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Phase-equivalent potentials for arbitrary modifications of the bound spectrum
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An analytic expression for a potential with the same phase shifts as a given potential but an arbi-
trarily diferent bound spectrum is derived with supersymmetric factorizations. The wave functions
of the phase-equivalent potential can be calculated from the wave functions of the original poten-
tial. Prom their expressions, a general form of the integral kernel appearing in the Abraham-Moses
method for deriving phase-equivalent potentials is established, with which the equivalence between
the two approaches is proved. Different particular cases are considered: removing (or adding) one
or several bound states at arbitrary negative energies and modifying the energy of a bound state.
The similarity between the expressions obtained for removing or adding an excited state with those
obtained in earlier works for the ground state leads to an extension of supersymmetric factoriza-
tions where potentials which are singular at finite distance are employed in intermediate steps of
the calculation.
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I. INTRODUCTION

V2 = VO 2
2

ln pl2dt

where vPp is the ground-state wave function of Vp. This
potential is singular, in agreement with generalized ver-
sions of the Levinson theorem [ll]. As this procedure can
easily be iterated, it allowed me to solve the ambiguity
problem of different o.+o. potentials. The wave functions
of the equivalent potentials are difFerent and this differ-

Supersymmetric [1—4] or Darboux [5] factorizations
allow one to construct phase-equivalent potentials [6]
whose spectra differ by a number of bound states [7—9].
However, until now, the modifications only concern the
lowest part of the bound spectrum. A number of low-
est bound states can be suppressed or new bound states
located below the ground state can be added. This re-
striction of the supersymmetric approach is not necessar-
ily shared by other techniques for modifying the bound
spectrum (see, e.g. , Ref. [10]). Recently, iterations of the
supersymmetric technique [9] have opened a way towards
more general modifications of the spectrum. This paper
is devoted to their derivation and an analysis of their
consequences.

Sukumar [3,4] has classified difFerent types of super-
symmetric factorizations. When these factorizations are
employed for modifying the bound spectrum of a given
potential, the phase shifts are modified. This modifi-
cation is unavoidable because of the Levinson theorem.
Starting from Sukumar's results, I have shown that a
phase-equivalent potential can be obtained after removal
of the ground state of a given potential Vo by performing
taco successive supersymmetric transformations [7]. The
potential resulting from the second transformation reads
[8]

ence should be observable in a bremsstrahlung reaction
[12,13]. In a similar way, two successive supersymmetric
transformations allow one to add a bound state below the
ground state of Vp without modifying the phase shifts [8].

In Ref. [9] (to be referred to as AB in the following),
Ancarani and I derive general analytic formulas for the
suppression of the N lowest bound states of a spectrum.
Phase-equivalent potentials are expressed with determi-
nants of integrals similar to the integral appearing in (1),
involving the K bound-state wave functions Qp* (i = 0
to N —1) of the initial Hamiltonian Hp. Although such
a formula is probably not more eKcient than the itera-
tive procedure [7] in numerical calculations, it is helpful
for clarifying the comparison with other techniques. The
addition of N bound states below the ground state of
Vo and the general form of phase-equivalent potentials
sharing the same bound spectrum as Vo are also consid-
ered in AB. In fact, as we shall see below, these formu-
las provide an ideal starting point for extensions to fully
arbitrary modifications of the bound spectrum. By com-
bining them, one can indeed remove a number of bound
states, add new bound states, and reintroduce some of
the removed states to reach a completely different spec-
trum.

Before generalizing the results of the supersymmetric
approach, let me come back to the Gel'fand-Levitan tech-
nique described by Abraham and Moses in Ref. [10] (to
be referrecl to as AM). These authors establish a general
algorithm for deriving phase-equivalent potentials but do
not provide analytic expressions for these potentials. Dif-
ferent authors have compared these two methods whose
spirit is rather difFerent [14,4,15,16]. The equivalence
between the AM procedure and two successive super-
symmetric transformations, when the ground state is re-
moved, was soon realized [14,4, 16]. In that case, the AM
equivalent potential (50) offers a striking similarity with
(1), although it is not presented in the context of the ra-
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dial equation. However, contrary to the supersymmetric
approach, the AM technique is not restricted to removing
the ground state and the formula (50) in AM is also valid
for removing any excited state. This puzzling fact indi-
cates that the problem is not fully understood yet in the
supersymmetric framework. The present generalization
and extension of the supersymmetric approach provides
a better basis for a comparison with AM.

