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Energies, fine structures, and isotope shifts of the 1s22anl excited states
of the beryllium atom
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The energies and wave functions of the 18 28nl states of beryllium are calculated with a full-
core plus correlation method. Eight excited states (2p ' P, 3s ' S, 3p ' P, and 3d ' D) are
studied. A restricted variational method is used to extrapolate a better nonrelativistic energy. The
relativistic corrections are calculated with first-order perturbation theory. The calculated excitation
energies (relative to the ground state) are compared with experiment. For the 2p P, 3 s ' S,
3p P, and 3d D states, the predicted energies agree with experiment to about 1 cm . However,
the discrepancies are larger for 2p P, 3p P, and 3d D. The relativistic corrections are found to
be critically important in these comparisons. The predicted fine-structure splittings for 2p P21O
are 2.360 and 0.637 cm . They agree well with the 2.35 and 0.64 cm in the experiment. The
predicted Be—Be 2s S—3d D isotope shift is 14.08 GHz. This also agrees with the 14.05(4) GHz
in the experiment. The lifetime of the 1s 2s2p P1 is calculated using the intermediate-coupling
scheme.
PACS number(s): 31.20.Di, 31.20.Tz, 31.30.3v, 31.50.+w

I. INTRODUCTION

Extensive theoretical researches have been done on the
excited states of beryllium in the literature [1—16]. Most
of the work studied the oscillator strengths and lifetimes
of these four-electron systems and comparisons have been
made with experiment [17—20]. Although the transition
energies between these states are given in most cases,
only a few have predicted the nonrelativistic energy [21,
22]. Very few have studied the relativistic efFects of these
excited states [23]. By contrast, there have been numer-
ous studies on the nonrelativistic energy and relativistic
efFect of the Be 1 ground state in the literature [24]. The
lack of attempts to calculate an accurate energy for Be I
excited states could be an indication of the challenge fac-
ing such a study.

The energy and some of the fine structures of the Be
system have been accurately determined over 30 years
ago [25]. More recently, the isotope shifts of the ioBe—sBe
have been measured using two-photon resonance ioniza-
tion mass spectroscopy [26]. The precision of the shifts
has been given to within +40 MHz. To our knowledge,
no theoretical study has successfully compared with these
experimental results.

Recently, a full-core plus correlation method (FCPC)
has been carried out to study the ground state of the
Be-like isoelectronic sequence [27]. The ionization po-
tentials (IP) of these ground states are calculated from
Z = 4 to 25. They agree to the highly precise experimen-
tal data. For example, the predicted IP for Be I, C III,
N IV, 0 V, and F VI are 75 192.17, 386 240.0, 624 863.8,
918657.2, and 1267606.7 cm . They agree with the
experimental results 75 192.07(10) [25], 386240(1) [28],
624866(3) [29], 918657(4) [30], and 1267606(2) cm
[31], respectively. The calculated mass polarization ef-
fect for the Be I ground state also agrees with that of

Wen et al. [26]. This shows that substantial progress has
been made on the calculation of ground-state correlation
energy for four-electron systems. It would be interest-
ing to find out whether the FCPC method can also be
successful for Be-like excited states. Therefore, to carry
out such a study on Be I excited systems, where highly
precise experimental data are available, we will answer
this question and illuminate the challenge ahead.

Among the four-electron excited systems, the low-lying
excited states are probably the most challenging from
a theoretical point of view since correlation eBects are
strong in these systems. In this work, we carry out a
FCPC calculation for all the Be I 18 28nl states for n &
3. There are eight such excited states. We have not at-
tempted to calculate all the low-lying excited states since
each of these calculations is quite complicated. In the
experiment of Johansson [25], some of the fine-structure
splittings are not resolved. We will calculate the fine-
structure splittings of the triplet systems to compare with
experiment. This will give us a better understanding of
the experimental data.

II. THEORY

The Hamiltonian and perturbation operators used in
this work are the same as those of Chung, Zhu, and Wang
[27]. They will not be repeated here. The main difference
in terms of the numerical method. is that we used a re-
stricted variational method [32] in addition to the conven-
tional Rayleigh-Ritz variation method. The procedure is
similar to that of Chang [33], except that the basis func-
tions are not orthogonal and they may "oversaturate"
the functional space. Variation is carried out by optimiz-
ing the nonlinear parameters in the oversaturated wave
function. The variation is restricted in the sense that the
major part of the wave function is used as a single term
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and the parameters in this part no longer vary. In the
work of Chung and Zhu [32], it has been shown that this
method avoids numerical instabilities which normally oc-
curs due to linear dependence.

To implement this restricted variation method in
FCPC, we first write a "basic function" for the four-
electron system:

@g(1,2, 3, 4) = 4p(1, 2, 3) 4) + @1(1,2, 3, 4)

where

parameters are determined in the energy optimization
process. For each set of li, l2, l3, and l4, we try all possi-
ble l(i) and y, and keep the ones which make significant
contribution to the energy in %i.

For convenience of discussion, we will group the
angular-spin components into different orthogonal
groups. For example, [til2lsl4] represents the set of all
possible l(i) and y; which has angular momenta li, l2, l3,
and /4.

