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The kinetic-energy difference Is. T = T —T, [po] is calculated for the helium isoelectronic series and for
the beryllium atom. T, [po] is in this case the kinetic energy corresponding to a noninteracting N
particle system which, however, has the same density po as the exact interacting system. These densities

po were assumed in the present case to be well represented by those coming from the optimal Hylleraas-
type expansions for the He isoelectronic series and by the Bunge-Esquivel 650-term configuration-
interaction wave function for Be. The calculations are carried out by means of a constrained variational
method based on local-scaling transformations. The connection between this approach and the one
based on the Kohn-Sham equations is discussed.

PACS number(s): 03.65.Ge, 31.15.+q, 31.20.Sy

I. INTRODUCTION

As is well known, the inclusion of the kinetic-energy
term T, [p(r)] of a noninteracting system is essential for
the derivation of the Kohn-Sham equations [1—3]. More-
over, the introduction of T, [p(r)] in the Kohn-Sham
density-functional formalism brings about several advan-
tages: (a) the orbital model of the Hartree-Fock theory is
maintained in a theory that goes far beyond the
independent-particle approximation, (b) a sizable part of
the exact kinetic energy T [p(r)] for the interacting parti-
cles is accounted for by T, [p(r) ], i.e., I T [p(r) ]—T, [p(r)]] /T[p(r)] is small [2,3], and (c) the diff'erence

T[p(r)] —T, [p(r)] is positive and hence, as a conse-
quence of the introduction of T, [p(r)], the Kohn-Sham
exchange-correlation energy becomes smaller than the
true one [2—5].

But, in addition, the presence of T, [p(r)] is also impor-
tant in the reformulation of the Kohn-Sham problem as a
constrained variational search [6]. The variational func-
tional, in this reformulation, is assumed to be the expec-
tation value of the kinetic-energy operator with respect to
a single Slater determinant for an X-particle noninteract-
ing system constrained to yield the exact ground-
state one-particle density of the equivalent X-particle
interacting system. In the context of this constrained
variation, the Lagrange multiplier function A,(r)
=A([p(r)];r), introduced in order to guarantee that the
noninteracting density be equal to the exact density at all
points of variation, turns out to be the exact Kohn-Sham
efFective potential [2,6]: A, ([p(r)];r)=v tt([p(r)];r). For
this reason, the explicit calculation of the T, [p(r)] corre-
sponding to the exact one-particle density must proceed

one is then able to obtain the set of eigenfunctions
(r)] and eigenvalues I8; ] from which the nonin-

teracting kinetic energy T, [p(r)] can be evaluated by ei-
ther of the two routes:

N
T [ (r)] & y f d3r qKsey2yKS (2a)

or
N

T, [p(r)]= g 6; —J d rp(r)v, ~s([p(r)];r) . (2b)

Although it is rather simple to calculate T, [p(r)] for ap-
proximate Kohn-Sham potentials [7], the determination
of the exact T, [p(r)] via either Eq. (2a) or Eq. (2b) is a
formidable problem because it implies a previous
knowledge of the exact Kohn-Sham effective potential
[1—3]. As this potential is not known, one way to carry
out this calculation is to introduce in Eq. (1) a
parameter-dependent trial potential and to vary its pa-
rameters until the exact ground-state density
po(r)=g;, f; *(r)P; (r) is reconstructed from the en-
suing one-particle orbitals. Such is the procedure fol-
lowed, for example, in the work of Almbladh and Pedro-
za [8]. There are, however, other attempts to solve this
problem, such as the one presented by Bolas and March

in a roundabout way. Thus, it is first necessary to ad-
vance an explicit expression for v,z ([p(r)]r), which, of
course, may be obtained from an explicit functional for
the exchange-correlation energy. Introducing this
effective potential into the Kohn-Sham equations,

[1/2+v KS([p(r)]r)]qKS(r)@KS/Ks(r)
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[9] based on the reduction of a fermion system to boson
form, or the more recent works of Zhao and Parr [10,11]
where a constrained-search variational principle, which
uses as its basic term the residual charge interaction—
defined by the difference between a trial and the exact
densities —is advanced. For completeness, let us mention
other treatments [12—16] that without placing a particu-
lar emphasis on the calculation of T, [p(r)], deal, howev-
er, with the general inverse problem of how to determine
the effective potential when the exact one-particle density
is known.

