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The polarization dependence of resonant two-photon dissociation characteristics has been investigated
for HD™" excited from the ground state by two fields of different frequencies. The change in dissociation
probability with field intensity and the dissociation line shape have been shown in the case of a single in-
termediate resonance for all possible combinations of polarizations. The photofragment energy spectra
and the branching ratio between two possible continuum-energy states have been investigated for these
polarization states when two intermediate resonances are present.

PACS number(s): 33.80.Wz, 33.60.—q, 33.10.—n

INTRODUCTION

During the past few years there has been a surge of in-
terest in the theory of resonant transition to the continu-
um of a simple molecular system by single or multipho-
ton absorption in intense fields. In particular, photodis-
sociation of the simplest one-electron molecular ion H,"
in intense fields have been extensively studied recently
[1-9]. These authors have used both time-dependent [3]
and time-independent nonperturbative approaches. The
two approaches have been compared and their com-
plementarity stressed [4]. In most of the time-
independent approaches the dynamics of the dissociating
molecule is determined by the behavior of the initial
bound state in the field-dressed adiabatic electronic po-
tentials obtained by diagonalization of the molecule-field
Hamiltonian with various photon-number states. Only
the lowest two molecular electronic states have been used
in all such calculations.

In earlier works we have extensively studied resonant
two-photon dissociation (TPD) of the isotopic variant
HD™ in single- [10] and two-frequency fields with one
[11] and two [12] intermediate resonances. HD ™" qualita-
tively differs from H," in that it has a permanent dipole
moment and hence a resonance with a bound vibrotation-
al level of the lso, state is possible. Instead of working
in the dressed adiabatic basis we used the resolvent
operator formalism in which the dynamics of the bound
resonant states were isolated by the use of a projection
operator [13]. The dressed states in the projected basis
were obtained by taking the effect of the states outside
the basis set to the lowest nonvanishing order in both di-
agonal and off-diagonal matrix elements in this basis.
This method somewhat restricted the upper limit of the
intensities by neglecting the field-induced modifications
of the states outside the basis set [11,12] as well as multi-
ple transitions between states within and outside the basis
set. However, this method allowed us to separate the
effect of the two fields present by independently varying
their intensities and frequencies, at the same time retain-
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ing the coherent character of the process. Also, unlike
the other authors, we could include the effect of rotations
on the intermediate and final states. These rotations play
very important roles in determining the characteristics of
a resonant process and in the present study we will be
concerned with the polarization dependence of the pro-
cess which is manifested through the change of sym-
metries of the rotational wave functions.

In a coherent resonant multiphoton excitation process
the channels available in the continuum will depend upon
successive values of the angular momentum quantum
numbers of the resonant states as well as the polariza-
tions of the lasers. For a given set of polarizations, the
averaged excitation pattern can be obtained from a set of
independent ladders having different dynamical behaviors
in a field, one for each initial orientation of the atomic or
molecular system [14]. In strong fields each of the excita-
tion ladders is modified appreciably due to the different
field-induced shifts and widths of the resonant states
reached in that ladder for a particular initial orientation.
These shifts and widths depend on the polarizations of
the fields [15]. Also, repeated transitions between the
states induced in any one ladder will result in further
modification of the dynamical behavior of that ladder.

In our earlier works, mentioned above, we mainly stud-
ied dissociation line shapes and photofragment spectra
for resonant TPD of HD ™ from a rotationless state. The
two fields used had different intensities and frequencies
but were parallelly plane polarized. In this paper we
have used all possible combinations of polarizations of
the two fields. Use of the same initial angular momentum
state J =0 simplifies the calculation since the transition
characteristics now depend on a single ladder only [14]
and we show how different rotational wave functions of
the intermediate resonance and final continuum states re-
sult in different TPD line shapes and photofragment spec-
tra for different polarizations of the fields depending on
their intensities. We demonstrate the variation of two-
frequency resonant TPD probability and the photofrag-
ment spectra for selected values of radiation field intensi-
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ties for one and two intermediate resonances, respective-
ly.