Using the Rayleigh-Ritz variational method, we deter-
mine the basic wave function 4b and the corresponding
eigenvalue Eg. We then expand the total wave function
as

@p(1,2, 3, 4) = AC 1,1,(1,2)42,„i(3, 4) (2)
4(1, 2, 3, 4) = DP@8(1,2, 3, 4) + @2(1,2, 3, 4)

@1(1,2, 3, 4) = A ) C,4„(,) i(;)(1,2, 3, 4) .

l(i) = [(li, 12)112,l3]l12„ l4 (4)

with the understanding that i/23 and l4 couple into I, the
total orbital angular momentum. For the eight excited
states considered in this work, four are singlets and four
are triplets. The singlet spin-wave functions are the same
as in Ref. [27]. The triplet spin functions are

Xi ——[(81,82)0, 83]1/2, 84,

X2 [(81 82) 1 83)1/2 84

and

X3 [(81 82) 1 83]3/2 84 ~ (7)

For the radial basis functions of each angular-spin com-
ponent, a set of nonlinear parameters is chosen. These

A is the antisymmetrizaton operator and C; are the linear
parameters. @1,1,(1, 2) is the predetermined 1818-core
wave function. It is the same as that given by Chung,
Zhu, and Wang [27]. 42,~i(3, 4) represents the wave func-
tion of the two outer electrons. Similar to Ref. [27], only
two angular components are included in this part of the
wave function. For D states, the angular components
(l3, t4) are (0,2) and (l,l). They are (0,0) and (1,1) for S
states and (0,1) and (1,2) for P states. Most of the other
correlation effects are included in 4i, which accounts for
the intershell as well as the intrashell correlations. In
this work, 4q contains about 950 terms of basis func-
tions. These basis functions, 4 f;l ~&,i(1, 2, 3, 4), are the
product of Slater orbitals with proper angular-spin func-
tions. They are similar to those of Ref. [27]. We try
to include in 4'q those basis functions with significant
energy contribution. The sum of 40 and 4i gives the
"basic wave function" of the four-electron system. The
angular components of @z can be represented by

where

I
@2(l,2, 3, 4) = A ) D Q f ) i(.).(l, 2., 3, 4)

42 is a function to saturate the functional space. It takes
essentially the same form as the 41 in Eq. (3). D s are
the linear parameters. 42 may have considerable overlap
with the basis functions in @i. Note that 4g is used as
a single term in 4. Hence the overlap between the basis
functions in 4'2 and 4q does not cause any numerical
instability [32]. The (l, l) matrix element of the secular
equation constructed from Eq. (8) is Eb —A where A is the
eigenvalue to be solved. In practice, we will break up 4'2
into many parts. A secular equation will be constructed
for each part. They will be calculated individually. Each
of the nonlinear parameters in the basis functions of 42
is optimized in the restricted variational calculation.

The relativistic and mass polarization perturbation op-
erators are the same as those in Chung, Zhu, and Wang
[27]. The explicit expressions will not be repeated. We
will use the same notation in this work, i.e. , Hi is the
mass correction to kinetic energy, H2 is the Darwin term,
Hq is the electron-electron contact term, H4 is the mass
polarization, and H5 is the orbit-orbit interaction. The
corrections from H», H2, H3, and H5 are all calculated
from first-order perturbation theory. Since H4 is a kine-
matic effect from the coordinate transformation, we cal-
culate this perturbation to infinite order in this work.
This mass polarization effect is very small. The result
does not differ appreciably from that of erst-order per-
turbation theory.

The contributions from the @ED and the higher-order
relativistic effects are calculated using a method de-
scribed by Chung, Zhu, and Wang [27]. We only con-
sider the @ED efFect of the two outer electrons. EfFective
nuclear charges are used in the hydrogenic @ED formula
in Drake [34]. These efFective charges are determined by
considering the 28 electron in the Geld of Be + and the
nl electron in the field of Be+ using the same method as
in Ref. [27]. The explicit formula for the 8 electron is
the same as in this reference. For other nl electrons, it is
[34]
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(—ln K(n, I) + (Z,sn) In(Z, sn)
~

1—

where

I/(I + 1) for j = I + 1/2
—I/l for j = I —1/2.

DE@ED (n, I, j) = 4Z sa 8 2l+ I
~(~+i)

n2 3cl+ —0.3285 c( ~ 2l + 1 3vrn
(2l —1)(2l) (2l + 1)(2l + 2) (2l +- 3) 4~ (10)

The values of ln K(n, I) are taken from Drake and Swainson [35]. In this work, the wave function of good quantum
numbers (I,, S, 1,J ) is expanded in terms of the products of the angular-spin functions of ls 2s and the nl electron.
The QED contributions are evaluated accordingly. For beryllium, these QED effects are very small. The higher-order
relativistic eÃect for beryllium is negligible.

For the Bne structure, the perturbation operators are

+SG
Z ~ lsi

2c2 ~ r3
i=1

(spin orbit), (12)

IIsoo = (spin other orbit),

si sj-
"i2

3(s; . r,, )(s, r;, )
r2"i2

(spin-spin). (14)

These perturbations are calculated using first-order per-
turbation theory.

III. COMPUTATION
OF NONKELATIV ISTIC ENEKG V

As in Ref. [27], we first calculated a basic wave func-
tion 4'g for each of the eight excited states 18 28nl + L

I

where the nl + L's are 2p ' P, 38 ' 5, 3p ' P, and
3d D. These wave functions contain two parts. 4 o is
the part with the lsls core [see Eq. (2)]. The 42, ~ in
this part has two angular components. The number of
terms in 42, ~ ranges from 45 to 49. The second part
is represented by 4q, which represents other correlation
effects. The number of terms ranges from 836 to 1038.
The energy obtained from 40 and 4z is given in Tables

TABLE I. Nonrelativistic energy (—E) of the 1s 2snl states of Be i [see Eqs. (1) and (8)].

