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Photoabsorption spectra of atoms in parallel electric and magnetic fields
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Measurements have been made of the absorption spectrum of Ba from the 6s6p 'P& level to states near
the ionization threshold in parallel electric and magnetic fields. The absorption spectrum shows oscilla-
tions superposed on a smooth background. Each oscillation is correlated with a closed orbit of the elec-
tron. At strong electric fields, trajectories are regular, and closed orbits form orderly patterns. For weak

electric fields, trajectories are chaotic, and many more closed orbits are present. Many of these are pro-
duced by bifurcations as the electric field is reduced.

PACS number(s): 32.60.+ i, 32.80.—t, 05.45.+b

I. INTRODUCTION II. EXPERIMENTS

The absorption spectrum of an atom in a magnetic field
to states near the ionization threshold was first measured
by Garton and Tomkins [1]. They found the absorption
as a function of energy to be a set of oscillations superim-
posed on a smooth background. Later the group led by
Welge [2] showed that the absorption consisted of multi-
ple oscillations, and that each oscillation was correlated
with a closed classical orbit of the electron moving under
the combined Coulomb and Lorentz forces. A general
theory describing this phenomenon was developed [3],
which gives formulas for the magnitude and phase of
each oscillation from properties of classical orbits and
quantum wave functions for the electron.

In this paper we report measurements and calculations
of the absorption spectrum in parallel electric and mag-
netic fields [4]. Again oscillations are visible, and each
oscillation corresponds to a closed electron orbit. The
closed-orbit theory accurately reproduces most of the ex-
perimental observations.

By measuring photoionization rate versus photon ener-
gy (excitation energy) at several field strengths, we are
able to observe bifurcations of closed orbits of the elec-
tron. Mathematical theory has shown that bifurcations
of periodic orbits occur in certain characteristic ways.
For example, in a common type of "period-doubling" bi-
furcation, a stable periodic orbit becomes unstable, and a
new stable orbit of twice the period is created. In fact, in
Hamiltonian systems with two degrees of freedom, there
are precisely five typical types of bifurcation [5,6]. This
general theory needs modification to apply to the present
case: our system has certain symmetries, and the experi-
ments are sensitive to closure times rather than to periods
of the orbits. With these modifications, the theory
classifies and describes many bifurcations that are visible
in the experimental data. We will show that pitchfork bi-
furcations, period doublings, four-island chains, and oth-
er bifurcations of electron orbits can be identified in the
experimental data.

A well-collimated beam of Ba atoms in their ground
state 6s 'So was intersected at right angles by two coun-
terpropagating laser beams. The continuous wave (cw)
dye lasers were operated with dyes rhodamine 110 and
stilbene 3 to produce tunable laser radiation at A, &=554
nm and A,2=417 nm, respectively, stabilized to a band-
width of about 1 MHz. One laser beam with a
polarized electric field excited the Ba atoms to the
6s6p 'P, intermediate level. The second cw dye laser
beam, also m polarized, induced transitions to Rydberg
states close to the zero-field ionization threshold ( —0.2
cm ' ~ E ~ 1.1 cm '). Excitation was monitored by
counting Ba+ ions, converted from highly excited Ba
atoms by collisional ionization, autoionization, or field
ionization. For this purpose Ba ions were focused onto
the entrance aperture of a quadrupole mass filter and
detected by an electron multiplier. Spectra were record-
ed by keeping the first laser tuned to the resonance transi-
tion 6s 'So ~6s 6p 'P

&
( A

&

=553.702 nm) and scanning
the frequency of the second dye laser. A marker cavity
allowed frequency separations to be measured with an ac-
curacy better than 75 MHz.

The magnetic field, produced by an electromagnet and
stabilized by a Hall probe, was oriented along the atomic
beam in order to suppress motional Stark effects. The
atomic beam was fed through a central bore in the yoke
and pole pieces of the magnet (Fig. 1). The bore con-
tained the quadrupole mass filter in the upper part and
the barium oven in its lower part. The magnetic-field
strength (970 G) was inferred from measurements of the
Zeeman splitting of the 6s6p 'P, intermediate level. For
this purpose the frequency of the first dye laser was
scanned across the resonance transition and fluorescence
emitted was imaged onto a photomultiplier tube followed
by lock-in detection of the photomultiplier signal. In this
way the magnetic-field strength was determined with a
typical accuracy of +10 G.

External electric fields, also oriented parallel to the
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FIG. 1. Schematic diagram of the experimental apparatus.
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atomic beam, were produced by a parallel-plate capacitor
with central holes in the lower and upper plates for the
atomic beam to pass through. Inside the interaction
volume defined by the laser beam and the atomic beam,
the electrical-field strength was smaller by about 3%
compared to that calculated for an ideal parallel-plate
capacitor because of the holes in the capacitor plates.
Calibration of the electric-field strength was achieved by
comparing at one field strength the observed location of
peaks in the Fourier transform of the absorption spec-
trum with the location predicted by closed-orbit theory.