Still another approach to density-constrained varia-
tions is afforded by local-scaling transformations [17—20].
These transformations are mappings that carry a vector
r&R into another vector f(r)=(rlr)f (r)ER . They
may be interpreted as transformations that deform
three-dimensional space so as to follow the shape of a
given one-particle density.

It is the purpose of this paper to apply local-scaling
transformations to the calculation of the exact Kohn-
Sham noninteracting kinetic-energy functional T, [p(r)].
In Sec. II, we state the density-constrained variational
principle for the kinetic-energy term and discuss how
local-scaling transformations can be used to compute its
minimum. For completeness, we discuss also some in-
direct methods that rely on the previous calculation of
the Kohn-Sham exchange-correlation potential. In Sec.
III, we compute T, [p(r)] for the He isoelectronic series
and for Be. In the latter case, the calculations are carried
out by a straightforward application of local-scaling
transformations as well as by a density-driven approach.
In Sec. IV, we present some conclusions.

bert space X&, and A'HKL (where HKL stands for
Hohenberg-Kohn-Lieb) is the set of admissible one-
particle densities:

JVHKL= p(r)~p(r))0, f d rp(r)=X,

fd3r(V [ (r)]l/2)2(

It has been shown by Lieb [4] that the infimum
of Eq. (3) occurs at a minimum, i.e., that there exists
a wave function 4& H Sz such that T, [p„„,d(r) ]~fixed

—= (@~'" ~T~4~'" ). Notice, however, that S~C:X~
~fixed ) fixed

does not fulfill the conditions that define a subspace (a
linear combination of determinants is, in general, not a
determinant). For this reason, if 4& Eg& and 5@ Cg&,
then it does not necessarily follow that N +5& belongs
to S~. In the variational problem described by Eq. (3), as
well as in the Hartree-Fock approximation, the variation
cannot be carried out in 4N in view of the fact that it is
not a subspace [21—23]. Instead, the variation is carried
out in the space X, of single-particle functions {P;(r)]
from which 1V orbitals are selected in order to construct
the Slater determinant

@p(rl~s1» rN~~N )

1
det[4i(ri )o i(s i ) ' ' 0x(rx )o x(sx )1 (5)

N!

where 0.(s) is a spin function. The one-particle density
obtained from this determinant is

II. CONSTRAINED VARIATION
OF THE KINETIC ENERGY AND LOCAL-SCALING

TRANSFORM ATION S

N

p(r)= g P,*(r)(t, (r) . (6)

Consider the following constrained variation [4,6]

T, [p„„,d(r)]—: inf {(@~T~@~)],
P

p ) fixed HKL

(3)

where @ is a single Slater determinant that yields the
fixed one-particle density p„„,d(r)HJVHKL. In the above
expression, T is the kinetic-energy operator,

&

—
—,'V;, 4& is the subset containing only single

Slater determinants of the X-particle antisymmetric Hil-
I

A. Relationship between constrained variation
and the Kohn-Sham problem

For completeness, let us briefIy sketch how the varia-
tional problem given by Eq. (3) is equivalent to the varia-
tional principle leading to the Kohn-Sham equations for
the case when the fixed density comes from the exact
ground-state wave function [6].

In terms of the single-particle orbitals, the variational
problem in Eq. (3) becomes

N N N N

g f d rP,*(r)(——,'V )P;(r) —f d ri(r) gP,*(r)P, (r) —p„„,d(r) + g g Ã1 f d rP,*(r)P,.(r) —5,,
&P,*(r) i =1 i =1j=1

+c.c.=0 , (7)

where the Lagrange multiplier function A, (r) introduces
the condition that p(r) of Eq. (6) be equal to ps„,d(r) and
the Lagrange multiplier matrix 6 accounts for the ortho-
normality conditions on the set {P,(r)],. &. Carrying out
the variation indicated in Eq. (7) and defining a new set
{g;(r)]; & by the unitary transformation @=UP, which

diagonalizes 8, i.e., U6U =6 (diagonal), the following
set of single-particle equations is obtained [6]:

( ——,
' V'+X(r))lt, (r) = 8, g, (r) .

