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Rutherford backscattering from a thick target
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The plural- and multiple-scattering contribution to the thick-target Rutherford backscattering
(RBS) yield was calculated as a part of the single-scattering yield. The method is based on an
approximation of the finite total scattering cross section and employs Poisson statistics for the
number of collisions along the ionic trajectory. Within a linear approximation, trajectories with
diferent numbers of collisions contribute to the total scattering yield in a way similar to the double-
scattering process. The resulting total scattering yield is expressed as a multiple of the single-
scattering one, and is suitable for applications in RBS spectroscopy. The validity of the model is
limited to systems of light projectiles and heavy targets, to backscattering angles close to 180', and
to the high-energy part of the spectra.

PACS number(s): 79.20.Nc, 61.80.Mk, 34.50.Bw

I. INTRODUCTION II. THEORY

When thick targets are used for a Rutherford-
backscattering (RBS) experiment, the scattered ions ex-
hibit a characteristic energy distribution due to stopping
in the target. For a suKciently thick target, the energy
spectrum of the scattered ions extends from zero up to
the impact energy F~, reduced by a kinematic factor k.
In the simplest model, the spectral shape is explained as
a result of the single-scattering events [1]. The ion path
is assumed to be a straight line, broken by the respective
scattering atom in the target. The validity of this model
is limited to the near-surface region of the target. For
the inner parts, plural and multiple scattering provides
a significant contribution to the single-scattering spec-
trum, enhancing its low-energy part. For 0.1-MeV pro-
tons impinging on a gold target, the spectral shape was
well reproduced by the Monte Carlo simulation of Stein-
bauer et al. [2—4]. For applications in RBS spectrom-
etry, an analytical expression for the thick-target yield
is of great practical importance. Thick-target scattering
has been treated analytically by Sirotinin and co-workers
[5—7]. The authors assumed that the ions attain a well
peaked angular distribution before and after the princi-
pal (large-angle) scattering. The plural- and multiple-
scattering correction to the RBS spectrum was obtained
as a simple multiplicative factor which depends merely
on the angular spreads of ions before and after the prin-
cipal scattering. In the present study, the factor of Siro-
tinin and co-workers was found to reproduce about one
half of the plural- and multiple-scattering yield. In the
Monte Carlo calculations [2—4], the authors distinguished
between the ion trajectories with one, two, and any par-
ticular number of collisions. A similar model was used
here, but it is largely based on the symmetry proper-
ties of the Legendre polynomials as a function of the ion
de8.ection angle. An improved expression for the total
scattering yield is derived.

A. The scattering cross section

In the center of mass system, the Rutherford cross
section on a bare nucleus can be written in the form

do. d2 (E)
dO (1 —cos tl) 2 '

where tl is the scattering angle and d(F) is one-half of
the distance for the head on collision at the energy E.
Screening of atomic electrons substantially reduces the
cross section for low scattering angles. Several approxi-
mations were used to describe this effect.

(a) Goudsmit and Saunderson [8] proposed to set && to
zero for scattering angles smaller than a certain scatter-
ing angle 8 . Consequently, scattering occurs for impact
parameters smaller than the cutoff radius a = d cot

(b) Wentzel [9] calculated && in a Born approxima-
tion for the Coulomb potential multiplied by an expo-
nential screening function. A result similar to (1) was
obtained, but with the denominator in (1) replaced by
(1+r —cos tl), where r is a small positive constant (not
specified here). The parameter r unimportantly influ-
ences && at large scattering angles. The calculation was
also performed numerically for the Thomas-Fermi poten-
tial [8].

(c) For small impact energies used in RBS experiments,
scattering is classical. Giittner [10] and Andersen et al.
[11] expanded the screening function up to the first or-
der term, cut off the potential in the region of an oppo-
site sign, and solved analytically the classical scattering
integral. The result is similar to that of Wentzel, but
with a different parameter r. Again, scattering only oc-
curs for impact parameters smaller than a, which for the
Thomas-Fermi screening function is given by 0.63a~ [11],
a~ being the Thomas-Fermi radius.
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It is common to the above approximations that they
remove the singularity at 6 = 0 and predict a fi-
nite total scattering cross section on the neutral atom.
This is contradictory to the exact numerical calculation
of Meyer [12] within the Thomas-Fermi approximation
which yields a divergent total scattering cross section on
the atom. For scattering in a solid, Meyer also used a 6-
nite total scattering cross section. The cutoff radius was
set to one-half of the interatomic distance, which exceeds
the corresponding cutofF radii of the models [8—11] by an
order of magnitude. For the Monte Carlo simulation of
RBS spectra, Steinbauer, Bauer, and Biersack [2] varied
the cutoff angle by a factor of 10, and within statisti-
cal error, found no variation of the total scattering yield.
The range of a, deduced from Ref. [2] is large and in-
cludes the values required by the models [8,10,11]. The
approximation of a finite cross section on the atom can
therefore be used and we shall adopt it for its analyti-
cal properties. Its simplest form [8] is given by the cross
section (1), with a cutoff at 8,.