In Sec. II a formula valid for the most general modifi-
cation of the energy bound spectrum is established. This
formula is applied in Sec. III to a comparison with the
AM method. A general solution of the AM integral equa-
tion is derived. Section IV describes the removal or ad-
dition of any number of arbitrary bound states. The
important particular case of modifying the energy of a
bound state is also considered. In Sec. V, I come back to
the principle of supersymmetric factorization in order to
understand some results of Sec. IV. Concluding remarks
are presented in Sec. VI.

to be added and the n —M states which should not be
removed (whose labels do not belong to Sp). Auxiliary
sets AI, containing indices of added states are now defined
for k&0as

Ak = (i g Sp~ i & k).

The Ay and Sy will be useful in recurrence proofs. The
number of elements in Ag is k + ok + N —M.

Let me denote as V2@ the potential obtained after re-
moving the k lowest bound states of Vo. This poten-
tial does not possess bound states at energies E(') with
i & k and more generally at energies E(') with i p Ak.
Hence, at those energies, square integrable solutions of
the Schrodinger equation do not exist. Let the functions

fz& be solutions, bounded at infinity, of the difFerential
equation

d2

2 + V2g(r) f2I (r) = E *
f2I (r) (i e Ak).

II. GENERAL SPECTRUM MODIFICATION Following AB, a matrix E'2I, is defined whose elements
read

For a fixed bound spectrum, finding the most gen-
eral phase-equivalent potential is a well-understood prob-
lem [17] (see also AB for the supersyrnmetric approach).
Therefore, I focus here on finding one potential whose en-
ergy spectrum has been modified in a given way. Other
potentials with the same spectrum can then be derived
with the standard technique in a further step. This will
allow me to choose a definite value for some arbitrary
constants which appear in the procedure in order to sim-
plify as much as possible the final result.

First, let me define the notations and conventions. The
states belonging to the bound spectrum of the initial
Hamiltonian Ho are numbered with integers in the or-
der of increasing energies: E( ) & E( ) & E( ) « 0.
Among these bound states, M states with labels si
s2 « . . sM will be suppressed. Let So be the set of
these labels. Then auxiliary sets S@, depending on some
positive integer k, are defined as

Sg = (i c Sp~ i ) k).

The number of elements in Sk is denoted as O.k. Im-
portant particular values are o.o ——M and 0 = 0 for
n& sM.

Simultaneously, N states numbered from —1 to —N
with increasing energies E( ) & E( ) « . . E(
0 are added to the bound spectrum. The set of their in-
dices is called Ap. The added energies E(') (i & 0) and
the energies E(') (i ) 0) of the initial spectrum must be
different but they are not related by any imposed order
relationship. Finally, let n & sM be some integer satisfy-
ing (if a bound state with index n exists) the condition
E(~) & E(—w)

The principle of the calculation is very simple. First,
the n states with labels 0 to n —1 are suppressed with the
iterative procedure described in Ref. [7]. This provides a
potential V~ . Second, n+ N —M states are introduced
with the technique explained in AB, i.e. , the N states

I"2~' (r) = ~'~V +(' i) ~()~()„, (, , ~ A„) (5)

where the o.; are positive parameters. As mentioned
above, I choose o.; = 1 when i & 0 in order to sim-
plify the calculation. The parameters o., of the added
states (i C Ap) do not introduce any complication and
are left free. Notice that indices i and j in the definition
(5) do not take all possible positive values smaller than
k and can take negative values. The indices in E2k are
therefore defined in a generalized sense.

