When the laser evolves to a cw operation as inFig. a . en
F' 6(b) the transient behavior corresponds to cto classical

inrelaxation oscillations similar to those observe

configuration, the transient behavior is analogous to that
shown in ig. , o a'F' 7 btained near laser threshold (in this
case x =0.23 ).

III. CONSTRUCTION OF THE MODEL

Our experimental results prove that the dynamics of
the EDFL is strongly dependent on the ion-pair concen-
tration. In this section we develop a model which takes

tion x) and isolated ions (proportion I —2x). The laser
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FIG. 5. Dynamical behavior of a 5-m EDFL pumped at
A,~ =810 nm for a pair concentration x =0.075: (a) self-pulsing
occurs for r =2, (b) a sinusoidal output arises for r =4, and (c) a
cw output establishes for r =5.
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FIG. 7. Transient behavior in a bad-cavi y g
0 ~ it confi uration for

x =0.23 and r = 1.1 (I =6 m and A,~
= 810 nm).
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field interacts with both of these atomic systems. The
difBculty is to model the energy levels of an ion pair.
This problem is similar to the construction of molecular
states starting with individual atomic states, but may be
simplified by considering the physical processes which
have been observed in ion pairs [16,17].

A. Isolated ion
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The laser transition occurs between the I&3/2 and

I»/z levels of Fig. 2. Nevertheless, it is important to
stress that a quasiresonance occurs between level I9/2
and level I&3/2 for the lasing wavelength. For conveni-
ence and simplicity, we consider here the isolated ion as
the two-level system shown in Fig. 8.

B. Ion pair

A consequence of the ion-pair interaction is the cross-
relaxation process [16,17]. Such a process involves two
neighboring ions in the I&3/2 state: one of the ions
transfers its energy to the other, producing one up-
converted I9/2 ion and one ground-state ion (Fig. 9).
The characteristic time associated with this process is es-
timated to be between 1 and 10 ps [21]. The up-
converted ion quickly decays to the I,3/2 state. The
consequence is the loss of one excited erbium ion. This
effect is responsible for the limitation of the gain in
erbium-doped fiber amplifiers [16]. Thus, in a simple ap-
proach, the ion pair can be described by the interaction
of two three-level ions: ( Iis/» Ii3/z I9/z).4 4 4

The aim in this section is to find the eigenstates of an
ion pair. The treatment of such a problem is, in general,
complicated, and one needs to solve the Schrodinger
equation where the Hamiltonian takes into account the
interaction of the two ions. We do not use such an exact
approach in this paper. In order to achieve a simple
description of the problem, we assume that the atomic
state of an ion pair can be written as (a,P) where a and P
are the states of the two isolated ions. This approach
neglects the interaction energy of the two ions, which is
justified by the screening effect of the 4d' electrons on
the active 4f electrons [23]. Such a screening prevents a
significant modification of the energy levels of a rare-
earth ion in a given host, while permitting considerable
variations of transition probabilities. In these conditions
the energy of a pair is merely the sum of the energy of the

FICi. 9. Up-conversion process in ion pairs.
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two ions. Starting from the three-level scheme for an iso-
lated ion ( Ifs/2 I]3/ 2 I9/p), it is then possible to build
the six different energy levels for a pair, indicated in Fig.
10(a). It is interesting to note that in this energy dia-
gram, levels ~22) and ~13) are very close to one another
and thus the coupling between these two states is strong.
A consequence is a fast nonradiative relaxation from
state ~22) to state ~13) (r= 1 to 10 ps) [21]. In this relax-
ation process, the population inversion decreases with no
contribution to the laser field. Then level ~13) quickly
relaxes to level ~12) [20].

The states ~33), ~23), and ~13) all contain the I9/z
level which relaxes faster than level I&3/2 As a conse-

'i +A

Ji
4

13/2

i 12)
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FICx. 8. Energy diagram used for the description of an isolat-
ed ion. A is the pumping rate and o~ the absorption cross sec-
tion.

FIG. 10. (a) Energy diagram for an ion pair. (b) Simplified

energy diagram used in this model.
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quence, it is thus possible to neglect the population of
these combined states when compared to that of levels
~11), ~12), and ~22), which involve the ground state and
the metastable I13/p state. According to both the two-
level approach for an isolated ion and the small lifetime
of ion-pair levels including the I9/2 state, we describe an
ion pair as a three-level system: ( I»/z, I»/z), ( I»/z,
I»/z), and ( I,3/2 I]3 /2) [Fig. 10(b)]. In such an ap-

proach, the ion pair presents two resonant transitions for
the laser field near A, =1.55 pm. We assume here that the
lifetime of

~
12) is the same as that of I»/z for the isolat-

ed ion (10 ms). Due to the fast relaxation of
~

13 ) to
~

12 ),
the relaxation time from

~
22 ) to 12 ) will be assumed to

be between 1 and 10 ps (relaxation time from 22) to
~13) ). We assume moreover that the absorption cross
sections around A, =1.55 pm for the two resonant transi-
tions are the same but are different from that of an isolat-
ed ion.