For the cutoff approximation [8], the values of (P~(costi))
are determined by the angular distribution

dN 2 ~, ,~ ( ), ,
dcos6 0,

which yields
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The approximate part of (8) is valid for small values of
For further work we shall essentially need the value

of (Pq(cos tl)) = (cos 6). The corresponding necessary
parameter Kq = K, is given by [8]

B. Determination of the cutofF parameters

An ion penetrating a certain distance into the tar-
get is generally deflected by an angle 6 from its impact
direction. The mean value of 6 is conveniently con-
nected to the mean value of the Legendre polynomials
Pj(costi). Due to the addition theorem and the colli-
sional axial symmetry, (P&(cos 6„))after n collisions is
related to (Pj(cos tlat)) after a single collision by [8]

(P~(cos6 )) = (Pl(costly)) (2)

Along the ion path, defined by the initial and Final en-
ergy Ez and E, respectively, there are on the average v
collisions with target atoms,

m1

dE
z ~(&) (3)

where ~ is the total scattering cross section, p the target
density, mq the target atom mass, and S(E) the ionic
stopping power. Assuming Poisson statistics for the par-
ticular number of collisions, the mean value of P~ is given
by [8]

It is important to note that the mean values of P~ depend
only logarithmically on the total scattering cross section.

The value of a was determined by matching the re-
sults of (9) with those of the exact numerical integration
(6). The integration variable was substituted by the im-
pact parameter b according to the identity do = 2vrbdb.
The scattering angle 6 as a function of b was calculated
for the Moliere potential using the iterative procedure
of Biersack and Haggmark [14]. The integration results
were found to agree within a few percent with the clas-
sical calculation of Janni [13].

For 0.1 MeV protons on Au, the cutoff radius was de-
termined to be o = 0.06 A. . Using this value in (9) re-
produces the result of (6) for l = 1 and the data of Janni
within +5% in a rather broad energy interval of 0.05 and
3 MeV (Fig. 1). This implies that a, is a weak function
of energy, which can be ignored within the target.

The model of Andersen ef al. [11] predicts a similar
cutofF radius of 0.067 A, but the parameter Kq is then

n
(PI(cos6))= ) e —(PI(cos8 ))

=e—v[1—(5'$ (co 6 ))] 0.9-

Including (3), the above equation can also be written in
the form [13]

(5)
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where the parameter K~ is defi. ned by FIG. 1. Comparison of the parameter It (9) for proton
impact on Au with the numerical results using the iterative
procedure [14] (line), and to the classical calculations [13]
(triangles).
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25'Fo lower than the K, value of (9). Values closer to (9)
would be obtained by a larger Andersen cutoK radius. of
0.12 A. .

For 8 & 8„the cross section (1) is overestimated with
respect to the cross section on the Thomas-Fermi atom
[12]. The cutofF at 8 provides an effective value of (1)
for the calculation of (cos6). In the Monte Carlo sim-
ulation [2—4], the scattering by angles smaller than 8,
was included as an additional correction. This type of
correction is now an inherent part of the procedure for
the determination of a ~ The cross sections according
to the models [10,11] are too low for impact parameters
approaching a . A correct contribution of the small an-
gle scattering to (cos 6) is then obtained by an increased
value of a, . This eQ'ect again supports the use of the
cutofF approximation [8] in our work.

C. The single-scattering spectrum

The authors [5—7] used in (12) a small-angle approxima-
tion 1 —(cos 6; )

—
z (8; ).

Within the linear approximation already assumed, the
general result (12) can be simplified further without sig-
nificant loss of accuracy. Expanding the right side of (5)
up to the linear term we And the relation

1 —(cos 8;) + 1 —(cos 6 )

pdE pdE
S(E) ~ S(E)

For heavy targets bombarded by light projectiles, A: is
close to unity and we can neglect the energy gap between
kE' and E' The .integration (13) extends between E and
Ei and yields a linear term for (cos6) along the entire
ion path in the target, but omitting the contribution of
the scattering 0,

If only single-scattering events contribute to the RBS
yield, the spectrum is generally given by [1,15]

dN do, p
dEdn( )=dn( '", dE

E pdE' S(E)
—1 —(cos 6)