It has been shown [6] that when ps„,d(r) is the exact one-
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particle density po(r) arising from the exact ground-state
wave function )I(o of an interacting system (A Vo=Eo%'o,
with H='T+ V„+V,„,), then Eq. (8) is exactly equal to
Eq. (1) and hence k( [po(r) ];r) =v, ff ( [po(r) ];r).

Because u, ff ([po(r)];r) is, in principle, determined by
the exact density, one is faced with the practical inverse
problem [8—16] of how to obtain this potential from the
sole knowledge of po(r). Of course, since

Consider a trial wave function )Il HX)v whose corre-
sponding density is p~(r) H JV~CA'H~L, where JV~ is the
set of all densities coming from wave functions O'ELN.
Clearly, to the particular wave function O'I HX)v there
corresponds also a density p&(r) H JV~. A local-scaling
transformation f carries a vector r&E into another vec-
tor f(r) =(r/r)f (r) HE such that the following relation
among one-particle densities is fulfilled:

v ff ([po(r)];r)=v(r)+uc, „„b([po(r)];r) p/(r) =J( f(r);r)p( f(r) ), (12)

+uxc([Po(r)] r) (9)

where the external potential u (r ) is known and
the Coulomb potential is directly determined by
po(r) through vc,„„b([po(r)];r)=Jd rpo(r')/~r —r'~,

the actual task in this inverse problem is that of ob-
taining the Kohn-Sham exchange-correlation potential
uxc( [Po(r) ]'r).

Formally, this potential is defined by pt(r)= 1 p(f(r)) .d (r) '(r)
(13)

where J( f(r);r) is the Jacobian of the transformation. It
is easily seen that the more familiar scaling transforma-
tions that carry a vector r&E into fi(r)=rA, HE are
the simplest example of these more general local-scaling
transformations.

For spherically symmetric densities, Eq. (12) becomes
[18]

vxc([po(r)] r)

([ V„lp(r)] —Ec..lo blp(r)]I
6

|)p r

+ I T[p(r)] —T, [p(r)]I ) p(, ) p (,),
where

and

Ec),~ [b(p)r]= ,' f d'r—p(r)vc..).~b(lp()( )]; ) .

(10}

The above implicit first-order di6'erential equation yields
a unique function f (r) linking the initial or generating
density pg(r) with the final density p&(r). If we let the
final density span over all possible densities in JV+, we
generate the set If(r)] of local-scaling transformations.
These transformations form a continuous group X

When we apply the transformations fEV to an N
particle wave function, we assume that all particle coor-
dinates are equally transformed. For this purpose, we in-
troduce the N-particle operator F=f .f (N times),
such that an N-particle wave function )I' (r),$), . . . ,

r)v, $)v) is transformed into 'Pg(r„$„. . . , r~, $)v), which is
de6ned by

The wave function + '" is obtained by the constrained
P

variation

T[p(r)]+ V„[p(r)]= min I(%'z~T+ 0'„~%'z)];

(11)
%'p~p(r) ENHKL .

Clearly, it is rather difficult to compute uxc([po(r) ];.r)
from Eq. (10), as in addition to T[p(r)] and V„[p(r)],
the right-hand side of this equation also includes
T, [p(r}], which is precisely the unknown in our present
problem. For this reason, in actual practice,
uxc([po(r)];r) has been determined directly from the
Kohn-Sham equation [8] or by methods based on
density-constrained variations [10,11] or pseudo-orbital
differential equations [14]. In the work of Almbladh and
Pedroza [8], for example, the potential vxc([po(r)];r)
was parametrized and the parameters were optimized un-
til the density resulting from solving the Kohn-Sham
equations became equal to po(r).