Equation (41) of AB leads to the potential

d
V = V2. —2

2
lndetE2

(i, j EAp)
(i c A@,j c Sq)
(i, jeSg),

(7)

where the v(2(k) are physical eigenfunctions of potential
V2k at energy E(~). Indeed, the states belonging to Sk
are not suppressed for V21, . In the last line of (7), a
notation already employed in AB represents

q( )q(~)dt ( ~ S„)

where E2 is a matrix whose dimension is n + N —M.
The potential defined in (6) is already the final equiv-
alent potential I am looking for. The N states —1 to
—N belong to its spectrum and the M states s~ to sM
are suppressed. However, V is expressed as a function of
solutions corresponding to the potential V2 and not to
Vo. Therefore, V must now be expressed in a more con-
venient way. To this end, let me introduce the auxiliary
symmetric matrices X 2y with elements
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The dimension of matrix X 2I, is given by

and depends therefore on k. The matrices %2k present
some resemblance with the matrices M2y defined in Eq.
(53) of AB. This is not surprising as the same type of al-
gorithm is employed in that work to construct a general
form of phase-equivalent potential with the same bound
spectrum as a given potential. However, important dif-
ferences between them are that the dimension of X 2y is
variable and that not all values of the indices are allowed
in the definition of X2y. For example, index k appears
in X2I, if and only if k E So. These difFerences make the
properties of X ~y more complicated than those of M2k.

For k = n, the definition (7) provides

Moreover, the matrices &2k satisfy the recurrence rela-
tions

—[0,„' ]
—' det X» (k c So)

+[@l„' '] —'detX» (k g S,)

(;l f2'*„~ (i E Ak)
+2k @(i) (. S )

(15)

which correspond to energy E(') .
Y2k(y2k) are then defined as

The elements of

' ~('i)
2k
(i)

y-(* ~i
( „) ( P2k

I

(i, j & dk)

(i & dk, j = dk + 1)
(i = d„+ 1,j & d„)
(i = j = dk+1).

(16)

This nonsymmetric matrix resembles a matrix whose de-
terminant is displayed in Eq. (63) of AB. In addition, let
me define the matrices %2k( ) with elements

(43) of AB. To this end, let me introduce the matrices
Y 2k(y2k) which are obtained by adding one row and one
column (denoted with index dk+1) to A 2k. They depend
on a function p2p, which may represent an unspecified
/2k or f2k W. hen @2k = /2k, it may represent either a
bound state or a scattering state. Let me also define the
functions

(I,k)V»+, —V» —2, in@» (12)

which are proved in the Appendix. In spite of their sim-
ilarity, the two equations (11) describe rather difFerent
behaviors. When k g So, the dimension of %2k exceeds
the dimension of Xqk+2 by one unit because k belongs
to Sk but not to Sk+i. The opposite occurs when k g So
because k belongs to A.k+q but not to Ay. According to
(1), the potentials V2k+2 and V2k are related by

X(,j) X2k g m(i ~)

2k(vnl (il
( )

Up to a permutation, these matrices are obtained by sup-
pressing the last row and the mth column in Y2k. Notice
that these matrices only exist if m appears as an allowed
index in X 2k. Their existence is therefore subject to the
conditions k & m if m F Sp and k ) m if m g Sp.

As shown in the Appendix, Eqs. (42) and (43) of AB
lead to

Equations (6), (10), (11),and (12) show that the relation
vP(r) = [det X o]

' det Y p(go) (18)
d2

U = V2k —2
2

lndet %2k

holds for any k. The sign in (11) does not play any role
in a logarithmic derivative. Hence, for k = 0, the phase-
equivalent potential reads

d
V = Vo —2 lndet Xo. (14)

This equation is the central result of this paper and its
consequences are discussed in Secs. III and. V while
particular cases are analyzed in Sec. IV. According to
(7), the matrix Xo contains integrals involving the wave

functions Qol* of the suppressed states (i E So) and the
functions fo', bounded at infinity, corresponding to the
added bound states (i E Ao). The striking property of
(14) is that it does not depend at all on the states which
are removed and reintroduced in order to comply with
the requirements of the supersymmetric approach. This
simplicity is related to the choice n, = 1 for i g So and
i &0.