State

3s'S
38 S
2p P
3p 'P
2p P

3P

3d 'D
3d D

From @o
(a.u. )

14.414 519 05
14.426 290 63
14.466 686 53
14.388 465 86
14.562 231 00

14.395 099 06

14.368 337 21
14.379 559 32

From 4'q

(p, a.u. )

3 438.22
3 507.91
6 323.12
4 322.42
4 682.79

3 547.73

5 105.20
4 796.98

@b(@0++i)
(a.u. )

14.417 957 27
14.429 798 54
14.473 009 65
14.392 788 28
14.566 91379

14.398 646 79

14.373 442 41
14.384 356 30

High /

(pau)
12.06
9.94

62.64
19.65
14.92

10.20

18.31
8.89

Prom 42'
(pa u. )

37.69
25.82

132.52
75.30
79.50

73.03

99.65
27.35

+otal @nonrel

(a.u. )

14.418 237 12
14.430 064 40
14.473 434 91
14.393 11333
14.567 238 30

14.398 960 12

14.373 790 48
14.384 622 60

Others
(a.u. )

14.370 51
14.382 3
14.423 55
14.344 56
14.518 44
14.518 4
14.351 06'
14.351 0
14.325 76g

14.336 9

See Table II.

See Table IV.
A correction of 230.1 pa. u. due to the leis-core deficiency is included in the total energy of each state.

'Weiss [22].
Hibbert [21].

sWen et al. [26].



48 ENERGIES, FINE STRUCTURES, AND ISOTOPE SHIFTS OF. . . 1947

TABLE II. Bet 1s 2snl nonrelativistic energy contributions (in pa. u. ) from pz. See Eq. (3). L is the angular component.
[lgl2l3/4] represent the combined contribution from difFerent angular-spin couplings of lq, l2, ls, and l4.

L
[0001]
[0012]
[oo23]
[0034]
[oo45]
[0056]
[oo67]
[0111]
[o122]
[ssoi]
[4401]
[5501]
[6601]
[oi is]
[o124]
[1123]
[i134]

Total

2p P
1401.11
787.28

1106.97
273.39
90.84
38.99
19.68

2222. 19
284.73
38.79
12.46
3.62
1.75

24.18

15.02
2.12

6323.12

P states
3p P

929.89
393.53
240.63
57.62
19.39
7.66
3.90

2356.97
247.55
39.23
12.98
3.18
1.46
5.78
.18

2.47

4322.42

2p P
922.22

1427.96
302.45

52.18
11.06
1.84
.59

1670.42
230.42
38.62
11.01
2.90
1.34
7.40

2.38

4682.79

3p P
472.87
197.72
53.29
6.48

2506.88
244.50
47.45
12.92
5.62

3547.73

[oooo]
[0011]
[oo22]
[0033]
[0044]
[oo55]
[0066]
[oi i2]
[0123]
[0134]
[0145]
[1111]
[1122]
[1133]
[2222]

S states
38 'S

272.71
2558.66
383.54

72.23
21.67
8.46
4.01

98.58
9.06
1.78
.48
.26

5.69
.42
.67

3438.22

38 S
296.19

2746.61
307.71
60.65
19.27
6.71
3.34

61.21
4.06

.64

1.52

3507.91

L
[0002]
[oois]
[0024]
[0035]
[oo46]
[0112]
[0231]
[0341]
[0222]
[o332]
[0442]
[0552]
[0662]
[0011]
[oo22]
[ooss]
[0044]
[1113]
[2213]
[3313]
[4413]
[1122]

D states
3d D

245.56
641.12
48.89
9.85

2632.76
50.22
5.66

181.57
36.63
11.81

446.55
643.38
40.32
8.09

63.84
8 ~ 52

30.43
5105.20

3d D
285.02

1431.81
34.78
4.67
1.09

2565.50
11.70

220.37
46.12
14.48
4.74
2.21

16.06
6.07

119.31
16.43
4.11
1.43

11.08
4796.98

TABLE III. Energy contributions ( AE) to the—Be i 1s 2snl states from @2 using the restricted variational method. L is
the angular component. [lqlqlsl4] represent the combined contribution from difFerent angular-spin combinations of lq, l2, ls, and
l4. (in p,a.u.).

[oooo]
[ooi 1]
[0022]
[ooss]
[0044]
[oo55]
[oo66]
[0112]
[o12s]
[0134]
[0145]
[0156]
[1122]

Total

38 'S
AE
3.89
8.42
4.48
4.16
3.26
2.28
1.18
6.63
1.90
0.45
0.37
0.42
0.25

37.69

3s S
AE
4.85
4.53
3.42
2.70
1.20
1.99
0.94
3.57
1.70
0.92

25.82

[0002]
[0011]
[0022]
[ooss]
[0044]
[oo55]
[0066]
[0013]
[0024]
[on 35]
[oo46]
[0112]
[oi23]
[0134]
[0145]
[0156]
[o167]
[o»2]
[0332]
[0442]
[0552]
[0662]
[1113]
[0057]

[1122]

AE
9.51
4.42
2.21
1.42
1.03
3.11
1.46

13.95
4.28
4.31
5.70
2.56
4.60
4.97
3.74
1.53
0.70
7.31
3.86
2.24
5.97
2.76
1.72
2.98
3.32

99.65

AE
0.89
1.39
2.20
0.73
0.35
0.44
0.99
5.07
2.10
1 ~ 95
2.57
1.29
0.68
0.62
3.33
1.38
0.05
0.30
0.68
0.33

27.35

3G1 D
L

[ooo2]
[0011]
[0013]
[0024]
[0035]
[0046]
[oi i2]
[0222]
[o332]
[0442]
[0552]
[0662]
[o12s]
[0134]
[1iis]
[2213]
[44is]
[1122]
[55is]
[6613]