In limiting cases the geometrical factors arising from
the angular momentum quantum numbers and polariza-
tion indices in the transition cross section can be aver-
aged out over several ladders and separated from the
dynamical factors. Thus the angular momentum depen-
dence of different branches of two-photon absorption
lines in a rotating diatomic molecule were first studied for
linearly and circularly polarized light by Bray and
Hochstrasser [16] and Chen and Yeung [17]. For weak-
field TPD through a resonant state also, the relative con-
tributions of different final channels can be separated into
dynamical and geometrical factors. The dynamical fac-
tors are determined from the radial parts of the dipole
transition matrix elements on different potential-energy
curves. The geometrical factors enter through the
Clebsch-Gordan coefficients and reflect the orientation or
alignment of a particular intermediate state and the
difference in the total number of final channels available
for a given set of polarizations. Chen and Yeung [18] and
Banerjee et al. [19] have studied such polarization effects
on weak-field resonance enhanced TPD for general values
of J. However, for sufficiently strong fields no such
straightforward separation of the total process into
geometrical and dynamical factors will be possible. This
is so because these geometrical and dynamical factors, in
various matrix elements, enter the final equations being
nonlinearly coupled. Thus the dynamical response as a
whole is to be computed separately for each set of polar-
ization for a given set of intensities where nonlinearities
are appreciable.

In the following section we describe the different com-
binations of the fields and give a brief formulation of the
problem. The results obtained for all these field combina-
tions are presented in the last section.

FORMULATION

3

The detailed formulation for obtaining the transition
probabilities and photofragment energy spectra in two-
frequency resonant TPD have already been given for
linear polarizations using the resolvent operator formal-
ism [11,12]. Here we write only the three coupled equa-
tions for matrix elements of the resolvent operator G in
the space defined by the initial and the resonant field-
molecule states. For two photon transitions from an ini-
tial field-molecule state |g,n,n, ) to the dissociative con-

tinua |c;,n; —1,n,—1) and |c¢/,n,,n,—2) through the
intermediate  resonant states |a;,n;—1,n,) and
lay,ny,n,—1) these equations are
(x =80)Gg — G, , — 0,G, =1, (1a)
— QG +(x—8,)G, ; —F 3G, =0, (1b)
_ﬁngg_FZIGalg+(x——Sz)GangO . (10)
Here Q;=D,, S —i/qj) 8o=—(i/2)y,, and §;=8,
—(I/Z)F w1th 8 = E where E, —E -|—F E

J
=E,+fg, and j=1, 2 The quantities yg,Fai are the

BANANI DATTA AND S. S. BHATTACHARYYA 48

widths and f, and F, are the shifts of the initial and res-

onant states, respectively, due to the presence of two
fields. F,, (F,;) is the complex two-photon Raman-like
coupling between two resonant states and g; is the Fano
asymmetry parameter for the resonant state a; defined in
the usual way. The shifts and widths have been calculat-
ed, as usual, in the lowest nonvanishing order of the in-
teraction Hamiltonian with the rotating-wave approxi-
mation [11,12].

The three equations [Eq. (1)] will be reduced into two
equations if one of the two lasers is highly detuned. In
general the roots of the secular equation corresponding to
Eq. (1) will define three complex dressed energy eigenval-
ues whose positions and widths govern the dissociation
characteristics.

To calculate the radiation field induced quantities in
Eq. (1) we have used the general expression of the interac-
tion operator for linearly and circularly polarized radia-
tion fields [20]

1
d= 3 d,

A=—1

D)y (4,,6,,0)(1—25,)) , @

where the polarization index p =0 for parallel linear and
p==1 for two senses of circular polarization. A linear
polarization perpendicular to the Z axis can be written as
a linear combination of the expressions for two circular
polarizations. We denote the polarization indices of the
two fields of intensities I, of frequency w; and I, of fre-
quency w, by p, and p,, respectively. In our calculations
the molecular state v, =0,J, =0 of the lso, electronic
state has been taken as the 1n1t1a1 state |g) while |a,)
and |a,) respectively denote the states v=6,J=1 and
v=14,J=1. Either both the fields of frequencies w; and
o, are in near resonance with |a, ) and |a, ), respectively,
or only the field w, is in resonance with la2 ). The six
combinations of polarizations (p; and p,) used are as fol-
lows.