The Ba+ count rate, being proportional to the photo-
absorption cross section, shows modulations as a function
of photon energy, superimposed upon a smooth back-
ground. Typical spectra obtained in parallel electric and
magnetic fields are shown in Figs. 1(a)—1(f) of Ref. [4].
There, the origin of the frequency scale corresponds to
the zero-field threshold and was deduced by measuring
the wavelength of the second dye laser radiation. The en-
ergy resolution of the experimenta1 spectra observed was
about 0.4 GHz; it was limited by the time constant of the
counting electronics (rather than by the bandwidth of the
dye lasers or broadening of individual Rydberg levels due
to stray electric fields and residual motional Stark eFects).
Some experimental results, shown as heavy curves in Fig.
2 of this paper, were calculated by Fourier transforma-
tion of autocorrelation functions of the experimental
spectra [see also Figs. 1(g)—1(l) of Ref. [4]]. Because of
the energy resolution of the recorded spectra, the
Fourier-transformed (power) spectra are limited to re-
currence times T/T, ~5 and are shown up to T/T, =3
in Fig. 2. The large, distinct peaks establish that the Auc-
tuations are superpositions of sinusoidal oscillations, hav-
ing the form Cl, sin( TkE+ hk), where Tk is the time of a
peak and IC& i

is the height for that peak in the power
spectrum.

FIG. 2. The recurrence spectrum, i.e., the squared Fourier
transform of the absorption spectrum. The thicker curves show
the experimental results. The needles show the square of the
absorption amplitude, i.e., i Ck„ i, calculated by using Eqs. (3.9),
(A7), or (Ag). They are smoothed by averaging [Eq. (3.10a)] and
finite-range Fourier transformation [Eq. (3.10b)j to obtain the
thinner curves in the figure. The label near each needle is for
the associated closed orbit. The shape of these closed orbits can
be found in Figs. 3(a) and 3(b). The superscript of the labels is
the number of repetitions of the closed orbit.

We call graphs like Fig. 2 "recurrence spectra, " since
(as explained below) each peak corresponds to an electron
orbit that returns to the atom. Tk is the return time and
we call

I Ck the "recurrence strength. "
It is evident that the recurrences change significantly

with changing electric field. The recurrences also change
as the laser frequency and electron energy are varied. It
is now known that scaled-variable experiments (varying
photon energy and electric or magnetic field simultane-
ously) produce cleaner and better-resolved recurrence
spectra [2]. This approach was not available to us when
these measurements were made. Instead we used a range
of photon energy sufficiently small that recurrence times
would be nearly constant, but also sufticiently large that
Fourier transformation would give narrow peaks.

III. APPLICATION OF THE CLOSED-ORBIT THEORY

In this section we will use the closed-orbit theory [3] to
compute the modulations in the photoabsorption cross
section for a hydrogen atom in parallel electric and mag-
netic fields. We will show that these calculations are gen-
erally consistent with the experimental measurements of
the absorption spectrum of Ba.
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A. System

y2/3r p y
1 /3p (3.2)

A hydrogen electron in a state with magnetic quantum
number equal to zero is in a uniform electric field F and a
uniform magnetic field B. The fields are parallel and
their common direction is chosen to be the positive z axis.
The Hamiltonian of this system is given by1, , e'H= (p +p, )—,+ ,'mcus—,p +eFz, (3.1)(p'+ ')' '
where I and e are, respectively, the mass and charge of
the electron, and cv, =eB/mc is the cyclotron frequency.
Here we used cylindrical coordinates (p, z, P) and the P
motion has been separated. We define the scaling factor
y=B/B ,owhere Bo=m e c/fi =2.35X10 T, and use
the scaled variables

the oscillator-strength density that would be obtained in
the absence of the external fields. Df i (E) is the oscillato-
ry term arising from the closed orbits and their repeti-
tions,

Df, (E)= g g Cl, n (E)sinb, k„(E), (3.8)

where k labels electron orbits that are closed at the nu-
cleus, and n labels the repetitions of each such closed or-
bit. The basic expressions for Ck„and Ak„were given in

Eq. (5.13) of Ref. [3]:
kn (E E )2 I I

&
—I

X (sin8";sin8f )' Al,„

X exp i Sk„+2 i/ 8rb —pk„—

where r=(p, z) and p=(p, p, ). The Hamiltonian be-
comes

X exp( i 3m/—4) Y(.8,")Y*(8f) . (3.9)

(3.3)

Here we have used atomic units (i.e., m =e =Pi= 1). We
further transform the coordinates to semiparabolic coor-
dinates [7] (u, v, r),

z —9 v, p —2QU
dt

1

4r(t )
(3.4)