1 —(cos 6, ) + 1 —(cos 6 )=

(14)

where E is the energy of scattered ions, && the Ruther-
ford cross section in the laboratory system [1], K„the
number of ions, and the coordinate x is measured along
the incoming beam. The cross section is calculated for
the scattering energy E' and should also be corrected
for electron screening efFects [11]. When calculating the
plural- and multiple-scattering corrections to (10), we
preferably use the simpler, center of mass cross section

A comparison of (12) and (14) reveals that the factor f
does not essentially depend on the energy of the principal
(large-angle) scattering E, which effectively simplifies its
evaluation. As shown later in Sec. III, multiplying the
single-scattering spectruin (10) by the factor (12) does
not fully account for the plural- and multiple-scattering
eRect.

E. The total-scattering yield

D. The factor of Sirotinin and co-workers

Sirotinin and co-workers [5—7] realized that it is the an-
gular part of the cross section (1) which is most sensitive
to plural and multiple scattering. An ion penetrating the
target experiences several small-angle and one principal
(large-angle) scattering 8, which is close to the single-
scattering angle g. A correction factor f was introduced
into (10) by averaging the cross section (1) over the an-
gular distribution of incoming and outcoming ions,

f = (1 —cos g)
W;(8;, (p;) W (8, p )

[1 —cos 0($,8, , tp, , 6, p )]

Here R;. is the angular distribution of ions after pass-
ing the path from the surface to the site of the principal
(large-angle) scattering, and W is the angular distribu-
tion of the ions on the way out. The angles 6, , p;
are measured with respect to the ion trajectory in the
single-scattering model. For the evaluation of (11) it
was necessary to assume that W; are axially symmetric,
strongly peaked and nonoverlapping, and that no singu-
larity in the integrand (ll) is encountered. The lowest
order terms of (ll) are

f = 1 + (1 —(cos 8,) + 1 —(cos 8 )) . (12)
3+ cosg

The approximation of a finite scattering cross section
allows us to distinguish between ionic trajectories with
one, two, and in general n scattering events. The total

2
spectrum &&&& is the sum of statistically weighted con-

2
tributions &@&& for particular types of the trajectories.
From Sec. IID we may expect that &&&& is proportional

to the single-scattering yield &&d&. The proportionality
factors f will be tentatively written as the linear com-
bination

f„=1 + ) a„i[1 —(Pi(cos 6„))].

The angular distributions of ions for a not very different
number of collisions are similar and we expect that the
coeKcients a vary slowly with n. Since the probability
distribution of scattering events has a distinct maximum
at n v, only a few terms f contribute significantly to
the total scattering yield. We can therefore discard the
n dependence of the coeKcients a. This approximation
enables an analytic summation of the factors f,

f = ) e " —, 1+) ai[1 —(Pj(c s6„o))] . (16)

The Poisson statistical weights are used as in the calcu-
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lation of {cos8) [8]. Using the relation (2) we find

f 1 + (1
—u[1 —(Pl

(casey�))]

) (17)

and in the linear approximation,

f 1+ v ) a~[1 —{P~(costi))]. (18)

For low-energy ions and heavy targets, the cutofI' approx-
imation [8] predicts v to be of the order of unity for a large
part of the spectrum. The second term in (18) is then es-
sentially the contribution of the double-scattering events
multiplied by v. In the factor 1' of the Moscow group
(12), the summation I contains only the I = 1 term, with
the coefIicient ai ——i+' '&+. lt may be expected that a
more accurate treatment of the double-scattering yield
results in an improved correction factor for the plural-
and multiple-scat tering contribution.

P. The double-scattering process

We shall calculate the spectrum of ions experiencing
two scattering events of total scattering angle @. Ini-
tially we shall assume a constant stopping power and an
infinitely heavy target atom (k = 1). The ions hit the tar-
get surface perpendicularly and the exit beam is inclined
at the angle n —@ with respect to the surface normal

I et us start with the single-scattering spectrum. The
ions with exit energy E are scattered by the angle g at
the target depth xo,

cos Q —1E = Ei —Sxo
cos lP

which used in (10) gives

FIG. 2. Geometry of the double-scattering process.

For the energy spectrum we need the number of ions scat-
tered into the energy interval dE. Since it is convenient
to integrate over x and cos 6, we express dr by dE (21),

dE
~

cos @~

S
i
cos@ —costi

(23)

1 + COS6~
0 = 7lG = 7td

COS c
p 1 —cos@

V =CT XO
mi COS

(24)

As in the derivation of {cos6) [8], we shall first ignore
the energy variation of 6 . An efI'ective value defined at
the depth xo will be used.