(i) Both the fields are linearly polarized parallel to
space-fixed Z axis. For this case, only AM =0 transitions
are involved, where M is the projection of angular
momentum J on the space-fixed Z axis. So the polariza-
tion indices are p; =0 and p, =0.

(ii) When the fields are perpendicularly polarized, the
polarization direction of the field of w, frequency is taken
along space-fixed Z axis. Then both the magnetic sublev-
els |[J,=1,M,=1) and |J,=1,M;= —1) of the resonant
la;,n,—1,n,) state are coherently excited by the w, fre-
quency field. Two states |+ ) and |—) are formed by

linear combinations of [J,=1,M,=1) and

|J;=1,M,=—1) sublevels of |a, )

|—+—)—‘/2 [la;,n,—1,n,,J;=1,M;=1)
+la,n—Ln,,J;=1,M;=—1)] (3a)

and

|—)——|al,nI Lny,,J,=1,M,=1)
—lay,n;—Lny,J,=1,M=—1)]. (3b)
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Only the |—) state is coupled with the initial state
lg,n,n,,J =0,M=0) and the two-photon coupling be-
tween |+ ) and | — ) states is forbidden. The polarization
indices for this case are p, =41 and p, = —1 acting to-
gether, and p, =0.

(iii) When both the fields are circularly polarized in the
same sense and the directions of propagation of both are
parallel to the space-fixed Z axis, the polarization vector
lies on the XY plane. For this case only AM =1 (or —1)
will be involved and we can take p; =1 and p, =1.

(iv) This is the same as the combination (3), but the
sense of polarizations of the two circularly polarized
waves are opposite. Thenp,=1and p,=—1.

(v) The field of frequency w, is linearly polarized along
the space-fixed Z axis and the circularly polarized field of
frequency w, is propagating parallel to Z axis. For this
arrangement we shall have p; =0 and p,=1.

(vi) This is the same as the combination (5), but now
the o, frequency field is circularly polarized and the w,
frequency field is linearly polarized along space fixed Z
axis. Hence p; =1 and p,=0.

Using the corresponding values of p; and p, for the six
polarization sets we have to obtain the expressions of the
field-induced quantities appearing in Eq. (1) and
parameterizing the dynamics of TPD. The radial parts of
the matrix elements involved are independent of radia-
tion field polarizations. However, the integration over
the angular coordinates will give different results for
different combinations of polarizations since the relevant
magnetic quantum numbers of the resonant state and the
final state will be different in each case. Using Eq. (2) and
the bound- and free-state molecular wave functions [21]
the expressions for bound-bound, bound-free, and
ground-to-continuum two-photon matrix elements have
been obtained for the specialized case of J,=0,M,=0
only. The expressions of the different field-induced pa-
rameters evaluated from these matrix elements by in-
tegration over all directions of motion in the continuum
are expressed in the following form:

2, 172

D“kg =

agRa g » (4a)

Fa =27T(27TIS/C)A[‘ 2|Ra c,lezE +w
” a i k*i Ak s

+8:2m(2mly /)AL, S |Rakc,|§=EA to,»  (4b)
i ! k

FakZ(ZﬂIs/c)AFGZPfIRakCilszci/(EAkJrcos—Eci)
!
+27ly/c) Af;

X3P [IR, JdE/E, +0,—Eg) . (o)
i 1 1

i

Here s=2 for k=1 and s=1 for k=2. The molecular
state energies of the resonant and final states now have
been denoted by EAk and E.,
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ve=2m2nl,/c)2nl,/c) A, TIRZ
1
+27(27I, /c )2A;,g E’Rc(fzg)'z ) (4d)
i 13
fg=(27rll/c)Afgb2|Rgb1!2
1
tQaly/e)dp 3 IRy |7 (4e)
b2
= ¢ 4 Ras (4f)
drir 77,(277,12) a; Rakc,,Rc(ig) >
Bry———= 4, (4g)
et =50 — , (4g
4R e et/ el R, RE)
and
11,1 (4h)

dk qrr 9rrr

where the intensity I =(c /2m)F?. Fis the half-amplitude
of the radiation field.