The wave functions corresponding to the final potential
V can now be derived as a function of the eigenfunctions
of Vo by using a similar algorithm based on Eqs. (42) and

III. COMPARISON WITH THE METHOD
OF ABRAHAM AND MOSES

Starting from (18), one can make a detailed compari-
son with the AM method. To this end, I expand det Yo
with respect to its last row and rewrite (18) as Eq. (12)
of AM under the form

&(r) = @o(r)— K(r, t)g, (t)dt, (20)

where

for arbitrary physical wave functions go of Uo, i.e. , for
scattering states or for nonsuppressed bound states, in-
cluding those which are suppressed and reintroduced. For
suppressed states go (m g So), @ vanishes because
identical rows appear in det Y o(go ) if f go godt
is understood as —J gol igodt. The wave functions of
added states read

l(r) = a ~ [det Xo] det Xo(,„) (m e Ao)

as also proved. in the Appendix.
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I( (, t) = ). , "@"( )f."( ) + ).f '*'( )&o'*'( ).
iGAp i&Sp

f ( ) (r) = [det X o] det Ão( ) (m g So). (22)

In (21), the physical wave functions g(')(r) defined in
(19) are employed. These functions are known expres-

sions of the fo' (i E Ao) and @o' (i E So). For symmetry
reasons, I introduce the additional functions

In the present section, I not only prove the equiva-
lence between the supersymmetric and AM approaches
in a general case but I also provide the analytic solution
(21) for the AM kernel. This solution can be written ei-
ther in mixed notation as in (21), or only as a function
of the initial solutions with the help of (19) and (22).
Although both methods are equivalent, phase-equivalent
potentials are not represented by the same formula. The
supersymmetric expression (14) is more convenient than
the equivalent expression (11) in AM.

Their expression is completely similar to (19) but cannot
describe a bound state of the Final potential V(r) as the
states m E So have been suppressed. A function f( )(r)
is a nonphysical solution of the Schrodinger difFerential
equation with the potential V (r) given in (14), at energy
E~ ~. Proving this statement requires general expres-
sions for nonphysical functions which are not available
in AB. However, one can show in a completely parallel
way that Eq. (42) of AB remains valid for a nonphysi-
cal function fo Starti.ng from this modiFied equation, it
is proved in the Appendix that f ( ) (r) in (22) is really
what its notation represents, i.e. , a solution, bounded at
infinity, of the Schrodinger difFerential equation.

The expression (21) displays an elegant symmetry be-
tween the physical and nonphysical solutions of the initial
and final potentials. I shall now prove that it corresponds
to the kernel required in the AM method. First, let me
calculate K(r, r). With (19), (22), and the definition of
the derivative of a determinant, one immediately obtains

IV. PARTICULAR CASES AND DISCUSSION

A. Suppression of M arbitrary bound states

The result (30) in AB provides the potential obtained
after removing the lowest bound states of a spectrum.
From (14) it can be generalized by the amazingly simple
expression

d
V = Vp —2 lndet Cp, (27)

where %o is an M x M matrix whose matrix elements [Eq.
(8)] depend on indices belonging to So. The difFerence
with Eq. (30) of AB is only that the suppressed states
which appear in 4'p can be arbitrary bound states. The
apparent obligation of sticking to the lowest bound states
in the supersymmetric approach disappears.

Equation (27) can be particularized to the suppression
of an arbitrary bound state go' as

d
K(r, r) = ——lndet Ao(r).

dr
d

V2 ——Vp —2 ln @(i)2dt (28)

Introducing this result in (14) provides the AM formula
for a phase-equivalent potential.

To complete the proof, one must show that K(r, t) sat-
isfies an equation of the Gel'fand-Levitan type with the
kernel

~I(, t) = ).~, 'f."(r)f."(t)
j&Ap

) - @(~)(„)y(~)(t)
j&Sp

(24)

defined in Eq. (9) of AM. This is most easily done by
introducing (21) and (24) into f K(r, t) A(t, u) dt. The
integrals over t can be expressed with (5) and (8) as a
function of Fp" and 4p" . The b,~ symbols which then
appear provide K(r, u). The rem—aining expression con-
tains the sum

This is nothing but Eq. (1), valid for any bound state.
I shall come back on this extended validity in Sec. V. If
one has to remove M bound states, one can either apply
(27) or apply (28) iteratively to a succession of poten-
tials V2, V4, . . . . In numerical calculations, the iterative
scheme is very easy to program. It does not involve a
determinant calculation as in (27). Therefore, it should
be recommended.