+8(Fy )(u —v )=2. (3.5)

This form of Hamiltonian will be used throughout the
rest of this paper. This Hamiltonian is an even function
of each coordinate and each momentum

h=f(u, v,p„,p, ) . (3.6)

This symmetry has an important consequence that we
will use later [8]. Every orbit that starts from the origin
at t=O and returns to the origin at time t=T,&„„„con-
tinues in a straight line through the origin and then
moves on a path that brings it back again to the origin
such that it is periodic with period T~„;,d=2T ]„„„.
Conversely, every periodic orbit that goes through the
origin consists of two closed orbits having closure time
equal to half the period. The two closed orbits are relat-
ed by inversion through the origin.

B. Formulas for photoabsorption spectrum

The photon-absorption rate is proportional to the
oscillator-strength density Df (E), where E is the energy
of the electron after photon absorption. Df(E) has two
terms,

Df(E)=Dfo(E)+Df, (E) . (3.7)

Here Dfo(E) is the smooth background term, equal to

where r =(p +z )', and obtain the Hamiltonian

h= —,'(p„+p, ) 4(Ey )—(u +u )+8u u (u +u )

Here Sk„+2(8rb )'I is the action around the closed orbit
starting and ending at the nucleus, Ak„ is the classical
amplitude associated with the closed orbit (the amplitude
of the returning wave), and Y(8) is the angular distribu-
tion of the outgoing waves. Further details are given in
Ref. [3].

In this paper we incorporate several recently developed
refinement of the closed-orbit theory [8,9]. Recurrences
associated with the orbit parallel to the fields are includ-
ed, and a modified version of Eq. (3.9) is used that allows
us to compute the recurrence strength for the nth return
of an orbit from properties of the orbit on its first return
(see Appendix).

With these refinements, our formulas describe the os-
cillations in the photoabsorption spectrum of hydrogen
atoms in parallel fields. In the following section, we will
use these formulas to calculate the Fourier transforms of
the absorption spectrum, and compare the results with
the experiment. To make the results analogous to the ex-
periments on Ba, we take the initial state of hydrogen to
be the 2p o state. All calculations were made at
B =970 G, E=0.6 cm ' (the center of the range of mea-
surements) at electric fields specified in the graphs.

C. Comparison with experiments

Df, (E) in Eq. (3.8) is a sum of sinusoidal oscillations,
each associated with a closed orbit. Hence its Fourier
transform is a set of 6 functions, each representing a
closed orbit, shown as the needles in Fig. 2. A needle is
located at a time T equal to the return time of the associ-
ated closed orbit, in units of the cyclotron period
T, =2m.mc/eB. The height of each needle is the re-
currence strength

~ Ck„~ for that orbit. The ratio of in-
tegers near a needle is the label for the associated closed
orbit whose picture is shown in Fig. 3.

Since experimental spectra were recorded with limited
spectral resolution due to the time constant of the count-
ing electronics, it is reasonable to average Df, (E) over
the energy E in a small range from (E—hE) to (E+AE):
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E' E-
Df, (E)=f Df

&
(E') exp — dE'

F- &—E &2nhE 2( KE )

Df&(T)= f Df (E)e ' /"dE .
1

(3.10b)

The square of this Fourier transform gives the fine curves
around the needles in Fig. 2.

The experimental and theoretical results agree with
each other quite well, as shown in Fig. 2. The most im-
portant discrepancy we find between theory and experi-
ment is that the experimental peaks for the longer-time
orbits are often smaller than the theoretical ones. This is
reasonable, since longer orbits are more difficult to detect
experimentally than shorter ones.

Why does a calculation on hydrogen agree with an ex-
periment on barium? (i) The relevant closed orbits are
very large, and the electron spends most of its time at dis-
tances around 10 ao from the atom. All it can see is a
positive charge and the external fields. (ii) The initial
state of Ba 6s6p'P& has the shape of a p wave, and spin-

(3.10a)

We use the spectral range actually measured in the exper-
iment (i.e., E, = —0.2 cm ' and E2=1.4 cm ') as the
limits of the integral in the Fourier transformation, and
define

orbit coupling can be neglected. Dipole matrix elements
connect this to outgoing s waves and d waves, and the an-
gular distribution of the outgoing waves is described by
the factor Y(0) in Eq. (3.9) or Eq. (A7). The outgoing
waves are similar in barium and hydrogen, since the ratio
of the dipole matrix elements connecting the 6s6p 'P,
m =0 intermediate level with the 6s(n+4)s 'So and
6s(n +3)d 'D2 rn =0 Rydberg states is similar to that of
the matrix elements between the states 2p I=0 and ns,
nd m =0 in hydrogen. This can be inferred from zero-
field spectra of the 'So and 'D2 Rydberg states of Ba and
calculations using hydrogenic wave functions. (iii) The
Ba+ core produces a small phase shift to the outgoing
waves [9]. However, the recurrence spectrum is not very
sensitive to this.