B. Local-scaling transformations and constrained variation

We show in what follows how local-scaling transforma-
tions [18—20] may be used to calculate directly T, [p(r)].
For completeness, we succinctly review some relevant as-
pects of these transformations.

(1),$), . . . , 1)v, S)v )f
N= + [J( f(r, );r; )]' %$( f(r, ),$„.. . , f(r)v },$„) .

(14)

The locally scaled transformed wave function
)Il/$(r „$„.. . , r~, $)v ) yields the one-particle density

p&(r), namely, the same density that comes from the
wave function O'I(r„$„.. . , r)v, $)v). Notice, however,
that although these wave functions yield the same densi-

ty, they are not identical.
The N-particle local-scaling transformation operators

IF I also form a group 7 of continuous transformations.
A salient characteristic of the group V is that applica-
tions of FE9' to wave functions %&X)v, partition X&
into orbits 8&~'} such that X)v= U, )8&~'} . Because of

this, any %-particle wave function Vt'~P Q&~'~ is in a one-

to-one correspondence with p(r)HJV+. This means that
no two wave functions in the same orbit yield the same
density [19]. This property also implies that, starting
from an arbitrary wave function 4('} KG&~'}, one can gen-

erate all N-particle wave functions [4('}] for all possible
densities p(r) H JV~.

Let us now apply the above properties of local-scaling
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transformations to the constrained variation described by
Eq. (3). Consider the wave function 4 given by Eq. (5),
where the single-particle orbitals [P;(r)I are assumed to
depend upon the set [a, , b, , . . . j of parameters (i.e., or-
bital exponents, expansion coefficients, etc.). Let us
define an orbit-generating wave function as the single
Slater determinant given by

+g(ri s» .

1
det[p, ([agi, bgi, . . . ];r, )o. ,(s, )

N!

XPN([ak be ' ] rN)aN(sN)I . (15)

The one-particle density associated with this wave func-
tion is pg(r). Let us assume, furthermore, that we know
the exact density po(r) for the N-particle problem at
hand. This exact density may correspond to a sufficiently
accurate configuration-interaction (CI) wave function, or
in the case of a two-electron atom, to a Hylleraas-
type wave function. Let us call fgo(r) the transfor-
mation function that results from solving Eq. (13)
when pf(r)—=po(r) and p(r)—:pg(r). Applying the re-
sulting transformations to the individual orbitals

[P, ([ag, bg, . . . ];r)I, we obtain the locally scaled
transformed set [P,. ([ag, bf, . . . ];r)I, where the new or-
bitals are given by

P"; ([ag, bg, . . . ];r)
= [J(f o(r);r)]' P;([ag, bg, . . . ]; f o(r))

po(r)

N

T, [po]~ g f d rp,*"([ai '",b, '", . . . ];r)(—
—,'V~)

X MLS( [a min b min (19)

Clearly, the absolute minimum can be approached as
closely as desired by increasing the Aexibility of the basis
functions [P; ([a;,b;, . . . ];r)[. This, of course, may be
attained by introducing sufficient variational parameters.

III. CALCULATION OF T, FOR THE He
ISOELECTRONIC SERIES AND FOR Be

1
0& (r„s„r2,s2)—: —det[$1([a f, b, , . . . ];r, )a(s, )

2

Xp, ([a i, b f, . . . ];r2)p(sz) J .

(20)

This equation establishes the following direct correspon-
dence between the single orbital P, (r) and the spatial part
of the one-particle density:

1/2
pg(r)

p (r)=2[/, (r)) or P, (r)= (21)

apart from a phase factor. The locally scaled
transformed function $1 (r) is, in the present case, entire-
ly determined by the final density po(r) as Eq. (16) be-
comes

A. The helium isoelectronic series

For the 'S state of a two-electron case, Eq. (15) be-
comes

pg([ag, bg, . . . ];fgo(r))

XP, ([ abg, , g. . . ]; f o(r)) . (16) P, '(r, )= po(r)

pg( [ag, bgi, . . . ];f o(r) )

1/2

The transformed single Slater determinant, which yields
po(r), becomes

rN SN)Pp

l
det[~1 ([a 1 b1 ) rl)o1(sl )

N!