L
[0001]
[0012]
[0023]
[oo34]
[0045]
[oo56]
[0067]
[0111]
[o122]
[0133)
[0144]
[0155]
[0166]
[oi is]
[o124]
[0135]
[O223]
[1112]
[1123]
[1 is4]
[1222]
[2223]

12.25
26.82
11.88
9.46

12.47
7.42
4.00
5.32

11.01
4.15
3.05
3.13
1.53
0.80
1.78
0.43
7.75
5.36
0.97
0.91
0.38
1.67

132.52

7.97
15.25
4.71
2.40
2.31
1.99
1.06
5.65
9.40
5.31
3.28
3.83
2.03
0.37
0.29
0.11
1.24
7.09
0.60

9.73
9.04
5.11
5.02
5.31
4.84
2.52
6.90

10.75
3.43
4.92
3.64
1.97
0.21
0.66

1.18
2.38
0.31

0.40 0.08
0.31

75.30 79.50

3p P 2p P
AE

3p P

12.16
8.68
1.99
3.14
2.79
1.12
0.49

12.03
7.63
4.54
5.68
2.47
3.94
0.92
0.09

1.09
3.31
0.81

0.17

73.03

Include the contributions of [1111],[1133], [2222], and [011.4].
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I and II.
As discussed in the preceding section, for each set of

orbital angular momenta lz, l2, l3, and l4, there are many
ways they may couple into the total orbital and spin an-
gular momentum of interest. We use [lql2lsl4] to repre-
sent collectively the group of various angular and spin
couplings. In Table II, the energy contribution of each
group is given to show the correlation eKect for each
state. The results in this table show that the triplet
states appear to converge faster. The groups with higher
l's in the triplets contribute less to the binding energy.
This may be part of the reason why our results are bet-
ter for triplets. This is analogous to the con6guration-
interaction calculation for heliumlike systems; the ener-
gies of triplets converge much faster than those of the
singlets [36, 37].

In the present work, we find that S states are easier to
compute. There are less angular terms which contribute
significantly to the energy. By contrast, the most diKcult
state in terms of precision calculation is the 1s 2s3d D.
This state is a mixture of 2p2p, 2s3d, and 2p3p [5]. This
makes the search of correlation energy very challenging.
In the lithiumlike 1s 3d states, correlation eKects are very
small. It is relatively easy to obtain an accurate energy
for these D states using FCPC method [38]. The Be 1

1s 2s3d D state is very diferent.

The correlation energy in Table II is added to the en-
ergy from 4o to give E~. E~ is an upper bound to the
nonrelativistic energy. In Ref. [27], a partial saturation
of basis functions method has been used to extrapolate a
better nonrelativistic energy for the berylliumlike 1s 2s
states. This method is probably still quite effective for
the 3s ' S states, but it is no longer adquate for the other
six excited states considered in this work. To achieve bet-
ter numerical accuracy and to include more terms into
the wave function we use the restricted variation method
discussed in Sec. II. V/e compute the contribution from
each [lql2ls/4] group, one at a time. Hence the total en-

ergy obtained by summing the contributions is no longer
an upper bound to the nonrelativistic eigenvalue. Since
these groups are orthogonal and the basic wave function
is already quite accurate. The error introduced by such a
method is probably very small. The possible error in such
a procedure is tested in Chung and Zhu [32]. The con-
tribution from each group calculated with this restricted
variation method is given in Table III.

A very important part of the FCP C method is the
inclusion of the core correction and the extrapolation of
the energy contribution from high-l groups [39]. We have
used the same Oq, q, core mave function as in Ref. [27],
hence the energy correction is 230.1 pa. u. This energy
should be added to the calculated E~. The extrapolation

TABLE IV. Extrapolation of 1s 2snl energies from higher l components (in pa. u. ).

AE Ratio AE Ratio AE Ratio AE Ratio

[0045]
[oo56]
[0067]

l &6
[0144]
[0155]
[0166]

l &6
Total

2p P
103.31
46.41
23.68
55.02
15.51
6.75
3.28
7.62

62.64

0.361
0.365
0.369

0.054
0.053
0.051

3p P
21.69
9.65
4.96

11.52
16.26

7.01
3.50
8.13

19.65

0.076
0.076
0.077

0.057
0.055
0.055

2p P
16.37
6.68
3.11
7.23

15.93
6.53
3.31
7.69

14.92

0.057
0.053
0.049

0.056
0.051
0.052

3p P
2.79
1.12
0.49
1.12

18.60
8.09
3.94
9.08

10.20

0.010
0.009
0.008

0.065
0.064
0.061

[0044]
[oo55]
[oo66]

l &6

Total

38 S
24.94
10.74
5.19

12.06

12.06

38 S
0.087 20.47
0.084 8.70
0.081 4.28

9 ~ 94

9.94

0.072
0.068
0.067

[oo35]
[0046]
[oo57]

[0442]
[0552]
[0662]

l &6
[0044]
[0055]
[0066]

l &6
[O145]
[O156]
[0167]

l &6

[0442]
[O552]
[0662]

0.049 [4413]
0.047 [5513]
0.043 [6613]

0.032
0.025
0.023

0.013
0.012
0.011

3d'D
14.16 0.049
5.70 0.045
2.98 0.046
6.86

14.05
5.97
2.76
6.41
9.12
3.11
1.46
3.41
3.74
1.53
0.70
1.63

18.31

3d D
16.44
7.31
3.50
8.13
1.48
0.68
0.33
0.76

8.89

0.057
0.057
0.055

0.005
0.005
0.005

It is the energy contributions from [ooll], [ool, l + 1], [oil, l + 1], or [ool —1, l + 1] divided by that
of [ll] from the 318 term lais core. See Ref. [39].
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of higher-l contributions is carried out in the same way as
in Ref. [27]. The details of extrapolation for each state
are given in Table IV. The final results are included in
Table I. The data in Table IV show that the [00l, l + 1]
series in 2p P has the largest energy contribution. For-
tunately, the convergence pattern of this series is very
similar to that of the core, i.e. , the ratio of [00t, t+ 1]/[Ll]
is close to a constant. Hence the accuracy of the higher-/
contribution can be estimated to a few percent. Other
series, such as those of 2p P or the [00tl] of 3S ' S, the
ratios are less stable. The uncertainty of the extrapolated
results could be as much as 10%.