This last point needs more discussion. Suppose we
model the effect of the Ba+ ion core as a short-range po-
tential modifying the Coulomb potential at distances
—lao. Suppose also we treat the electron motion semi-
classically even at these small distances. The result is
that the trajectories are substantially changed near the
core. In a Coulomb field, orbits are sent back in the
direction from which they came, but with the core, orbits
at small impact parameter are widely scattered. As a re-
sult, the core itself produces chaotic trajectories.

In reality, however, the core affects only the phase
shifts of the lowest one or two partial waves, and we be-
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FIG. 3. Some closed orbits,
arranged in terms of their paren-
tage. (a) Closed orbits that bi-
furcte from the parallel orbit Pii.
The orbits in the first row are
created in the closure-1 bifurca-
tion of Pii, those in the second
row in the closure-2 bifurcations
o

ll
and so on. Each orbit is

labeled by a ratio of integers
M/n, explained in the text. (b)
Closed orbits created in bifurca-
tions of orbit [2/1], [3/1], and
[4/1] shown in (a). Their labels
have two ratios: the first labels
the parent orbit and the second
labels the offspring.

2/1, 4/3 2/1, 5/3 6/3

2/1, 5/4 2/1, 6/4 2/1, 7/4 8/4

3/1,7/3 3/1, 8/3 9/3

v 4
3/1, 9/4 3/1, 10/4 3/1, 11/4 12/4

4/1, 10/3 4/1, 11/3 12/3

4/1, 13/4 4/1, 14/4 4/1, 15/4 16/4



48 PHOTOABSORPTION SPECTRA OF ATOMS IN PARALLEL. . . 2121

lieve that a semiclassical treatment confuses the picture.
In Ref. [9], we incorporated a quantum description of
scattering by ion cores into the closed-orbit theory, and
showed that the main effect of the core is a small change
of phase of the oscillations in the absorption spectrum.

IV. BIFURCATIONS OF PERIODIC ORBITS

A. Introductory remarks

The character of classical orbits of an atomic electron
perturbed by a magnetic field is very different from that
of an atomic electron perturbed by an electric field. Tra-
jectories of an electron in a hydrogen atom in an electric
field are all regular, and there is a full set of conservation
laws (since the Hamilton-Jacobi equation is separable).
In a magnetic field, however, at energies near threshold,
the trajectories are highly chaotic: surface-of-section cal-
culations show no visible order, and islands of stability
are either tiny or nonexistent. This distinction between
order and chaos has important consequences for the
closed orbits of the system.

Recall that in (u, v ) space, each relevant closed orbit is
half of a periodic orbit. In a regular system with two de-
grees of freedom, periodic orbits fall into orderly families.
Periodic orbits in the electric-field case will be discussed
in a future paper by Gao and Delos. At energies below
the zero-field threshold, there is a stable orbit lying paral-
lel to the electric field. It is surrounded by quasiperiodic
orbits (tori), in which the frequency for u oscillation
(along the z axis) is approximately constant, while the fre-
quency for v oscillation (across the z axis) decreases with
increasing amplitude of U motion. Embedded in this con-
tinuous set of tori are rational tori. Each rational torus
consists of a continuous one-parameter family of periodic
orbits, all having the same frequency ratio co„ /co„=m In.
Within each family is a single orbit that touches the nu-
cleus. Only this orbit (and its time reverse) can produce a
visible recurrence. It follows that closed orbits of any
given period are isolated, and fall into orderly patterns.

Now let us raise the energy above threshold and turn
on the magnetic field weakly. Raising the energy tends to
destablilize the central orbit, but turning on the magnetic
field stabilizes it again. It follows that the picture dis-
cussed above qualitatively describes the orbits of the elec-
tron at energies above threshold when electric effects
dominate magnetic efFects. Quantitative surfaces of sec-
tion for this case were shown in Fig. 4 of Ref. [4].

Now let us reduce the electric field, keeping the mag-
netic field fixed. We know from earlier calculations that
if F=O, surfaces of section show no visible order. In
such systems, periodic orbits are isolated, unstable, and
typically they do not fall into any global patterns [11].

Furthermore, chaotic systems have many more long-
period orbits than do orderly systems. This fact was es-
tablished by Poincare and BirkhoF (a simple form of their
argument is given by Jackson [12]). In a regular system
with two degrees of freedom the number of periodic or-
bits of given energy having period less than T „is pro-
portional to T,„, whereas in a chaotic system the num-
ber is proportional to exp(aT, „)/T,„,where a is a con-

B. Essential results from bifurcation theory

As mentioned earlier, the essential aspects of bifurca-
tion theory were developed by Meyer and further
developed (for systems with symmetries) and applied to
the diamagnetic Kepler problem in Ref. [6]. The essen-
tial results are the following.