From (22) to (24), the double-scattering spectrum may
be expressed as a multiple of the single-scattering spec-
trum (20),

The yield (22) has to be multiplied by e ", the probabil-
ity that there is no other collision on the ion path.

The constants in (22) may be rewritten if we remem-
ber that the total cross section and the mean number of
scattering events are given by

dEdA "miS (1 —cosQ)s (20)
d No

dE dO dE dO
(25)

cos g —1 cos g —cos 8E = Ei —Sx —Sr
cos COS

(21)

The number of ions scattered into the solid angle dO is
then

diV, f' p l d2(x) d2(x + r)
dA " (mi ) (1 —cos 8)2 (1 —cos O)2

xdxdr dcos8 d(p (22)

For the double-scattering yield, we first attempted to av-
erage the cross section (1) over the angular distribution
(7). The result was evidently too large by a factor of
2. In a more precise model, the first scattering by an
angle 6 in the azimuthal direction p appears at the tar-
get depth x (Fig. 2). At the distance r from the first
scattering event, the second event occurs at an angle O.
As the ion velocity is now pointing towards the detector,
cosO = cos8 cos@+ sin6 sing cosy.

The ions which emerge from the target with energy E
(19) travel a path length of the same length. From the
geometrical consideration we find

while the parameter g is given by

2 1 —cos 6c
g = 2~costi(1 —cos@) 1+cos6

dx dcos6 dy
2vrxo (1 —cos 8)2 (1 —cos 8)2

~

cos g —cos 8~

d'(x) d'(x + r)
d4(xo)

(26)

The integral g is of the order of unity. For its evaluation it
is necessary to make further approximations. The factor

is a smooth function of x close to unity and
can be omitted. Its mean value, estimated for d =
exceeds 1.1 for E ( 0.46Eq. The integration region of
(26) is complicated and can best be seen in Fig. 3. It ful-
fills the two conditions that the path lengths for the exit
energy E are appropriately long and that any scattering
by an angle smaller than 6 is forbidden. For boundary
trajectories, the second scattering occurs at the target
surface. In the hatched area of Fig. 3, the azimuthal
integration can be performed analytically using the rela-
tion
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FIG. 3. Integration region for Eq. (26). The ions are scat-
tered up from the depth x =

2
'
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C
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&

' '+) +. There is a logarithmic
singularity in the point (Tp, cos g).

1

2' (1 —cos 8)2
1 —cos tI cos g
(cos 8 —cos g) s (27)

An analytical integration of (26) can be performed in a
reasonable way only for @ = 7r since the integrand is then
axially symmetric in the whole integration region. The
result is

1 6cos6 6cos6g= —+
4 (1+costi, )s 1+costi, y ln y

+-,'X —3X' » X ——,'X' + —,'X', (28)

where we introduced y =
z

' '+ to shorten the nota-
tion. Since g is a complicated function of 6 we expand
it up to the linear term

, (3g=l+tl,
I

—ln + — ~+ (29)
i2 t9, 8)

The expansion (29) is accurate to within 0.5% up to tI, =
0.8. As required by (15), the result (29) is indeed a linear
combination of 1 —(costly) and 1 —(P2(cos tie)) (8), the
coeKcients a~ being 4 and —~z, respectively. There is
also an agreement between (15) and (25): g—:fq.

For g & vr, the integration (26) was performed numer-
ically, splitting the integration region into several parts.
A new variable ln ~x —xa~ has to be used close to xa.
The integration was Gaussian, with an accuracy of about
O. l%%ua. From (12) it is expected that g depends on Q pre-
dominantly through the factor &+' '++. It was found em-

pirically that this factor acts approximately on the term
1 —(cos tie) = tI ln &, but not on the remaining term
tt (2 ln z + ~s). The factor of 2 in the logarithmic term

of (29) is then replaced by
(
+' '~&) . The validity of this

approximation is shown in Fig. 4. The difFerences be-
tween the analytical and numerical values of g are negli-

I I I I
1 I I

120 130 140 150 160 170 180

scattering angle (deg)

FIG. 4. The factor g (26) calculated numerically as a func-
tion of the scattering angle g (solid line), and its analytical
approximation (29), with the factor of —replaced by 2r~+'

' +
l

(dashed line).

gible for small values of 6 and for scattering angles close
to a, and rise to about 0.6%%uo at tl, = 0.3 and g 145'.