When we summed up the energies from the basic wave
function, the core correction, the restricted variational,
and higher-l extrapolation, the total nonrelativistic en-
ergies are obtained. These energies are given in Table I.
They are substantially lower than the results from the lit-
erature [22, 21, 26]. Even the upper bound Eg's in Table

I

I are lower than the corresponding energies in the litera-
ture by about 0.048 5 + 0.0011 a.u. We find that all the
discrepancies fall within such a small range rather inter-
esting. A large part of these discrepancies is probably
coming from the 18 core which may not be adquately
represented in the earlier theoretical works.

IV. RESULTS AND DISCUSSION

We use the same basis functions in 4b to calculate the
the energy contribution LEMp from the mass polariza-
tion perturbation operator H4. The isotope used in this
work is 9Be with M = 9.012 1822 u (atomic mass unit)
from Wapstra and Audi [40]. Recently the isotope shift
of the Be—Be 18 2s2 —18 2s3d D has been measured
by Wen et aI. [26] using high-resolution multiphoton-
resonance-ionization mass spectroscopy. This shift can
also be calculated using

Av( v — v) = 2 7Z [ AEMp(ls 2S3d D) — AEMp(ls 2s ) — AEMp(ls 2S3d D)
+ AEMP (1S 2S )] + 2 ( 7Z 7Z) (El&&283dl D Ela&2~& )

where 'R is the Rydberg constant and Av is in cm
The first term on the right-hand side gives the specific
mass shift whereas the second term is the normal mass
shift [41].

In Table V the isotope shifts of Be—Be and Be—Be
for all eight excited states are given. The shifts in this
table are for transition energies to the ground state. The
shift for transition between any two states can be derived
kom these data. The nuclear mass used is 10.0135341
u for Be, and 8.0053051 u for Be [40]. The electron
mass is taken to be 5.485 799 x 10 4 u [42]. In Wen et al.
[26], the Be—Be ls 2s —ls 2S3d D shift is measured
to be 14.05(4) GHz. This agrees with our prediction of
14.076 GHz. Wen et al. used a slightly different nuclear
mass data from ours. This causes a very small difference
in the normal mass shift (at the fifth digit). For this
reason, we compare with their measured isotope shift di-
rectly.

The relativistic corrections Hi, H2, H3, and H5 are
calculated with first-order perturbation theory. These
scalar operators give corrections to the center of grav-
ity energy. A very interesting question is whether the
relativistic effects of the nl electron in the Be ls 2snl
system contribute to the "binding" or "antibinding" of
this electron. We obtain this information by subtract-

l

ing the relativistic correction of the ls22s state [39] from
that of the 18 2snl. The result is shown in Table VI. It
seems that the relativistic correction of the n8 electron
contributes to binding for both the singlet and triplet,
but that of the np and nd electrons contributes to an-
tibinding. This indicates that the relativistic effects of
the nt (l ) 0) are small by themselves, but their pres-
ence contributes to the shielding of the 28 electron and
thus reduces the overall correction. The 2p electrons are
most effective in shielding the 28 electron. This can also
be seen from the results of Davidson et al. [43]. It is
interesting to note that the antibinding in 18 283d D is
large. This is an indication of the presence of the 2p2p
configuration in this state. By contrast, the antibinding
effect in 1s 283d D is very small showing that the 28
electron is only shielded weakly by the 3d electron.

The @ED effect Rom the nl electron is very small for
beryllium. The @ED contribution to the center of gravity
energy for the 38 is about 0.03 cm . It is much smaller
for l ) 0 electrons. The @ED contribution of the 2p
electron to the center of gravity energy of the 282p '

states is less than 0.01 cm . Those of the 3p and 3d are
even smaller.

If we sum the nonrelativistc energy E„„,i, the AEMp,
and the relativistic corrections, we obtain the relativis-

TABLE V. Be—Be and Be—Be isotope shifts for the 41s 2snl ls 2s tr—ansitions [in GHz,
M( Be)=10.013 534 1 u, M( Be)=9.012 182 2, u and M( Be)=8.005 305 1 u].

10 9

Expt. [26]
MCHF [26]

2p P
8.776

38 S
10.362

3p'P sd1D

13.388 14.076
14.05(4)
14.158

2p P
12.003

38 S
9.405

3P

11.925

3d D

11.524

'v —'v —11.O39 -1S.OSS -16.839 —17.705 —15.097 —11.830 —14.998 —14.495
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TABLE VI. Relativistic perturbation contributions to the binding of the nl electron in Hei ls 2snl systems (in cm ). AE, &

is the sum of the expectation values of the relativistic perturbation operators. Negative energy implies binding. AE„&(ls 2s)
= —21.84 cm from Ref. [39]; 1s 2s result from Ref. [27].

nl state

A—E„i(ls 2snl)
AE„i(ls 2snl) —AE„i(ls 2s)

28 S
29.62
—7.78

2p P
16.83
5.01

2p P
16.24
5.60

38 S
22.72
—0.88

23.09
—1.25

3p P
18.59
3.25

3p P
20.74
1.10

3a'D
17.59
4.25

3d D

21.52
0.32

tic energy of the 18 28nl state. Subtracting this energy
from that of the lsls core and adding the @ED effect,
we obtain the two-electron (2snl) IP. The corresponding
energies for the 1sl8 core are the same as those of Ref.
[27]. They are not repeated in this table (Table VII).
The IP of the nl electron is obtained by subtracting the
predicted 2s IP, 146883.08 cm [27] from the 2snl IP.
The excitaion energy of the 1s 28nl state is obtained by
subtracting this nl Ip from 75192.07 cm, the experi-
mental IP of the ls 2s [25]. These results are presented
in Table VII.