(i) Given a periodic orbit which exists at some value of
electric field F, as we vary the electric field, the orbit gen-
erally changes its shape smoothly. It may be created or
destroyed only at special, isolated values of F.

(ii) An unstable periodic orbit cannot bifurcate. It can
be destroyed only by collision with a stable orbit.

(iii) Stable periodic orbits can bifurcate to create new
orbits of longer period in the following way. If an orbit is
stable, then in general its neighbors oscillate about it
quasiperiodically. However, at certain values of the pa-
rameter F, they oscillate periodically and their period is
some multiple n of the period of the stable orbit. At such
values of F, new periodic orbits can be created, and their
period is n times that of the original stable orbit,

ynew
stable (4.1)

(iv) Most commonly, a stable and an unstable pair of
orbits of period nT„,bl, are created. On a surface of sec-
tion, they form an n-island chain, and we call this an
island-chain bifurcation. Exceptional cases occur if
n=4, 3, 2, or 1.

The above statements describe typical bifurcations of
periodic orbits. The theory we need differs in several
ways, as stated earlier: (i) the experiments are sensitive to
closure times, not periods; (ii) the experiments detect only
those orbits that are closed at the nucleus; (iii) the system
has a number of symmetries which lead to nongeneric bi-
furcations.

Details of the theory are given in Refs. [6] and [8]. The
one quantitative formula we need tells the location of bi-
furcations from properties of the Poincare half-map (see
Appendix). The quantity T', defined in Eq. (A3) can be
calculated for each closed orbit as a function of electric-
field strength. When T i (F) passes through certain
values, then new orbits that produce recurrences may be
created. The closure time of the newly created orbit is re-
lated to the closure time of the parent orbit by the follow-

stant. It follows that as order goes over to chaos, period-
ic orbits proliferate.

How does the system go from a small, orderly set of
periodic orbits to a vast incomprehensive profusion of
them? As chaos develops, new periodic orbits bifurcate
out of existing ones, and also new orbits are created "out
of nowhere. "

This phenomenon becomes visible in our system when
we reduce the electric field holding the magnetic field
fixed. It is somewhat masked by two other facts: (i) we
can only see orbits having short periods, and (ii) the
periods of the important orbits increase with decreasing
F. Nevertheless the phenomenon is visible in the experi-
mental measurements, and perfectly plain in the calcula-
tions.
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ing prescription:

+2 same closure time

0 closure time doubledT' —'

+1 closure time tripled
+V'2 closure time quadrupled .

(4.2)

0

The general formula is T& —=+2 cos(arm /n ), and the clo-
sure time is multiplied by n [13]. Equivalent information
comes from the angle aI, also defined in Eq. (A3). This
angle represents the rate at which the neighbors of a
given closed orbit wind around it in phase space. Bifur-
cation points occur when u', is a rotational fraction of m,

1.0

Field (V/cm)

10.0 100.0

Ia&=
n

(4.3)

C. Bifurcations of closed orbits

Newly created orbits are labeled by a fraction M/n; M is
chosen to be a certain Maslov index associated with the
bifurcation.

FIG. 4. Some matrix elements of J evaluated always at the
first return of orbits. Fine curve: TrJ for the parallel orbit.
When it passes +2 the orbit undergoes pitchfork or period-
doubling bifurcations. Medium curve: J» for the parallel orbit.
It vanishes at those bifurcations, producing singularities in the
classical amplitude. Heavy curve: Trj for the [2/1], [3/1], and
[4/1] orbits. These also undergo bifurcations at corresponding
values of this trace.

If the electric-field strength F is sufficiently large, we
find that there is only one closed orbit, lying parallel to
the electric field, and we find that it is unstable. If the
electron is launched from the nucleus at any nonzero an-
gle from the z axis, it is pulled downward by the strong
electric field, and it never returns. (For B=970 G,
E=0.6 cm ', this happens for I' ~54 V/cm. ) When E
decreases, other closed orbits bifurcate from this parallel
orbit, then other closed orbits bifurcate from those.

The values of F at which bifurcations occur is predict-
ed by computing T& as a function of F. The result for the
parallel orbit is shown in Fig. 4. As stated above, when
T

&

=+2 a new closed orbit having the same closure time
as the parallel orbit might be created. In fact, at half of
these points the newly created periodic orbit of the map
is not closed at the nucleus. At the points marked by
dots, a new orbit closed at the nucleus is created. Each is
labeled [M/1], and is drawn in Fig. 3(a).