Here the parameters are expressed in terms of intensity
factors, geometrical factors ( 4’s), and functions of purely
radial matrix elements which are denoted by the R’s. All
the radial matrix elements have been evaluated in the ve-
locity gauge, as usual. Rc(l_zg’, etc. are the radial two-
photon matrix elements from |g) to |c;). |b;) and |b,)
define a complete set of nonresonant states dipole con-
nected to |g ) by absorption of a single photon of frequen-
cy o, and w,, respectively. The index i in |¢;) and |c/)
differentiates the continuum states of nuclear motion on
Iso, and 2po, potential surfaces of HD?'. The geome-
trical factors ( A’s), arising from the Clebsch-Gordan
coefficients have been tabulated in Table I for all polar-
ization combinations for the initial state J =0 as before.
Both the intermediate resonant states have J=1. For
HD™" only 3—3—3 transitions are involved and hence
all A values are zero. For each polarization combination
the roots of the secular equation are determined. The
transition probabilities and the photofragment energy
spectra are then obtained in the usual way.

RESULTS AND DISCUSSIONS

Using Table I for different polarization sets, we have
studied (a) the intensity dependence and line shape of
TPD when the (v=14,J =1) level is resonantly coupled
with the (v=0,J=0) level and (b) TPD photofragment
energy spectra when two resonant states (v =6,J =1) and
(v=14,J=1) are resonantly coupled with the
(v=0,J =0) state.

Let us consider case (a) first. The resonant state
(v=14,J=1) is coupled with the (v =0,J =0) state by F,
field of polarization index p, and frequency w,. Figure 1
shows the dissociation probabilities as functions of the
half-amplitude F; of the field of frequency w, for
F,=10"" a.u. at the same real time of 10 ns and for §=0.
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TABLE I. The molecular parameters using different polarizations p, and p, of two radiation fields
for the intermediate resonant states (v =14,J=1) and (v=6,J =1).

Set no. 1 2 3 4 5 6
Polarization p1=0 pi==1 pi1=1 p1=1 p1=0 pi=1
sets P2=0 p2=0 p2=1 pr=—1 p=1 P,=0
_ Parameters for (vfl4,J=l) level B B
Agg —1/V3 —1/v3 1/v3 —1/V3 1/V3 —1/V3
4, 3/5 2/5 2/5 2/5 1/15 1/15
A,’n 3/5 3/5 2/5 2/5 2/15 1/5
Af, 3/5 2/5 2/5 2/5 1/15 1/15
A,’:a 3/5 3/5 2/5 2/5 2/15 /5
4, 5/3 ~5/4 —5/2 —5/4 5/2 —5V2/4
Aq, 5/3 5/3 =572 —5/2 =572 5/3
Parameters for (v=6,J=1) level
Ay —1/V3 v2/3 1/V3 1/V73 —1/V3 1/V3
4, 3/5 1/5 2/5 2/5 1/5 1/5
Ar, 3/5 8/45 2/5 2/5 3/5 2/5
A, 3/5 1/5 2/5 2/5 1/5 1/5
A, 5/3 o —5/2 —15/2 —5/(2v2) 5/2
Ayg /5 2/15 2/15 2/15 4/15 4/15
A’yg /5 1/5 2/15 2/15 2/15 /5
Afg 1/3 2/3 1/3 1/3 1/3 1/3
A}g 1/3 1/_3 1/3 1/3 1/3 1/_3
Ap 3/5 Vv2/5 —2/5 1/15 —1/5 V2/5

It may be mentioned that F =102 a.u. corresponds to an
intensity of about 3X10'> W/cm?. Since the shifts are
different for different sets of polarization, for keeping
6=0 the frequency of the radiation field has to be
changed. Since the set of equations (1) involves only the
detuning 8 from the shifted energy values, the final re-