Judging from the comparison of the predicted excita-
tion energy with that of Johansson [25], it seems that the
results for the S states and the triplets are quite good.
The 2828 S—2s2p P i transition has been observed by
Bozman et al [44] a. t 21978.92+0.01 cm . Using the
fine-structure results of Johansson [25], the 2p P cen-
ter of gravity energy is found to be 21980.15 cm [45].
Our prediction, 21980.85 is too high by 0.70 cm . The
discrepancy for the 3s ' S states is also within 1 cm
Considering the extrapolation methods we used in this
work, the uncertainty in the predictions could be close
to 1 cm . At present, these agreements are probably as
good as one can hope for. The discrepancy for the pre-
dicted excitation energies of 3p P and 3d D is about
1.5 cm '.

The largest disagreement between prediction and ex-
periment is for 3d D. The discrepancy, 7.38 cm, is
larger than expected. To find the correlation energy for
this state is particularly challenging because the mixing
of the 2p2p and 283d configurations. We believe the er-
ror comes from our nonrelativistic energy. Even though
we have used the restricted variation method with an
extensive 42 to saturate the functional space, our re-
sult indicates that some important basis functions may
still be missing in our wave function. We should men-
tion that to calculate each of these excited states to the
accuracy required in this work is very laborious. For ex-
ample, to saturate the functional space for 3d D, 27 re-
stricted variation calculations are carried out, Each cal-
culation includes many angular-spin components of the
same [lil2lsl4]. Several hundred linear parameters are
used for each saturation wave function. The optimiza-
tion of the nonlinear parameters in these wave functions
also takes up considerable amount of computer time. We
still lack a method to ensure that our basis functions
will cover the entire functional space as in the case of B-
spline method [1,46]. The discrepancies for the 2s2p P
and 283p P excitation energies are 3.45 and 6.72 cm
These results show clearly that we have not overcome
the challenge of finding all of the correlation energy for

these four-electron systems. Much eÃort is still needed
to accomplish this goal.

Even though the relativistic corrections for beryllium
excited states are considered to be small, a closer exam-
ination reveals how important these corrections are in
precision predictions. For example, in Table VII, the ex-
citation energy of the 3d D is "higher" than that of the
experiment by 7.38 cm . However, if we only compare
its nonrelativistic energy, —14.373790 a.u. with that of
the ground state, —14.667349 a.u. [27], the excitation
energy would be 64424.9 cm . This is 3.4 cm lower
than the experiment. The same nonrelativistic energy
comparison for 2p P and 3p P gives excitation en-
ergies which are also 8.7 and 3.1 cm lower than the
experiment. This shows that even for low-Z system such
as beryllium, a meaningful comparison with experiment
can only be made after the relativistic correction is con-
sidered.

In this work, the fine-structure splittings of the triplet
states are calculated with the H, , H, , and H„oper-
ators using first-order perturbation theory. The exper-
imental Be 2s2psPJ splittings are 2.35 (J = 2 ~ 1)
and 0.64 (J = 1 -+ 0) cm [25]. They agree well
with our predictions, 2.360 and 0.637 cm ~ These re-
sults are given in Table VIII. Although many theoreti-
cal studies have been done on the Be? excited systems,
not many theoretical fi.ne-structure results are published.
One exception is Laughlin, Constantinides, and Victor
[23]. They use a model potential calculation and predict
the splittings to be 2.53 and 0.71 cm . These results
should be considered as quite good in view of the sim-
plicity in their computation. Correlation is quite impor-
tant for calculating these fine structures. We have tried
to compute the splittings for this P using only the 40,
the results are 2.00 and 0.48 cm

In the experiment of Johansson [25], the splitting of
ls22s3psP& (J = 1, 0) is not resolved. But the splitting
from the J = 2 state to the J = 1, 0 is determined to
be 0.37 cm . In this work, we find that the splittings
are 0.351 (J = 2 + 1) and 0.091 (J = 1 —+ 0) cm
This implies that the predicted splitting from J = 2 to
the center of gravity of J = 1 and 0 should be 0.374
cm . It agrees with the experiment. The 2s3d DJ
states are not resolved experimentally. The reason is very
clear from Table VIII. The predicted splittings are 0.027
(1 = 3 —+ 2) and —0.023 (J = 2 ~ 1). All three levels
lie within a range of 0.027 cm

The oscillator strengths f of the beryllium excited sys-
tems have been studied extensively in the literature. We
have also calculated some of the f values for the eight
excited systems. The dipole length results and the cor-
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responding transition rates are given in Table IX. Since
this is not the main interest of the present work, we will
not make an efFort to compare the extensive data in the
literature except to say that with the exception of 2s28-
283p P transition they agree well with the accurate re-
sults in the literature. We refer the interested reader to
the recent work of Chang [1] on these comparisons.