XpN ([ag, bg, . . . ];r )o. (s )I .

Introducing 4& into Eq. (3), we can search now for the
Pp

minimum by varying the parameters of each orbital. At
the extremum we find N '", which is given byP 7

1/2
pg([a 1 bgi )' f,, o(r»

X
2

1/2
po(r)

2
(22)

[Vpo(r)]
T, [po(r)]= —,

' Jd r
po r

(23)

Notice that the transformed functions do not depend
upon the variational parameters. The inequality in Eq.
(19) is replaced, in this case, by an equality and the kinet-
ic energy of the transformed function is

Pp

1
det[P", ([a, '",b, '", . . . ];r, )o,(s, )

X $N ( [aÃm, bN, . ] rN )VN(SN ) I

(18)

In Table I, we list the T, values for selected optimum
Hylleraas X-term wave functions for two-electron sys-
tems [24] with nuclear charge Z. In addition, we list the
values of the true kinetic energy T, and of the difFerence
T Ts.

B. The beryllium atom

Thus, we obtain the following inequality for the kinetic-
energy functional

For this four-electron system, the locally scaled
transformed orbitals do depend upon the final density as
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TABLE I. Kinetic energy values T [po], T, [po], and
ET[po] = T [po] —T, [p()] in hartrees for the helium isoelectronic
series computed from optimal Hylleraas N-term wave functions. OPt Cio C2oj

TABLE II. Orbital parameters for the sets employed as gen-

erating orbitals for local-scaling transformations.

Z

1

4
7

10

1

5
10
20

T [pol

0.472 656
0.526 927
0.527 617
0.527 680

2.847 656
2.903 385
2.903 686
2.903 722

T, [po]

0.472 656
0.496 500
0.499 480
0.499 750

2.847 656
2.866 765
2.867 018
2.867 081

~T[po]

0.000 000
0.030 427
0.028 137
0.027 930

0.000000
0.036 620
0.036 668
0.036 641

Set (i) (three-term)
3.797 248 999 1.000 000 00
1.464 109999 0.000 000 00
1.464 109 999 0.000 000 00

Set (ii) (double-g)
5.279 148 000 0.154466 285
3.422 440 999 0.853 358 894
1.011 220 000 0.001 845 468
1.143 763 000 0.002 420 716

0.000 000 000
0.764 497 828

—1.586 133936

0.000 348 290
—0.232 422 954

0.932 448 921
0.098 001 764

1

4
7

10

1

4
7

10

7.222 656
7.278 505
7.279 666
7.279 856

21.972 66
22.029 27
22.030 69
22.030 89

7.222 656
7.237 761
7.239 566
7.240 159

21.972 66
21.984 16
21.987 84
21.988 47

0.000 000
0.040 744
0.040 100
0.039 697

0.000 00
0.045 11
0.042 85
0.042 42

Set (iii)
3.275 464 072
3.304 109 942
1.027 581 145
0.827 587 515
1.392 802 227
2.666 929 788

(Clementi-Roetti)
0.913 161 335
0.086 735 759

—0.004 959 380
—0.019 751 778
—0.005 844 613

0.009 036 136

—0.157 305 457
—0.013259 512

0.211 450 934
0.623 708 415
0.266 110997

—0.098 900 374

10 1

4
7

10

93 ~ 847 66
93.904 87
93.906 48
93.906 69

93.847 62
93~ 857 81
93.861 47
93.862 09

0.000 04
0.047 06
0.045 01
0.044 60

well as on the parameters of the orbit-generating set.
Hence, in this case, the inequality given in Eq. (19) holds.
How close we get to the exact T, [p] depends upon the
choice of initial orbitals, i.e., on the number and types of
variational parameters that we may optimize.

For the system at hand, the one-particle orbitals are
spherically symmetric and are defined as follows:

als R &p and R 2O", where the latter are expressed in terms
of Raffenetti's 12-term basis set [26]. The final one-
particle density corresponds to the Bunge-Esquivel 650-
term CI wave function [27].