These bifurcations can be categorized as "pitchfork bi-
furcations. " Since T', passes right through +2, the paral-
lel orbit goes from stable to unstable, and in fact two new
stable orbits are created in (u, U) space, which are
reflections of each other through the u axis. (When

IT, = +2, the period of the new orbit, as it is seen in the
Poincare half-map, is the same as the period of the paral-
lel orbit, and the bifurcation is an ordinary pitchfork.
When T', = —2, the period of the new orbit as seen in the
half-map is twice the period of the parallel orbit, and the
bifurcation is a period doubling. Since the experiments
are sensitive to closure times rather than to periods, this
distinction is not important to us. )

At field strengths F such that a& =m ~/2, or T', =0, an
orbit with twice the closure time of the parallel orbit may
be created. The first such point occurs just below 10
V/cm, and it creates the [3/2] orbit in Fig. 3(a). The next
such point occurs when a&=~, and the "newly created
closure-2" orbit is actually the repetition of the [2/1] or-

bit (and we call it [4/2] or [2/1] ). At F=1.8 V/cm,
where T& passes through zero again, the orbit labeled
[5/2] is created, and so on.

The creation of the [3/2] orbit might be called a
"closure-time-doubling" bifurcation. It is similar to the
famous period-doubling bifurcations, only in that the
relevant time for the new orbit is twice the time of the old
orbit. However, it has quite a different structure from
the usual period doubling (a stable orbit goes unstable,
and a new orbit of period 2 appears). This closure-time-
doubling bifurcation has the structure of a period-
quadrupling (4-island-chain) bifurcation of the Poincare
half-map, and the original parallel orbits stays stable be-
fore and after the bifurcation.

Similarly all other orbits [M/n] in Fig. 3(a) are created
by closure-time multiplication of the parallel orbit. We
call these "first-generation" orbits.

It happens that all the first-generation orbits are born
stable. As F decreases, they themselves bifurcate, and
produce "second-generation" orbits. Examples are
shown in Fig. 3(b). Each grandchild of the parallel orbit
is labeled by its parent's name [M/n] and by its own
name [M'/n'].

D. Bifurcation diagram in (field, closure-time) space

The bifurcations of closed orbits discussed in the previ-
ous section can also be illustrated in F versus T space
where F is the electric-field strength and T is the closure
time of the orbit (Fig. 5).

The leftmost curve in Fig. 5 with label P represents T
versus F for the parallel orbit. As F becomes smaller, the
electron goes further from the nucleus, and therefore the
period is longer. This curve has its first branch at
F=5.66. . . V/cm when orbit [2/1] is created. This
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FIG. 5. Bifurcations of closed orbits shown as return-time
versus electric-field strength. Each continuous smooth curve is
the return time T of a specific closed orbit, as a function of the
electric-field strength F. It can be seen that orbits [Mln] are
created in the closure-n bifurcations of the parallel orbit, and
that they themselves bifurcate further.

FIG. 6. Experimental overlay plot of the squared Fourier
transforms of absorption spectrum at different F values. The
horizontal axis is the return time of closed orbit T in units of the
cyclotron period. The vertical axis is the electric-field strength
F. The peaks may be considered to extend in a direction per-
pendicular to this TF plane.

branching is the closure-1 (pitchfork) bifurcation dis-
cussed before. The new orbit has its own curve for T as a
function of F. Similarly, we can see the bifurcations
which create orbits [3/1] and [4/1] branching out from
the same curve.

The second curve from the left in the lower part of the
picture, labeled P~~, is for the second repetition of the
parallel orbit. Again, this curve branches at bifurcations,
where orbits of twice the closure time of the parallel orbit
are created. Only orbits [3/2] and [4/2]=[2/1] are
plotted in the figure.

In higher-closure bifurcations of the parallel orbit,
more orbits [M/n], n =3,4, . . . , are created, and all
these orbits bifurcate further to produce the second gen-
eration. Therefore we observe more and more branching
in the right half of the figure.

Let us draw a horizontal line at F=4.79 V/cm in Fig.
5. It intersects the curves for orbit [2/1], Pii, [2/1], Pii,
[2/1], P, [5/3], Pii, . . . sequentially. These intersec-
tions indicate the locations of peaks in the Fourier trans-
forms of the photoabsorption spectra shown in Fig. 2.

E. Fourier transforms of spectra in an overlay form

The Fourier transforms of photoabsorption spectra
given by the experiments, as shown in Fig. 2, are for
selected values of the electric-field strength F. We can
put these figures together with corresponding figures ob-
tained at other field strengths in an overlay form as
shown in Fig. 6. The heavy curve in Fig. 2(a) (experimen-
tal result for F=4.79 V/cm), for instance, is now located
above the horizontal line for F=4.79 Vjcm in Fig. 6.
This overlay plot then corresponds to a three-dimensional
plot for the recurrence strength as a function of the field
strength F and the period of closed orbit T. The experi-
ments have been done for F= (0.958 V/cm)N, where
N=0, 1,2, . . . , 20, except X= 13, 16, 17, 18, 19.
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FIG. 7. Same as Fig. 6, but for theoretical results. The
height of peak is the absolute square of Ck„ in Eq. (3.8) and is
calculated according to Eq. (A7).