—— p1=0Q, p2=0
Fo— = S1=o, B2=1
—e—pl=1, p2=0
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FIG. 1. Dissociation probability P(¢) against the half-
amplitude F, of the nonresonant field (in a.u.) for resonance
with v =14 at §=0, and ¢ =10 ns for the six polarization sets.
The intensity I is proportional to F2. F, is fixed at 1073 a.u. and
corresponds to an intensity of very nearly 3X 10> W/cm?.

sults will be functions of & only. Hence the results for
different sets should be compared for the same values of
the detuning 8 to assess the role of the changes in transi-
tion strengths and couplings.

In the lower F, region transition probabilities for the
sets (5) (p;=0,p,=1) and (6) (p,=1,p,=0) are larger
than that wusing two linearly polarized fields
(p;=0,p,=0). On the other hand, the probability from
sets (2)—(4) are nearly equal in magnitude in this region.
For this resonant state the resonant coupling D,, is much
smaller than the width ', of the resonant state and thus
the roots of the secular equation will be obtained from
the expansions [11]

2D2,
xl:—gz £+y 1__15
r,(1+y°) | ¢q q
2D2,
—i k.f____g_z_ 21__1; , (5a)
2 C,(1+y°) q q
r 2D2
x2=y 2 & ) z-i-y 1——1;
2 r,(1+y°) | q q
_ Ty ~_& __2_)’__1_ (5b)
2 T,(1+y?) g q* ||’

where y =6/(T",/2).

For low values of F,, v, and Dazg /T, are roughly com-
parable to each other and since y, and I', are mainly
determined from F,, the dissociation probability is in-
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dependent of F;. The relative magnitudes of P(¢) for
different (p,,p,) combinations depend on the geometrical
coefficients related to vy, and I',. Since geometrical
coefficients in I, are smaller for the sets (5) and (6) com-
pared to others, the probability for these sets are larger in
magnitude. At larger F, the contribution from F, to I',
and y, becomes appreciable and P (¢) decreases with an
increase of F,;. Since the geometrical coefficients are
different in two energy channels ¢; and ¢/, the rates of de-
crease of P(t) are not the same for different sets. The
probability curves for all the polarization sets show mini-
ma near F=10"3 a.u. The curves for sets (5) and (6)
cross the other curves and for intermediate values of the
nonresonant field, the dissociation probabilities for one
linear and one circularly polarized field can be lower than
those obtained for other combinations. As discussed in
[11] the transition probabilities increase with increase in
the intensity of the F, field for F; >2X 1073 a.u., where
nonresonant two-photon transitions start playing the
more important part in determining dissociation proba-
bilities. This can be explained by noting that for very
large values of Fy, v, (increasing with F,) becomes larger
than D‘,zg /T, (which decreases with F,), causing an in-
crease in the magnitude of the imaginary part of x; in
Eq. (5a), which in turn causes increase of P(z)’s with the
field. Geometrical coefficients of y, are larger for the
sets (5) and (6), and a linearly and a circularly polarized
radiation at right angles again give larger dissociation
compared to others for high intensities of the non-
resonant field.

In Figs. 2 and 3 the dissociation rates are plotted
against normalized detuning (in units of I, /2) for the six
polarization sets. Because of the difference in the shifts
and widths the real frequency range of the incident radia-
tion will be different for different sets of polarizations
with the same relative detuning range. Figure 2 shows
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FIG. 2. Dissociation rate against & (in units of I', /2) with
v=14and F,=10"%and F,=10"%a.u.
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FIG. 3. Same as Fig. 2, except for F; =103 and F,=10"?
a.u.

the transition rate for F;=10"° and F,=10"> a.u. For
these values of fields y, is comparable to Dazg /T, and g is
large. Due to the large value of g the curves are almost
symmetrical around §=0. Small asymmetry arises at
larger |8| due to the effect of the second term in the imag-
inary part of Eq. (5a). The value of I', for each case can
be calculated by combining Table I of [11] with Table I of
the present paper. For this particular combination of in-
tensities the maximum width of the resonant state ob-
tained is 0.38 cm™ ! for parallel polarizations. The
minimum width is 0.084 cm ™! for linear and circular po-
larizations of F; and F,, respectively. Thus, though the
dissociation line shapes are similar for different sets, both
the peak value and the linewidth of the dissociation rate
differ from set to set. The narrowest line is obtained by
using circular and linear polarizations for the resonant
and nonresonant fields, respectively.