In addition to a direct application of local-scaling
transformations in order to generate new orbitals that
yield the exact density, we have also treated this problem
by resorting to a "density-driven" approach [28—30].
This approach may be succinctly characterized as fol-
lows. Consider an arbitrary orthonormal primitive basis
set I gz" (r) j~ =) in whose terms we construct the matrices
V'k) and ()'(") and solve the eigenvalue problem

1 1
P, (r) =R,o(r) and $2(r) =R2O(r)

4m 4m
(24) (+k) ig(k))C(k) —() (27)

In general, we have expanded these orbitals in terms of
Slater-type orbitals:

R„)(r)= g C„( y (r),
j=1

where

(25)

(r)=N r ' exp( a. r)—
(2aj ) '

Q(2n )!

n.
r 'exp( ar) . — (26)

In Table II, we list the values of I C„&J j, In~ j, and Iag'j
for the three orbital sets employed in these calculations,
which are (i) a three-term set (a slightly improved version
of a single-g orbital), (ii) a double-g-type set, and (iii) a
Clementi-Roetti-type set [25]. As the I C„& j in these sets
are chosen so as to guarantee orthonormality of the R &o

and R2o orbitals, but remain quite arbitrary otherwise,
we have selected them by requiring that orbitals R ]o and
R po have a maximum overlap with their respective
canonical Hartree-Fock self-consistent-field (SCF) orbit-

with

V;, =—( q'. "'(r) —
—,
' V'ly,(")(r)),

~„—= (y', "'(.) lq,'"'(.) ) .

The coefficients corresponding to the first two eigenvalues
t, and t2 of the above variational problem are then
used to construct the orbitals R,'0)(r)=gj )C,'z~)g'"'(r)

for i = 1,2. The one-electron density p "'(r )

=2+2 ) ~R,(0")(r)~ is then expressed in terms of these or-
bitals. The density p'"'(r), appearing at the kth iteration
step, is then used in this "density-driven" method in or-
der to generate the ( k + 1)th primitive basis set

1/2

y(k+1)( ) y(k)( )
p()( r )

(28)
(k)( )

J

and the procedure is repeated until, at the pth iteration,
we have p(~)(r)=po(r). In the present case, po(r) is again
the Bunge-Esquivel density [27] for Be. The primitive
one-particle functions are g) ( r ) =(a /rr)' exp( ar)—
and $2(r)=B (1 Pi, r ) exp( Pr), w—here in—order to
guarantee orthonormality, B = [P /[m(3A, —3A, +1)]j'
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TABLE III. Optimum parameters for the "density-driven"
orbitals.

opt

pt

C101
C102

C201

C202

4.318016 7
2.220 811 3

—0.287 000 8
0.515 812 3
1.955 569 6
0.128 456 1

DD(ii)

4.343 531 1

2.249 149 3
—0.287 428 9

0.509 968 9
1.982 379 8

0.127 014 9

IV. DISCUSSION

The reformulation of the quantum-mechanical many-
body problem in terms of a variation of the kinetic-

TABLE IV. Defect kinetic energy ET[po]=T[po]—T, [po],
and T, [po] in hartrees, for the beryllium atom; values in
parentheses are in eV.

Local scaling (this work)
LS(i) LS(ii) LS(iii)

T, [po]
~T[pol

14.600 407
0.065 495
(1.781)

14.593 177
0.073 725
(2.006)

14.593 163
0.073 739
(2.007)

Density-driven (this work)
DD(ii)

T.[pol
~TI po]

14.593 134
0.073 768

(2.007)

14.593 134
0.073 768

(2.007)

Zhao and Parr
Ref. [10] Ref. [11],

first order
Ref. [11],

second order

T, I:po]
~T[po]

14.5932
0.0737
(2.005)

14.5889
0.0780
(2.122)

14.5914
0.0755

(2.054)

Almbladh and Pedroza

~T[po] (2.01)

and A, =(a+p)/3a. Two sets of optimal parameters a' '

and p't", plus their corresponding expansion coefficients
jc,.o ] for the "density-driven" orbitals, are given in
Table III. These coefficients are those of the pth or final
iteration, where the elements of the converged 1-matrix
differ by less than 10 from those of the exact one.