C. Material and field equations

This model is based on the rate equations because of
the fast relaxation time associated with the electronic po-
larizations (large homogeneous broadening due to col-
lisions with phonons) [24]. The dynamical behavior of an
isolated ion is described by the following rate equations:

with y =o.'I/o. I where o. 'I is the absorption cross section
at the lasing wavelength for a pair, with a; =y; /yi
where y," is the relaxation rate of level ij ) and
n j X'j /X%0 with our normal ization n» +"12 + "z2

With the new variables n+ =n 22+ n» and
n =nz2 —n», the system is reduced to the two follow-
ing equations:

dn+ a 22=a,z(1 n+ —
)
— (n++n )+yii(2 —3n+ ),

2

dfl a 22=2A —a,z(1 n—+ )
— (n++n ) yii—n

(4)

The laser field interacts with two systems: (i) the frac-
tion 1 —2x of isolated ions and (ii) the fraction x of ion
pairs. The dynamics of the laser intensity can therefore
be written as

dl( ii+—(1—2x)/Ii&n;+xBiin

with 3 =0 iNolyi' B =0''iNO/yi. One notes that

y =8/A.
In summary, with the simple approach adopted here,

the dynamical behavior of the system is described using
only the following four coupled first-order differential
equations:

dt
A+azn—z+ii(nz n, )—, dn;

=2A —az(1+n, ) 2iin;,— (6a)
dn2 =A —aznz —ii(nz —n, ),

where az=yz/yi', n& z=N& z/(1 —2x)No, and
ii =oiIilyi, N. , z is the population of level 1 or 2 with

N, +Nz = (1—2x)NO' , No is the erbium concentration; yz
and yl are the relaxation rates, respectively, of the upper
level of the laser transition and of the laser field; o.

l is the
absorption cross section for the isolated ion; I& is the pho-
ton Aux of the laser field and A is the pumping rate. The
time is normalized with respect to the photon lifetime
&I = ~/XI ~

In terms of the normalized population inversion
n; =n2 —n, , the evolution of the system is described by
the following equation:

dn;
=2A —az(1+n, ) —2iin; .

dt
(2)

dn 12 = —a,zniz zz" zz yii(n iz n» )dt

+yi, (nzz n, z), — (3)

de 22
22 22 yil ( 22 n 12 )

dt

According to the three-level scheme adopted for the
ion pairs, the corresponding dynamical behavior is de-
scribed by the following three rate equations:

dn 11 = —A+a, zn, z+yii(n, z n» ), —
dt

dn+ ap2=a &2(1 n+ )
— —(n+ + n )+yii(2 —3n+ ),dt 2

(6b)

dn

dt 2
=2A —a&2(l —n+ )

— (n++n ) yiin—
(6c)

dll = —i, +(1—2x) Wi, n, +xBi,n
dt

IV. STEADY STATE

The populations at steady state can easily be expressed
with respect to the steady-state laser intensity using rela-
tions (6a), (6c), and (6d):

n, = 2A —a2

a2+2i(

1 —A (1—2x)n;

x8
2A —a, yi + /2

+
a12 —a 22/2 a12 —aq~ /2

Combining relations (6b) and (7) allows us to obtain a
third-order polynomial equation for the steady-state laser
intensity:
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For pumping rates greater than the laser thresh ldres o, rela-
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ing e laser intensity equal to zero and solving for A.
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a 2 2ll

0

0

(1—2x) Aii

0

1a]2 —
—,a22

0

0
1

2
a 22

xBi&

2n;

y(2 —3n+ )

—yn

0

(13)

System (12) can be solved by direct integration. The solu-
tions are expressed as linear combinations of exp(k„t)
terms, where A.„ is an eigenvalue of matrix L (Lyapunov
exponent). The eigenvalues are calculated from the
characteristic equation:

det(L —A,I)=0 . (14)

x=0 X=0.05 x=0.1 x=0.15

0.01—

Among the four eigenvalues of system (12), two always
remain real and negative, while the other two are com-
plex conjugate and can have a positive real part. In Fig.
13(a) we show in the complex plane the two complex-
conjugate eigenvalues obtained for r between 1 and 19.
Curves are presented for the four x values indicated. One
sees that for a high enough pair concentration (here
x &0.05), there exist r values leading to Re(A, ) &0. The
crossing of the imaginary axis in such a way is charac-
teristic of a Hopf bifurcation [25,26]. Figure 13(b) shows
the evolution of Re(A. ) versus r. As expected, the r inter-

val where Re(A, ) & 0 depends on the values of y and x. In
particular the interval broadens when x increases. Near
the bifurcation points, the eigenvalue is nearly pure imag-
inary, which corresponds to a sinusoidal laser output.