It can be seen in Fig. 6 that the recurrence peaks are
located along the fine curves in the F-T space, which are
a duplication of Fig. 5, the predictions of the closed-orbit
theory, and bifurcation theory. The predictions agree
with experiments very well.

Similarly, we put the theoretical Fourier transform of
photoabsorption spectrum for diA'erent F values together
in one figure, Fig. 7. Again the fine curves as a copy of
Fig. 5. We have calculated, using Eq. (3.16), the Fourier
transforms of spectra for F= (0.958 V/cm)N, where
%=0, 1,2, . . . , 20.

Comparing Figs. 6 and 7, the correspondence between
theory and experiment is again pleasing. In particular,
bifurcations are visible in two ways. At an [m /n] bifur-
cation of any orbit, the spectral oscillation amplitude for
the nth return of the orbit becomes very large. Also as
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character of the dynamics changes from orderly to chaot-
ic, and closed orbits bifurcate and proliferate. At a bifur-
cation, the observed peaks in the Fourier-transformed ab-
sorption become very large, then split into two. Bifurca-
tion theory for Hamiltonian systems describes the types
of bifurcations that typically occur. Comparing calcula-
tions to experiments, pitchfork, period-doubling, 4- and
6-island chains, and other bifurcations can be identified.
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we go through the bifurcation with F decreasing, a single
peak splits into two. Both of these phenomena are quite
plain at many of the bifurcation points, marked by dots.

Actually, at a bifurcation the semiclassical theory used
here has a problem. It does indeed predict that the
spectral-oscillation amplitude will become very large —in
fact it predicts an infinite amplitude. The physical reason
for the singularity is connected with the argument sur-
rounding Eq. (4.1). At the bifurcation, the neighbors of a
periodic orbit oscillate about it with a period that is ra-
tionally related to the period of the orbit. After precisely
n repetitions the neighbors all come back together and
are focused at the nucleus. Semiclassical theories predict
an infinite amplitude at a focus, and they have to be
repaired.

Near points of bifurcation we obtained peaks that were
too large to draw in Fig. 8, so we omitted theoretical
curves at F=0.958' with X=6, 10, 15, and 20. We see
the same phenomenon in a different way by examining a
single spectral-oscillation amplitude Ck„as a function of
electric-field strength. In particular, for the first closure
of the parallel orbit, the amplitude C~~ &

is proportional to
J,2~ ', and J,2 passes through zero at each M bifurca-

tion. We show this behavior in Fig. 8. The needles are
the computed values of ~C~~, ~

at various field strengths,
and the envelope curve is proportional to ~J,2(F)~
The singularities are quite evident.

The heavier curves underneath the envelope are peaks
corresponding to the parallel orbit extracted from the ex-
perimental data. The qualitative and even semiquantita-
tive similarity between the heights of these peaks and the
envelope of the needles is better than one might have ex-
pected.

V. CONCLUSION

Measurements of the absorption spectrum of atoms in
parallel electric and magnetic field give information
about closed classical orbits of the active electron. Each
closed orbit produces an oscillation in the absorption as a
function of energy, and a peak in the Fourier transform
of the absorption. As the electric field is reduced, the

APPENDIX: REFINEMENTS
OF CLOSED-ORBIT THEORY

(i) The classical amplitude on any return of any closed
orbit is related to an element of the reduced monodromy
matrix associated with that return. In regularized vari-
ables, let a closed orbit start at (u, u, p„,p, ) =(0,0,p„,p, )

and let its neighbors start at (O, dv, p„+dp„,p, +dp, ).
dp„ is determined from dU and dp, by the condition that
the closed orbit and its neighbors have the same energy.
We integrate Hamiltonian's equations of motion until
u (t) again passes through zero with either sign ofp„, and
we record the new values of v(t) and p, (t) as ui and p, i.
The reduced monodromy matrix J(1) is defined as

BU&BU)

BU Bp
J(1)=

~p 1 ~p 1

U BP

Jii(1) J(~(1)
J~i(1) J~~(1) (A 1)

The argument (1) refers to the first return. The matrix on
the nth return J(n) is defined similarly. In Ref. [8] we
have shown that for any return n of any closed orbit
(where the label k is temporarily suppressed)

—1/2
Rb

cos6;cos6&(n)J,2(n)
Rb

(A2)

(A similar relationship was also used in Ref. [10].) Here
Rb is the boundary radius, Rb is the speed at this radius,
and 6&(n) is the angle from which the electron ap-
proaches the atom on the nth return.