Finally, Eq. (27) or the iterative scheme provide a
single potential with M bound states removed. Other
potentials can be obtained by applying to this potential
the transformation (58) of AB.

B. Addition of N arbitrary bound states

The result (41) in AB is immediately generalized from
(14) to

(det Xo) ') Xo("~) det Xo(,)
= yo( (25)

d
V = Vp —2 lndet Ep, (29)

K(r, u) = B(r, u)— K(r, t)O(t, u)dt (26)

as in Eq. (10) of AM.

which is proved by elementary determinant properties.
Hence the kernel K(r, u) verifies the equation where Eo(" is defined by (5). There is no apparent dif-

ference between (29) and the AB result. The generaliza-
tion arises in the fact that the added negative energies
E(')(i ( 0) are not restricted any more to values smaller
than E~ ~. Again the generalization is extremely sim-
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pie and consists in forgetting the usual supersymmetry
restriction of adding states only below the ground state.

Equation (29) can be particularized to the addition of a
single bound state at an arbitrary negative energy E(

d' (
Vz=Vo —2»~ n i+

dr

This generalizes Eq. (3.8) of Ref. [8]. This equation can
be the starting point of an iterative process equivalent
to Eq. (29). However, phase equivalence is in that case
restricted by condition (50) of AB, which assumes that
the potential is singular enough to allow additional bound
states.

C. Moving bound states

While Secs. IVA and IVB provide natural extensions
of cases which were considered in earlier works, the
present section provides a new type of phase equivalence.
Indeed, let me now consider how to move bound states
from one energy ta another one without affecting the
phase shifts. This possibility might be useful in appli-
cations where a potential reproducing some phase shifts
does not provide the correct bound spectrum of the sys-
tem. This problem has been encountered, e.g. , in a po-
tential model for the study of radiative-capture reactions
of astrophysical importance [18].

The general formula for moving N bound states is
given by (14) with M =

¹ In order to have a better
insight into its structure, let me now focus on the dis-
placement of a single state. Then, Eq. (14) becomes

(31)

This expression involves the bound-state wave function
at the initial energy E(') and the nonphysical solu-

tion fo bounded at infinity, at the final energy E(
The parameter o. j provides some freedom in the poten-
tial.

The potential V in (31) can also be obtained in another
way. First, (28) is employed to remove the state at en-

ergy E('). Second, a state is introduced at energy E(
with (30). This requires calculating the function fz
for the intermediate potential V2. In principle, the order
af the operations could be reversed but then it would be
subject to a validity condition in the erst step (see Ref.
[8] and Sec. IV 8). The iterative algorithm is probably
more accurate in practice than a direct use of (31).

Then, the supersymmetric partner Hz of Ho is defined as

The expression (33) is usually restricted to the ground
state i = 0 because the nodes of go* lead to finite-(Z)

distance singularities in Vi for an excited. state.
However, phase equivalence requires two successive fac-

torizations. In a second step To, one writes [7]

(35)

where the separation energy E(') does not correspond
any more to a physical state in the Hi spectrum. The
operators Ai and Ai read [8]

V. EXTENDED SUPERSYMMETRIC
FACTORIZATIONS

H, =&,+&, +E('). (32)

In this T+ factorization, the linear differential operators
Ao and Ao read

Usually, supersymmetric factorizations are not per-
formed at energies larger than the ground-state energy
E( ). In order to question this restriction, consider same
bound state at energy E('). A phase-equivalent potential
is obtained after two supersymmetric factorizations de-
noted as T+ (E(') ) and T (E(') ) in AB. The initial Hamil-
tonian Ho —— d /drz + Vo(r) is writte—n as [3]

A+ = (A,
—)t' + '

1n (fg."]-' @I*)2d() (36)

The supersymmetric partner H2 of Hz is defined as

H, = A,
—4++ E(') (37)

and provides the potential V2 displayed in Eq. (28).
Again the function appearing in the operators Ai and
A» displays singularities at finite distance for excited
states. However, these singularities do not arise in the
positive function j"go' dh which determines V2.