In Fig. 3 the dissociative transition line shapes have
been shown for F; =103 and F,=10"% a.u. All the
curves are asymmetric functions of 8. Maximum asym-
metry is shown by the curves from sets (5) and (6). For
these values of F; and F, all the parameters strongly de-
pend on both F; and F,. As g is very small, the second
and third terms of the imaginary parts of Eq. (5a), which
cause the asymmetry, are dominant. The maximum and
minimum values of the width of the resonant state now
are 31.6 cm ™! (for parallel polarizations of the two fields)
and 3.6 cm™! (for F, linearly and F, circularly polar-
ized). In this case not only the widths but also the disso-
ciation line shapes will be very different for the different
sets of polarizations. All the lines will be broad, but it is
not possible to indicate their widths from Fig. 3, since for
larger values of the detuning the projection operator
defining the resonant basis will have to be modified.

The photofragments produced using single frequency
lasers will not all have the same kinetic energies but in-
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stead will show a finite spread. A similar spread in pho-
toelectron spectra with single-frequency lasers for
different configurations and couplings between the reso-
nant bound states and the continuum for model ionizing
and autoionizing like situations has already been investi-
gated by various authors [22-24]. We start with an ini-
tial ground-state wave function with a well-defined ener-
gy in the absence of external fields. Switching on the in-
teractions will project this wave function on the laser
dressed states, which are themselves mixtures of various
field-molecule states included in our basis and variously
broadened by what can be termed as laser-induced predis-
sociationlike interactions. The evolution of the projec-
tions to various continuum wave functions then define
the kinetic-energy spectrum [5]. Nice examples of pho-
tofragment energy distribution for multiphoton dissocia-
tion of H,™ occurring due to the projection of the initial
field-free wave packet on the eigenstates of laser-dressed
adiabatic potentials are given by Mies et al. [4—6]. In the
limit of full dissociation, i.e., at t — oo, uncertainties in
the molecular-energy component of the dressed states
will be reflected in the long-time photofragment energy
spectrum. For substantially shorter times the rapidly dis-
sociated component will be distributed over a broader en-
ergy range.

When both lasers resonantly coupled different excited
states (themselves coupled by complex Raman-like cou-
plings) the dressed-state structure will be more interest-
ing. Accordingly we consider the photofragment energy
spectra for case (b) where both the states (v =6,J =1) and
(v=14,J =1) are resonantly coupled with the initial state
(v=0,J =0) by the fields F, and F,, respectively. Figure
4 shows the long-time spectrum W(e), plotted against
(=Ec—Eg—w,—o,) for F;=10"% and F,=10"* a.u.
and at 6,=38,=0 in the lower-energy channel ¢ of the

—— p1=0,p2=0
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FIG. 4. Long-time energy distribution W of the photofrag-
ments against € (in units of 1",,1) for simultaneous resonance
with v=6 and v=14 for six polarization combinations and
F,=10"%and F,=10"*a.u. at §,=0 and 8,=0. The final elec-
tronic state is 2po,,.
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electronic state 2po,. The difference € between the con-
tinuum energy and the undressed ground state plus pho-
ton energies is measured in units of linewidth I',, which
is here different for different combinations. The energy
spectra for the higher-energy channel [ W'(¢')] is similar,
but their magnitudes are lower by 3 to 4 orders.