The previous results can be represented in a stability
diagram which gives, for each x, the values of r for which
the complex-conjugate eigenvalues cross the imaginary
axis. This determines the stable or unstable character of
the laser output. Figure 14(a) gives the theoretical stabil-
ity diagram for different photon lifetimes and Fig. 14(b)
gives the experimental diagram obtained from our results
[12]. We see that this simple model leads to a good quali-
tative agreement. Further experimental work is needed
to obtain a more precise bifurcation diagram for inter-
mediate values of x. Figure 14(a) shows moreover that in
a high loss cavity (y& & 10 s '), the system is stable near
the laser threshold, then becomes self-pulsing and finally
stable again for increasing pumping rates. This behavior,
near threshold, has been observed experimentally [11]
when the oscillation is obtained by removing the M, mir-
ror and using the fiber end as a mirror. The stability dia-
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FIG. 13. (a) Evolution of the eigenvalues in the complex
plane vs r. (b) Evolution of Re(A, ) vs the pumping ratio r.
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FIG. 14. (a) Theoretical stability diagram for different pho-
ton lifetimes and for y =0.2: (1) yI =5X10 s ', (2) y&=1X10
s ', (3) yI=3X10 s ', (4) y1=5X10 s '. (b) Experimental
stability diagram.
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grams show also that the unstable zone depends on the
photon lifetime: a bad cavity is a more favorable device
to observe a self-pulsing oscillation.

We have also considered the inhuence of y on the sta-
bility of the system. For y =1 the system is self-pulsing
for a large range of pumping rates for x «0.001. As this
result does not correspond to the experimental data, we
have considered smaller y values. On the opposite, for
low y (y ~0. 1), the system is stable for any r and x
values. In this paper we have taken y =0.2 in order to
match the experimental x value beyond which the laser
becomes self-pulsing.

VI. NUMERICAL CALCULATION

old to about 20 ps for r =5. These values are of the same
order of magnitude as those measured experimentally
[11,12]. Moreover, for a given pumping ratio, the period
increases with x. The theoretical pulse width is a de-
creasing function of r as is observed experimentally [11],
with typical values of some ps. It is important to note
that near the first Hopf bifurcation the time evolution of
the system is very slow and hence the asymptotic regime
is achieved after a very-long-time transient regime.

(&) (

In this section, system (6) is solved numerically using a
fifth-order Runge-Kutta method with an adaptive in-
tegration step. We are interested in both the asymptotic
and the transient regimes. The physical parameters used
for the numerical analysis are given in Table I [20,27].

~ m

QP

~ M

A. Asymptotic regime

Figures 15(a)—15(c) show the theoretical time evolution
of the laser intensity for increasing pumping rates in the
case x =0. 10. Just above threshold (actually for
r ~ 1.146 14), the laser operates in cw mode. A Hopf bi-
furcation occurs when r is slightly increased: the system
then delivers an infinite train of pulses. This behavior is
observed from this critical pumping ratio up to r =6 [see
Figs. 15(a) and 15(b)]. Above this value, the output laser
intensity becomes sinusoidal as shown in Fig. 15(c) (for
r =6.656). For slightly higher pumping ratios, the sys-
tem becomes stable: a second Hopf bifurcation is local-
ized near this value. This behavior is similar to that of a
laser with a saturable absorber. In our case, the ion pairs
act as a saturable absorber equally distributed along the
optical fiber. The same kind of change in dynamics with
the pumping ratio is obtained for any ion-pair concentra-
tion larger than x =0.06. Beyond the second Hopf bifur-
cation, the upper ion-pair laser transition is saturated,
thus leading to a stable cw operation. These numerical
results confirm the predictions of the linear stability
analysis. The comparison of Fig. 5 with Fig. 15 shows
that the theoretical results are qualitatively in good
agreement with the experimental data.