The similarity between (28) and (1) indicates that an
unnecessary restrictive assumption occurs in the deriva-
tion of (1). Indeed, Eq. (28) is derived after a long se-
quence of "standard" supersymmetric factorizations but
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it is obtained in only two steps if Vi is allowed to be
singular. In fact, in the context of phase equivalence,
only pairs of supersymmetric factorizations are consid-
ered. Intermediate steps (corresponding to odd values of
the potential subscript) do not play any practical role.
Hence, conditions on Vi should be disregarded and the
sequence of equations (32) to (37) provides the result (28)
in a much faster way. Notice, however, that more general
equations such as (27) still require the kind of recurrence
proof performed in AB.

Equation (30) can also be obtained in a direct way
generalizing the treatment presented in Ref. [8] for adding
a bound state below the ground state. Starting with (30),
Eq. (14) can be derived with a proof similar to the one
employed in Sec. II.

In summary, one Ands here an example of a case where
the "no-node" restriction imposed to supersymmetric
factorizations should be eliminated. Other cases, also
involving combinations of several transformations, might
exist where an intermediate singular potential would be
acceptable.

VI. CONCLUSION

In this paper a potential providing the same phase
shifts as a given potential but with arbitrary differences
in the bound spectrum is derived with the supersymmet-
ric factorization method. The result is simply expressed
as a function of solutions of the initial differential equa-
tion. This compact analytic result may seem academic in
the sense that iterative procedures provide more eKcient
algorithms for numerical applications. However, this is
not the case at all since this analytic result gives rise to
several interesting consequences.

First, the equivalence with the method of Abraham
and Moses is now proved in a general case. The poten-
tials derived in both methods, though presented in a very
different way, are identical. The determinant expressions
arising from the supersymmetric approach are simple and
compact while the AM approach requires solving an inte-
gral equation. However, the main result of this compari-
son is that a general solution of the integral equation of
the Gel'fand-Levitan type, appearing in the AM method,
is now available. The expression of the integral kernel is
simple in mixed notations (involving the initial and final
problems simultaneously). In addition this kernel can be
expressed as a function of the initial problem only, but
in a more complicated way.

Notice that the general result (14) does not provide all
the possible equivalent potentials compatible with the
phase shifts and the bound spectrum, as stated at the
beginning of Sec. II. A more general expression involving
arbitrary parameters should exist combining the present
result (14) and the expression (58) in Sec. VI of AB.
In the AM approach, this would correspond to having
common states in the two parts of the kernel 0 [Eq. (24)].
Establishing an equivalence between the two techniques
in that case, i.e., calculating the kernel K, remains to be
done.

Second, the simple problem of adding or removing a

state anywhere in the bound spectrum receives an amaz-
ingly simple solution. The techniques for removing the
ground state or adding a new one remain valid, with a
simple modification of the relevant function. More gener-
ally, the formulas established in AB for removing the M
lowest bound states or adding N new bound states below
the ground state also remain valid for arbitrary sets of
bound states.

Finally, the surprising result obtained for adding or
removing a single bound state led me to reconsider the
"no-node" restriction in the supersymmetric factoriza-
tion process, i.e. , the fact that only separation energies
lower than or equal to the ground-state energy are con-
sidered in order to avoid Rnite-distance singularities in
the potential of the supersymmetric partner. This con-
dition does not necessarily apply if a succession of super-
symmetric transformations is performed. In that case, a
Rnite-distance singularity in an intermediate result may
be acceptable provided that it leads to a nonsingular
final result. This occurs in the construction of phase-
equivalent potentials because only pairs of factorizations
are needed. Hence, weakening this condition in other al-
gorithms based on supersymmetry should be considered.