The total-energy range in Fig. (4) varies from a max-
imum of about 5.93X107® eV for parallel polarizations
to a minimum of about 6.6 X 10”7 eV for a linear and a
circular polarization. The final photofragment energy is
around 0.9 eV. By staying within the framework of the
Born-Oppenheimer approximation we are compelled to
neglect the nonadiabatic couplings between the 1so, and
2po, states removing the degeneracy between the two
asymptotic energies in the HY +D and D" +H channels.
However, the resonant states will be affected little by this
nonadiabatic coupling [25] and since the final energy is
well above the threshold and since two-photon transitions
play major roles only above the intensities considered
here we do not consider the distribution of the photofrag-
ments between these two asymptotic states.

In [12] we obtained both unimodal and bimodal struc-
tures of the spectrum by varying the intensities of two
parallel linearly polarized fields. The positions of the
peaks approximately correspond to the energies of the
dressed states and the peak heights change inversely with
the width of those states. Here, by changing the polariza-
tions keeping the field intensities and the detunings same,
completely different shapes are obtained. For the polar-
ization sets 1 (p;=0,p,=0), 5 (p;=0,p,=1), and 6
(p;=1,p,=0) we get spectra with a single peak. For the
first two sets the position and width of two dressed states
are almost equal. The single-peaked spectra arise due to
the superposition of two peaks whose widths are larger
than their separation. The third root has a very large
imaginary part and does not contribute any peak. Be-
cause of the smallness of I‘,zl and the consequent contrac-

tion of the scale, the spectrum for set 5 (p;=0,p,=1)
looks much more diffused. However, for the set 6
(p,=1,p,=0), I'y is the same as for p;=0,p,==*1 but
only the root at €= —4 contributes a peak. The two oth-
er peaks should be smaller by several orders of magnitude
due to the large imaginary part of the corresponding
roots and cannot be seen. The set 3 (p; =1,p, =1) exhib-
its a structure in which the existence of the two peaks is
just discernible because of the comparability of their
widths and separations. Once again, the third root will
not contribute anything due to its large imaginary part.
Since T, here is six times the value of T, for the two

sets 5 and 6, the absolute separation between the roots is
much larger.

The two bimodal structures in the spectra arise for the
sets 2 (p; ==x1,p,=0) and 4 (p;=1,p,=—1). The values
of Fal for these sets are equal to that for the set 3

(p;=1,p,=1). In both cases we get two well-separated
roots approximately symmetrically located on both sides
of e=0 with nearly the same magnitude of the imaginary
parts. This results in two peaks. The third root always
has a very large imaginary part and no peak in the spec-
trum appears corresponding to the position (real part) of
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FIG. 5. Same as Fig. 4, except for F;=10"% and F,=10"3
a.u.

this root.

The energy distributions obtained for F;=10""> and
F,=10"? a.u. are shown in Fig. 5. For these strong fields
the shift and width of one of the dressed states is much
smaller compared to other two and a single peak near
€=0 results for all polarization sets. However, this
relevant width may be very different for different polar-
ization sets and the spectra arising from sets (2) and (4)
are very much broader compared to other sets. The total
range of energies covered in this figure is the same as in
Fig. (4) so that absolute widths may be compared. No
appreciable broadening of the kinetic-energy distribution
with the increase in intensity of the second field has been
found for sets (1), (3), (5), and (6). But for sets (2) and (4)
the distributions are very much broadened compared to
those in Fig. 4.

It is found that the dissociation through a higher-
energy channel [W'(e’)] becomes dominant when the
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FIG. 6. Branching ratio plotted against 8, for F;=5X10"7
and F,=10"?%a.u. at §,=0.

half-amplitude F, of the second field exceeds that of the
first field by an order of magnitude. For different polar-
ization sets the branching ratios, defined as the ratio of
the total dissociation through the higher-energy channel
to that through the lower-energy channel, show interest-
ing variation as function of &§,. Figure 6 shows the
branching ratio for F; =5X 10> and F, =107 at §,=0.
For this lower value of F, the magnitudes of branching
ratio are greater for all polarization combinations. All
the curves show minima at different values of 6,, which
indicates that for this combination of fields and detunings
the dissociation through the lower energy channel is im-
portant only for a narrow range of values of §,.
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