The 2s2s —2s3p P f value obtained in this work is
very small. The dipole length result is 0.00914 and the
dipole velocity result is 0.00907. It is smaller than the
f value of Stewart [10] and Victor and Laughlin [9] by
more than a factor of 2, but it is larger than that of Altick
and Glassgold [47] by a factor of 3. The small f value

indicates large cancellation in the integral of transition
matrix element. A reliable result can only be obtained
if the two wave functions are accurate in spaces where
overlap is significant.

The 282s—2s2p Pl transition has been observed by
Bozman et al. [44). It would be interesting to find out
the lifetime of this state. The 2s2p Pl and 282p Pl
can couple via H, and H, operators. The coupling
constant is given by

(~('P:)iH-+ ~...i~('P:))
E('Po) E(sPio)

TABLE VII. Ionization potential and excitation energy of the ls 28nl states of beryllium. Columns three —four and six—seven are the energy
difference between the ls 2snl state and the ls core. For other notations, see discussion in text.2 2

Enonr el
&EMV

(H, +H, )
(H, )
(H5)

Subtotal
QED Corr.

2snl IP
nl IP

E (excitation)
Johansson [25]

Theor. —Expt.

Enonrel
&EMV

(Hy + H2)
(H, )
(H5)

Subtotal
QED Corr.

2snl IP
nl IP

E (excitation)
Bashkin and Stoner [45]

Theor. —Expt.

E (pa. u. )

—14 473 434.91
26.57

—2 517.94
273.36
—43.52

—14 475 710.99

—14 567 238.30
15.96

—2 519.40
273.12
-39.14

—14 569 522.31

IP (p,a.u. )

2p P
817868.70

—0.86
88.33
—8.12
—3.51

817944.54
—3.6

817940.9
148 651.6
193969.5

2p P
911672.09

9.75
89.79
—7.88
—7.90

911755.85
—3.6

911752.2
242 462.9
100 158.2

IP (cm )

179490.50
—0.19
19.39
—1.78
—0.77

179 507.14
—0.79

179506.35
32 623.27
42 568.80
42 565.35

3.45

200 076.71
2.14

19.70
—l.73
—l.73

200 095.09
—0.79

200 094.30
53 211.22
21 980.85
21 980.15

0.70

E (pa. u. )

—14 393 113.33
24.45

—2 524.50
274.25
-45.83

—14 395 399.52

—14 398 960.12
26.32

—2 533.69
275.03
—47.28

—14 401 254.30

IP (pa. u. )

3p P
737 547.12

1.26
94.89
—9.01
—1.21

737 633.06
—3.6

737 629.5
68 340.1

274 281.0

3p P
743 393.91

—0.61
104.08
—9.79
0.25

743 487.84
—3.6

743 484.2
74 194.9

268 426.2

IP (cm ')

161863.03
0.28

20.83
—1.98
—0.26

161881.88
—0.79

161881.09
14 998.01
60 194.06
60 187.34

6.72

163 146.17
—0.13
22.84
—2.15

0.05
163 166.78

—0.79
163 165.99

16 282.91
58 909.16
58 907.62

1.54

Enonrel
+EMP

(Hy + H2)
(H, )
(H5)

Subtotal
QED Corr.

2snl IP
nl IP

E (excitation)
Johansson [25]

Theor. —Expt.

—14 418 237.12
27.52

-2542.62
275.84
—48.19

—14 420 539.12

38 S
762 670.91

—1.81
113.01
-10.60

1.15
762 772.66

—3.7
762 768.9
93 479.6

249 141.5

167376.72
—0.40
24.80
—2.33

0.25
167399.05

—0.82
167 398.24

20 515.16
54 676.91
54 677.26

—0.35

—14 373 790.47
24.58

—2 519.71
273.73
-45.59

—14 376 072.01

3d D
718 224.27

1.13
90.10
—8.48
—1.44

718 305.56
—3.6

718 302.0
49 012.6

293 608.5

157 622.41
0.25

19.77
—1.86
—0.32

157640.25
—0.79

157639.46
10 756.38
64 435.69
64 428.31

7.38

Enonrel
GEM F'

(H, +H, )
(H, )
(Hg)

Subtotal
QED Corr.

2snl IP
nl IP

E (excitation)
Johansson [25]

Theor. —Expt.

—14 430 064.40
28.26

—2 544.14
276.07
—48.54

—14 432 367.31

3s S
774 498.19

—2.55
114.53
-10.83

1.51
774 600.85

—3.8
774 597.1
105 307.8
237 313.4

169 972.35
—0.56
25.14
—2.38

0.33
169994.88

—0.82
169994.06

23 110.98
52 081.09
52 080.94

0.15

—14 384 622.60
27.80

—2 536.14
275.19
-48.49

—14 386 918.80

3d D
729 056.39

—2.09
106.53
—9.95

1.46
729 152.34

—3.6
729 148.7
059 859.4
282 761.7

159999.64
—0.46
23.38
—2.18

0.32
160020.70

—0.79
160 019.90

13 136.82
62 055.25
62 053.72

1.53

Our ls relativistic contribution deviates from that of Pekeris [53] by —14.55 pa. u. This correction is added to the total energy.

Obtained by subtracting the 18 28 IP of 669289.3 pa. u. or 146883.08 cm [27].
Obtained by subtracting the nl IP from the 18 2s IP of 342 621.1 pa. u. or 75 192.07 cm [52].
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TABLE VIII. Fine-structure splitting for the triplet states of beryllium (in cm ).

2p Pg

J value
E, ~

aE, (@ED)
Total

Expt.
Other theory

2
21981.967

0.001
21981.968

1
21979.609

—0.001
21979.608

0
21978.973

-0.002
21978.971

2-1
2.358
0.002
2.360
2.35
2.53

Split ting

1-0
0.636
0.001
0.637
0.64
0.71

3p Pg
J value:

F 6,

Expt.