At the practical level, I think that the most interesting
result, discussed in Sec. IV C, is the possibility of mov-
ing states in an almost arbitrary way in a bound spec-
trum. Of course, this modiFication of the bound-state
energies is already available in Ref. [8] and in AB, but
in a much more complicated way, by removing enough
bound states and replacing them. Equations (28) and
(30) [or Eq. (31)J now allow such modifications in a di-
rect way, by correcting easily the energy location of a
single state at each step, in an arbitrary order. This
possibility might lead to the construction of potentials
which not only reproduce given phase shifts but also a
given bound spectrum.
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APPENDIX

In this appendix, I give proofs of some equations em-
ployed in the text. To this end, let me first recall a few
recurrence relations satisfied by physical wave functions
$2i and nonphysical solutions f21, associated with a po-
tential V2y of the iterative process. When constructing
the phase-equivalent potential V2I, +2, the bound state of
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V2k at energy E(") with a wave function gzk is elimi-
nated. Equation (14) of AB provides

(42) of AB can be rewritten as

g = [det X2~] det Y2~(@2~). (A9)

v»+2=&»-[~» ] e»(k, k) y (k) (k) (Al) When k E So, the elements of Y 2k (rp2k) satisfy an exten-
sion of (A5)

Similarly, Eqs. (15) and (16) of AB read

f2k+2 f2k + [@2k ] 02k (('2k f2k dt(k k) ] (k) (k) (A2)

Y2k+2(V'gk+2) = Y2k (P2k)
(i j) (i ~)

[X—2k' ] Y2„" (y2k) Y2„' ((p2k). (A10)

aIld

(k) (k, k) y (k)
f2k+2 = l@~k' )

Equation (A3) provides a nonphysical solution f2k+2 at
energy E(k) where the bound state has been suppressed.
With the orthogonality between /2k and /2k, (Al) and(k)

(A2) can be combined into

The proof involves a direct use of (A5) and (A4), as
well as the calculation with a simple integration of

I p2k+~p2k+2dt Fo.r k g So, (A6) to (A8) are ex-

tended to similar relations where X and X are replaced,
respectively, by Y and Y. Hence, one obtains

det Y 2k+2 (&p2k+2)

(k, k) I (k)
V»+~ = V»+ [@2k ] /2k Ip2k dt(k) (A4)

—[iIJ2k' ] det %2k(+2k) (k C Sp)

+[~.'.' '1 'd t Y-(~-) (k 0 S.)

but (A4) is not valid for /2k .(k)

In order to prove the recurrence relation (11) for
det % 2k with these expressions, one has to discuss sep-
arately the cases k E So and k g' So. When k belongs

to So, all the functions f2k+2 in X2k+2 correspond to

functions f2k in X2k. This is not true if k g' So, be-

cause f2k+2 is related to /2k in X2k as shown by (A3).(k) (k) ~

For k C So, a simple integration using (A4) immediately
leads to

X(~») rX(kik)1 —&X(~ik)X(»)
2A+2 2k L 2k J 2k 2k

Equation (A4) applies for all yz'k because k does not
appear as an index in &2k+2. Then the simple deter-
minant property described in the appendix of AB pro-
vides the first part of Eq. (11) with Sk = Sk+i and
Ak = (k) u Ak+, .

For k g So, the calculation is slightly longer because
k E Ak+i. First, the proof leading to (A5) provides

By recurrence, (A9) and (All) provide, for 0 ( k ( n,

Q = [det X2k] det Y2k(/2k) (A12)

from which (18) follows.
The proof of Eq. (18) is not valid at energies where

states have been added or have been suppressed and rein-
troduced. I now consider these cases by starting from Eq.
(43) of AB which reads, after some permutation, as

= n [det X2 ] det X2 (A13)

where X2 ( ) is defined in (17). From (A5) and (A4),
the familiar-looking recurrence relation

X(i») X(' ~) [X(k k) ]—X(i ) X( )
2k+2(m) 2k(m) ~ 2k(m) J 2k(m) 2k(m) (A14)

is easily established for k C So. Then, (A2) of AB pro-
vides the determinant relation

det X2k+2( )
= —[iIizk' ] det X2k( ) (k E So) (A15)