Figure 16 gives the theoretical evolution of the pulse
period with the pumping ratio for the ion-pair concentra-
tions x =0.08 and 0.1. The discontinuity in the curves
indicates the transition between the cw and self-pulsing
outputs. The period varies from some 100 ps near thresh-

TABLE I. Parameters used for the numerical calculation.
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FIG. 15. Numerical solutions of system (9) with y =0.2,
x =0.1, and y~ =10 s '. (a) r =1.15, (b) r =3, and (c)
r =6.656.
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FIG. 16. Theoretical evolution of the period vs the pumping
ratio with y =0.2 and yI = 1 X 10' s

FIG. 18. Bifurcation diagram vs r for y =0.2 and yI =1X10'
s ' for the x values indicated.

B. Transient regime

As shown in Figs. 6(a) and 6(b), the transient regimes
leading to an unstable or stable cw state are very
different. In order to make a complete comparison be-
tween our model and the experimental results, it is also
necessary to consider the transient regime. Experimen-
tally, when the laser is self-pulsing, the intensity of the

20—

pulses increases and becomes stable after some ms, as
shown in Fig. 6(a). This transient behavior is always ob-
served in self-pulsing mode. On the contrary, the tran-
sient evolution towards the cw steady state corresponds
to the classical relaxation oscillations [11,22] [Fig. 6(b)].

In order to obtain a clear theoretical figure, we have
only plotted the extrema of the laser oscillations, i.e., the
envelope of the laser intensity. The results are shown in
Fig. 17 in the case where x =0.1. With this ion-pair con-
centration, our model exhibits both types of transient
behaviors. For r =2 self-pulsing occurs with its charac-
teristic transient, as shown in Fig. 17(a). For r =7, one
obtains the classical relaxation oscillations leading to the
cw operation, as shown in Fig. 17(b). These theoretical
results are in good agreement with the experimental data
shown in Fig. 6, which support the validity of our model.

C. Bifurcation diagrams
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10—

I
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I

20
t (ms)

I

30
I
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I

50

It is instructive to investigate the evolution of the pulse
amplitude versus r. This evolution is usually represented
as a bifurcation diagram which gives the maxima and
minima of the laser signal as r is varied. Figure 18 gives
the results of the numerical calculation for x =0.08 and
0.10. Near the first laser threshold, the system is cw then
a Hopf bifurcation appears for r =1.1. The self-pulsing
behavior occurs until r =6.656 for x =0.10, where the
second Hopf bifurcation occurs. Note that this r value
strongly increases with x. The system then exhibits cw
operation for higher r values.

VII. CONCLUSIONS
6/}
1
QP

~ 'M

C/3
c5

0—
I

10
I

20
I

30
I

40
I

50
t (ms)

FICx. 17. Envelope of the theoretical transient of the laser in-

tensity with y =0.2 and x =0.10: (a) r =2 and (b) r =7.

This paper has been devoted to the study of dynamical
behavior of erbium-doped fiber lasers. Different experi-
ments conclusively show that the time evolution of the
laser intensity depends on (i) the photon lifetime in the
cavity, (ii) the pumping ratio, and (iii) the ion-pair con-
centration. In particular, self-pulsing operation was only
observed in lasers with a large enough ion-pair concentra-
tion x. Moreover, for a given x which allows a dynamical
instability, self-pulsing occurs for a finite range of pump-
1ng rates.

Our theory compares favorably with experiment. The
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inhuence of the ion-pair concentration on the dynamical
behavior of the EDFL is the same for both theory and ex-
periment. The different transient behaviors observed in
cw or self-pulsing operation have been obtained numeri-
cally. Nevertheless, further theoretical work is needed to
achieve a more detailed agreement with experiment.

Our initial goal was not to develop a complete model
but rather to propose a simple approach so as to gain
some physical insight into the self-pulsing instability in
EDFL. A more comprehensive description should take
into account not only ion-pair interactions but also the
interaction between more than two ions (clusters). More-
over, the eigenstates of ion clusters should be found with
the quantum-mechanical theory. The difficulty here was
to simplify the exact problem to allow an easy physical
interpretation of the dynamics in order to obtain useful
results and to focus on the main cause of the laser
behavior: we have theoretically demonstrated that the ex-
istence of ion pairs is sufficient to explain the self-pulsing
instability through a saturable-absorber mechanism.
Nevertheless, the theoretical results do not imply that the
ion-pair interactions are the only possible physical pro-
cess responsible for the self-pulsing instability in erbium-

doped fiber lasers, but we have proved that they are a
good candidate.

In summary, we have presented a theoretical model of
a laser where the active medium is composed of both iso-
lated ions and ion pairs. The numerical results are in
good qualitative agreement with the experimental data
obtained with various EDFL's. The model demonstrates
that ion pairs are able to describe practically the whole
range of dynamical behaviors observed. The concepts
developed in this paper could certainly be used for other
rare-earth ions, such as, for example, neodymium, where
ion clusters can also be encountered.
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