The calculation of (v„p, i) from (uo, p, o) defined above,
stopping every time that u =0 regardless of the sign of
p„, defines the Poincare "half-map" (usually one stops
only when p„)0, but the symmetries make the half-map
more convenient and appropriate).

(ii) The element of the reduced monodromy matrix on
the nth return is related to properties of the reduced
monodromy matrix on the first return [8]. Define a'(, Ti,
and T„' such that
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cosa] sgn(J]]+ Jz2)V J]]J22

cos(2a', ) =sgn(J»Jz2)(2J»J22 —1), otherwise,

T', =sgn( J»J22 )2 cosa', ,

T„' = sgn( J»J22 )2 cos( n a', ),

(A3)

where a', is real with 0 & a'1 & m if 0 & J11J22 & 1, and n1 is
purely imaginary otherwise [and cos(na])=cosh(n Ia']I)].
Then

n cx1
Int

n(m —a', )
Int

0,
vn

n —1,
n —1

Int
2

J12)0-

J12 &0 '
0&J11J„&1,

J12J22

J12J22

J J &0 11 22) 1
12 22

IJ„(n)I= J„(1)I Tn 4

T1 4

1, n odd,
1/2

22

n
Int —,

2
' J12J22

J11J22 & 0

(A6)

n even ~

P„=nP1+Vn,

where

(A5)

(A4)

In these formulas, all J, mean J,"(1)unless otherwise in-
dicated.

(iii) The Maslov index on the nth return is related to
the Maslov index and the reduced monodromy matrix as-
sociated with the first return [8],

Again all J;1 mean J; (1) and "Int" means "the integer
part of."

(iv) Oscillations related to the orbit that goes parallel to
the field are included. In Ref. [3], this orbit was not in-
cluded. If Eq. (3.9) were used for that orbit, we would
find that the modulations in the spectrum associated with
that orbit have zero amplitude [because of the
(sin8;sin6]f )' factor]. In fact, Eq. (3.9) does not apply
to that orbit. An appropriate formula was developed in
Ref. [9] for the zero-degree orbit.

With the refinements stated above, Eq. (3.8) becomes

0;Df](E)=Df](E) (~+2 vr ~ (E E; )
— g sin Y(0;)Y*(8f)

co v'I J]2

sin8f /2

sin 8,. /2

1/2

n Odd

1/4
11

J22

sina1

sin(n a] )

' 1/2

X sin n —p1——m —v„—+—'2 "2 4
(A7)

where 8; is defined by p,'"""'=2sin(9;/2), 0 ~ 9; ~ 7r; 8 is
defined likewise. Here Df, (E)

I

~~

is the contribution of the
parallel orbit to the absorption spectrum

J11 J22 ~

slnOf /2

sin8, /2

' 1/2

n odd J22 n even n =1
1/3

Df, (E)Ii=2 n, (E E;) — IY(0)I'
Bo J]2 I

sina1

sin(n a] )

(v) The monodromy matrix on the first return tells the
location and character of bifurcations. Cxiven an orbit
which is closed at the nucleus, suppose we determine the
monodromy matrix (Al) for perturbations of that orbit,
and the quantity a', defined in Eq. (A3). That orbit can
bifurcate at values of F such that

X Sin n —p1————v„—
fi 2 2 "2

Pla1=
n

(A9)

(A8)

The first summation in Eq. (A7), +co, is over all closed
orbits other than the parallel orbit. The other sums in
the square bracket are over all repetitions of each closed
orbit, with n the number of repetition. For those closed
orbits that have 8; =Of or

sgn( J»Jz2 ) )0,
and in that case

T', —=2 sgn( J]] +J22 )(J]]J22 )
'

(A 10)

(A11)

(If J» =J22, which is true for most of our orbits, T', is the

An equivalent expression is more useful in computations.
The orbit is stable if
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trace of the Jacobian matrix. ) The orbit can bifurcate if

T', =+2 cos(srmln ) . (A12)

The bifurcation may or may not produce new orbits
which are closed at the nucleus. If it does, then the first
closure time of the new orbits is n X (the closure time) of
the original orbit [13].

Our convention on a', is 0 a', (sr, so m (n [T. his
convention is required for (A6) to be valid. ] To label the
orbits, we found it convenient to use a fraction [M In] cosa', =cos(arm In ) =+cos(~Min ) . (A13)

where M is an integer closely related to m, defined as fol-
lows. We define the "two-dimensional Maslov index" p
of an orbit to be the Maslov index of the returning wave
of that orbit, excluding those increments that arise from
crossings of the z axis or from touching the origin. We
let the label M of a newly bifurcated orbit be equal to p,
unless the orbit bifurcates directly out of the parallel or-
bit, in which case M =p+ 1. It follows that at the bifur-
cation
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