X(i,j) X(i,j ) [@(k,k)] —iX(i,k)X(k,j)
( ~ k)2k+2 2k 2k 2k 2k

(A6)
which is an obvious extension of the first part of (All).
In a similar way, (A6) to (A8) can be extended for k g So
as

Here a comment on the notation is necessary. Matrix
X2k does not contain elements with row or column index
k. However, I employ the notation (7) anyway, but with
a tilde. With (A3), even simpler integrations lead to

X(' j) X(' j ) + [@(k ")]—iX(' ")X("2) (i f k)2k+2(m) 2k(m) 2k 2k 2k(m)

(A16)

aIld

X(i,k) [@(k,k)] iX(i,k)
( ~ k) (A7) (ik) (k k) j (ik)

X2„'+2( )
——[i112k' ] X2„' (i g k, k g m), (A17)

X(k,k) (@(k,k)) ]
2k+2 —

I. 2k J (A8) X'"" = [e(""']-'X'""
( y k)2k+2(m) 2k 2k(m) (A18)

By subtracting row k of det %2k+2, multiplied by Xzk
from every row i, one obtains the second part of (11).

The proof of (18) follows a similar pattern. Equation

and

(k, k) (k, k)X „'
( )

——[iIi2k' ] (k g m), (A19)
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where X2A.
' ——X2I,

' except for j = m where X2&'
—(I,~)

—(I,&)
—(k,m)

As earlier, one obtains from determinant manipu-
lations the complement of (A15),

det X2r, +2(mi = [@z&' ] det X2~im) (k g So, k P m).

(A20)

However, for k = m, the elements of column m in
X2 +2( i do not follow (A17) or (A19). Equation (A17)
is replaced by (A16) with j = m. The matrix element

Xz '

( )
is not equal to X2l +z) but to f2( )+2 and veri-

fies therefore a relation of the form (A18). By subtracting
row m in det X 2 +2( ), multiplied by Xz", from the
other rows, one obtains the relation

wave function of states whose removal and reintroduction
is not essential should not depend on the fact that they
have been considered or not.

Although all physical wave functions are now available,
one still has to prove the expression (22) for nonphysical
solutions corresponding to removed states, which is useful
in establishing the connection with the AM method. This
is a little more complicated because one has to start from
a formula which is not derived in AB. However, since all
proofs are almost identical to those of AB, or to earlier
proofs in the present work, I only state a few important
steps. For nonphysical solutions f, bounded at infinity,
of the Schrodinger difFerential equation corresponding to
the addition of n+ N —M bound states to potential V2

Eq. (42) of AB can be generalized into

d, t X, „, , = [e,'- -']-'d. t Y, (y,'-') (A21) f = [det&2 ] det Y2 (f2„). (A24)

involving the matrix Y2 defined in (16) but for the

particular case p2 ——Qz . Now, Eqs. (A13), (A15),
(A20), and (ll) provide

= [det %2m] det Y2m(gz ) (A23)

with o. = 1. Hence, the general formula (A12) is recov-

ered for the particular choice g2(
) of the wave function

and (18) is valid. This was to be expected as the num-
ber n of removed states needs not be precisely fixed. The

= n [det X2k] det X2A, ( l (k ) m). (A22)

When m g Ao, A: = 0 proves (19). For a reintroduced
state, m does of course not belong to So and to Ao. Then,
in the recurrence process, A: decreases to the value m
where (A21) applies and gives

In (A24), the definition (16) for Y2 is applied with p2
representing a nonphysical solution f2 We ap. ply (A24)
to calculate f( i as a function of f2 . Then, (All) can
be used provided that k ) m. When k = m, (A3) leads
to

det Y2 +2(f2 +2) = [0'z '
] det X2 (A25)

f = [det &2m] detX2 ( ) (A26)

with the help of (10) and (A25). Then, (ll), (A15), and
(A20) prove (22).

which should be compared with (A21). The proof is
rather simple because m does not appear as an index
in Y2~+2 (m g Sm+i U A +i). When k = m, the recur-
rence provides
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