The factor f (18) is obtained by inserting the right
part of (29) into (18). Analogous to (4) and (5), the
multiplication by v in (18) transforms into the integral

m]

i7+ cos 6
1 —cos Q rI(E)

5~ pdE
4 S(E) (30)

Using (6) and (8), the above result may be rewritten
in a form which does not necessarily require the cutofF
approximation,

19 —3 cos vPf =1+
4(1 —cos 'lP) E

5 ' pdE
(31)

12 ~ S(E)
Finally we consider the efI'ect of the kinematic factor k
which is smaller than unity. Since for both scattering en-
ergies we have not subtracted two short energy intervals,
the factors (30) and (31) are slightly overestimated. The
resulting error is partly removed if we reduce the upper
integration limit Eq to kEq. This choice also provides a
proper limit of (30) and (31) at the upper energy edge
kEi.

pdE
S(E)

III. RESULTS AND DISCUSSION

Results of the Monte Carlo simulation of 0.1 MeV pro-
ton scattering on an Au target [4] served as reference data
for the present model (Fig. 5). Proton impact was per-
pendicular to the target surface and the exit angle was
15' relative to the surface normal. The single-scattering
spectrum was calculated from (10). The derivative
was obtained numerically, by precalculating the tables of
E', E, and

&
as a function of x. The spectrum height

was normalized to the simulated data at the upper en-
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FIG. 5. 0.1 MeV proton backscattering on 1000 A Au tar-
get. The Monte Carlo simulation of Steinbauer et al. [4] is
shown by a ragged line, and their single-scattering spectrum
by a broken line. The single-scattering spectrum according to
Eq. (10) is shown by a thin solid line. The dots show the sin-
gle-scattering spectrum multiplied by the factor of Sirotinin
and co-workers (12), and the heavy line by the present factor
(30).

ergy edge A:Eq. Since statistical fluctuations of the data
[4] are quite large, the corresponding value at the energy
kEq was obtained by a polynomial extrapolation. For
low energies, the single-scattering spectrum (10) is a few
percent larger than [4]. This difFerence may be explained
by a different approximation for the scattering potential
used in the calculation [4] by the TRIM computer program
[16]

Multiplying the single-scattering spectrum by the fac-
tor of Sirotinin and co-workers (12) does not reproduce
the total spectrum generated by the Monte Carlo method
[4]. The agreement between the simulated and analyti-
cally calculated spectra is considerably improved when
the factor f (30) is applied. The difference between the
spectra is within the statistical ffuctuations [4].

We have also compared the factor (30) to the general-
ized result (31) which was calculated directly using the
iterative procedure [14]. The right terms of (30) and (31)
difFered by 3% at the lower energy edge, which is within
the accuracy of the cutoff approximation (Fig. 1). The
resulting difFerence between (30) and (31) was smaller
than 0.7%, and supports the use of the simpler expres-
sion (30).

The second example studied is the known case of 0.28
MeV n-particle scattering on Pt [1] (Fig. 6). Here we
normalized our data at the upper energy edge of the
single-scattering spectrum as given by the authors. For
low energies, the calculation (10) yields values somewhat
lower than the original single-scattering spectrum. As in
the previous case, the factor (12) reproduces about two-
thirds of the plural- and multiple-scattering yield, but
using the factor (30), a rather good agreement between
the calculated and measured spectrum is obtained.

The validity of the present model is limited to light
projectiles and heavy targets, and to scattering angles

FIG. 6. 0.28 MeV n-particle scattering on 1130 A Pt tar-
get. The ragged line shows the experimental data [1],and the
dashed line the original single-scattering spectrum [1]. The
other lines are used as in Fig. 5.

not much different from vr and presumably to scattering
energies E z'. It does not take into account the effect
of energy straggling, and only partly considers the inelas-
ticity of the collisions. Since the two effects influence the
factor f in an opposite way, they mutually compensate
each other. The good results of Figs. 5 and 6 are also
supported by the fact that v does not exceed 1.8 in both
cases.

Equation (30) is simple enough to be used routinely in
RBS analyzing algorithms. In specific cases some mod-
est fitting of the cutoff radius a, or alternatively, of the
coefficients aq and aq (18) should be used. With thin
Alms, there is a spectral contribution below the lower en-
ergy edge. Figures 5 and 6 show that the height of this
contribution approximately equals the difference between
the total and the single-scattering spectrum at the lower
energy edge.

IV. CONCLUSION

A simple analytical formula was derived for the thick-
target RBS spectrum. The model assumed a finite total
scattering cross section on the atom, determined with re-
spect to (cos 8) along the ion path. The double-scattering
contribution to the spectrum was found essential for con-
sidering trajectories with a higher number of collisions.
The total yield was expressed as a multiple of the single-
scattering one. The corresponding proportionality factor
can be easily included into the existing single-scattering
codes.
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