2
58909.302

1
58908.952

0
58908.860

2-1
0.351

1-0
0.091

2-1,0
0.374
0.37

3d DgJ value .
F

3
62055.256

2
62055.229

1
62055.252

3-2
0.027

2-1
-0.023

The excitation energy calculated with Hsc„H»c„and H» using first-order perturbation theory.

Johansson [25].
Laughlin, Constantinides, and Victor [23].

C, +, is found to be 0.8043 x 10 4 in this work. The f
value of the 2s2s S—2s2p P1 transition can be expressed
in terms of the f value of 2s2s S—2s2p P by

2 +E(2p P —S)
f(2ps pq —~ S) ~+so+soo

~ f(2p~ p —~ S) ~E(2p1 Po 1 S)

(17)

This gives an absorption f(2ps I 1s) value of 4.590
x10 . The eInission rate is found to be 0.4928 sec
This is larger than the 0.269 sec of Laughlin, Constan-
tinides, and Victor [23], the 0.174 sec of Miihlethaler
and Nussbaumer [48], but smaller than the 0.71 sec ~ of
Garstang and Shamey [49].

V. CONCLUSION

In this work, we have made an ab initio computa-
tion for the energies of the excited 2snt (n ( 3) four-
electron systems. The purpose is to see whether the
FCPC method is capable of predicting precise nonrela-
tivistic energy for these systems. This question is relevant
in view of the recent success of FCPC on the ground state
of four-electron systems [27]. We choose the low-lying ex-
cited states of beryllium partly because accurate experi-
mental data are available and the 2p P1 —2s S transition
has been observed and partly because here the relativis-
tic effects are small and the @ED and higher-order rela-
tivistic effects are negligible. The correlation effects are
particularly strong in these systems.

In addition to the FCPC, we have implemented a re-
stricted variational method to calculate the nonrelativis-
tic energy. For three- or more electron systems it is not al-
ways possible to use basis functions which are completely
orthogonal. The advantage of this method over the con-
ventional variational method is that it avoids the numer-
ical instability caused by the linear dependence between
the basis functions in 41 and @2. For a theoretician
who uses variational method, this numerical instability
could be most frustrating. In a precision calculation, the
matrix size is quite large. Typically, they are well over

1000x1000. It takes a considerable amount of computer
time to construct a secular equation. By the time this
numerical instability becomes apparent, much valuable
time is wasted.

Another advantage of the restricted variation method
is that the calculation can be performed with comparably
less computer resources. Since 4b is reduced to one term,
the matrix size is drastically reduced. The computation
can be performed much faster. It is also a good method
to find basis functions with large energy contributions,
but they are inadvertently left out in 4'b. One can then
include these basis functions in a new 4b. In the ab-
sence of numerical instability, this makes it a potentially
powerful method for accurate energy.

Judging from the Theor. — Expt. data in Table VII,
the results for the S-excited states and for the triplet
states are satisfactory. However, the agreement with ex-
periment for 2p P, 3p P, and 3p D still needs to be

Nonrelat ivist ic
transition

2p P-2s S
3s S-2p P
3p P 2s S
3p P-3s S
3d D-2p P
3d D-3p P
3s S-2p P
3p P-3s S
3d D-2p P
3d D-3p P

Spin-induced
transition

2p Pi-2s S3 1

Other theory
Ref. [23]
Ref. [48]
Ref. [49]

1.374
0.1175
0.00914
0.9565
0.4018
0.681
0.0806
0.1127
0.287
0.500

f
4.590 x10

Transition rate
(in 10 sec )

55.34
3.452

0.7361
0.6466

7.691
0.490
14.62
1.167
18.46

.198

Transition rate
(in sec )

0.4929

0.269
0.174
0.71

Lifetime
(in nsec)

1.807
28.97

72.30

12.22

6.840
85.69
5.359

Lifetime
(in sec)

2.029

Since the lower state 1s 2p2p D has not been considered, the lifetime

should be slightly shorter than this value.

TABLE IX. The transition rates and lifetimes of the 1s 2snl states
of beryllium.
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improved. The fact that our excitation energy is higher
than the experiment indicates that we have not found all
the correlation energy.

The expectation values calculated from the wave func-
tions seem to be acceptable. The predicted isotope shift
and Gne structures all agree with accurate experiment.
The oscillator strengths agree with the accurate data in
the literature. There are still discrepancies on the lifetime
of the ls22s2psPP and on the f value of the 2s ~S—3p ~P
transition. These discrepancies can only be resolved by
future experiments.

Our results show that the problem of four-electron-
system correlation energy has not been overcome in some
cases. We should mention that to calculate the correla-
tion energy for each of the states considered here is quite
laborious and it consumes a considerable amount of com-
puter time. Much patience is needed to carry out the
restricted variational method. Our result suggests that
a more effective procedure is needed to ensure that all
the correlation energy of these four-electron states can

be uncovered. This is crucial in order to make ab initio
calculations on five- or more electron systems.

The results on the Be? 18 282p P and 2s3p P
states are encouraging. The energies of these low-lying
P states in the isoelectronic sequence are particularly

important. Their transitions to the ground state have
been observed for some systems, hence they form the
essential link between the singlets and triplets. Their
energies are needed to establish the correct Grotrian di-
agram [45]. There have been much interest on these P
states 44, 50, 51, 54]. The fact that we have predicted
accurate energies and fine structures for beryllium is an
encouraging sign that we should extend the calculation
to other Z systems.
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