The results of the above calculations are given in Table
IV, where we have listed AT= T—T, for the three orbit-
al sets to which the local-scaling transformations were
applied as well as for the two sets of transformed orbitals
generated by means of the "density-driven" procedure.
For completeness, we have also included the AT values
computed by Almbladh and Pedroza [8] and by Zhao and
Parr [10,11].

energy functional constrained to give a fixed one-particle
density opens the way to important developments in
density-functional theory. In particular, it provides an al-
ternative route for dealing with the Kohn-Sham equa-
tions. Numerically, however, this reformulation
demands that adequate methods for the minimization of
T, [p(r)] be developed.

We have shown in the present work how local-scaling
transformations may be used in order to perform a
density-constrained variation of the kinetic-energy func-
tional. The direct transformation of the one-particle or-
bitals by means of local-scaling transformations is com-
pared to the density-driven approach for the beryllium
atom. As seen from Table IV, both of these approaches
lead to the same kinetic-energy difference AT=2. 007 eV,
a value that compares well with the results of Almbladh
and Pedroza [8], b, T=2.01 eV, calculated by means of an
iterative procedure involving directly the Kohn-Sham
equations, and those of Zhao and Parr [10], b, T=2.005
eV, computed by solving a differential equation for the
phase factor.

The present calculations are strictly variational and
lead to values that are upper bounds to the exact kinetic
energy T, [p(r)]. In Table IV, we have listed the values
of the calculated T, [p(r)]'s for the locally scaled and
density-driven cases considered here. It is clear that the
parametric Aexibility of the trial orbitals is crucial for at-
taining accurate kinetic-energy values in the locally
scaled procedure. Thus, we observe in this case that
T, [p(r)] diminishes from 14.600407 hartrees, for the set
LS(i) with only two variational parameters, to 14.593 163
hartrees for the set LS(iii) with six variational parame-
ters. In the density-driven procedure, however, as the
minimization is carried out by directly solving an eigen-
value problem for the kinetic-energy matrix, orbitals with
fewer variational parameters already lead to accurate re-
sults. Thus, the set DD(i) yields a T, [p(r)] value of
14.593134 hartrees, which slightly improves the corre-
sponding value for LS(iii). The set DD(ii) was attained by
nonlinear optimization of the initial parameters a=6.31
and P=3.22, which correspond to the optimum parame-
ters in DD(i) increased by 2.00 and 1.00, respectively. In
spite of the different starting point, the kinetic energy at-
tains its minimum in this case at the same value of
14.593 134 hartrees.

The T, [p(r)] values calculated in the present work,
which are strict upper bounds, contrast quite markedly
with the values recently computed by Zhao and Parr [11],
which approximate in first and second order the solution
of a one-particle energy equation expanded in terms of
the global Lagrange multiplier A. . These values, which
approach T, [p(r) ] from below, are presented in Table IV.
The six-point extrapolation in Zhao and Parr s work is
14.5818 hartrees and does not correspond to the optimal
T, [p(r)] that, according to our results, must be slightly
lower than 14.593 134 hartrees.

The local-scaling transformation method developed
here for the calculation of the kinetic energy T, [p(r)], in
addition to providing upper bounds, has the advantage of
allowing us to approach the exact result as closely as we
wish. This fact is of importance in quantum chemistry,



48 CALCULATION OF THE DEFECT KINETIC ENERGY IN. . . 1943

where effects of the order of millihartrees are sometimes
relevant. Furthermore, this well-defined variational pro-
cedure requires only the computation of kinetic-energy
terms for the locally scaled transformed orbitals. Thus,
in this sense, it bypasses the usual computation of in-
tegrals involving two-electron operators.

The implications of the present results for the con-
struction of the Kohn-Sham effective potentials is in itself
an interesting problem that, however, lies outside the

scope of the present article and will be treated in detail
elsewhere [31].
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