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Finite-element calculations for the S states of helium
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The finite-element method provides a convenient and accurate procedure for the calculation of the ex-

pectation values of quantum observables. We calculated energies, wave functions, and expectation
values of r", for n = —1, 1, and 2, and of ~6(rl) for the singlet n 'S and triplet n 'S states (n =1,2, 3,4) of
helium. In contrast to the standard methods with globally defined basis functions, the accuracy of the
expectation values of physical observables is comparable to the accuracy of the eigenvalues. The results
are reported here and compared with those of Baker et al. [Relativistic, Quantum Electrodynamic, and
Weak Interaction sects in Atoms, edited by Walter Johnson, Peter Mohr, and Joseph Sucher, AIP
Conf. Proc. No. 189 (AIP, New York, 1989); Phys. Rev. A 41, 1247 (1990)], Drake [Nucl. Instrum.
Methods Phys. Res. B 31, 7 (1988)],Pekeris [Phys. Rev. 115, 1216 (1959)],Accad et al. [Phys. Rev. A 4,
516 (1971)],and Haftel and Mandelzweig [Phys. Rev. A 38, 5995 (1988)].

PACS number(s): 31.20.Di

I. INTRODUCTION tisymmetry conditions thus significantly reducing the
number of necessary elements for the explicit calculation.

The three-body Coulomb problem of quantum mechan-
ics has over the years attracted the efforts of many au-
thors using different methods to obtain estimates for the
energies and expectation values of various operators. Be-
sides the fundamental physical importance of three-body
atomic systems, helium and heliumlike atoms have at-
tracted much attention because of their applications in
astrophysics [1].

Some of the most accurate results for the energy values
of the S and P states of helium and heliumlike atoms were
prpvided by Pekeris and co-workers [2—4], where they
used an expansion in Laguerre polynomials and exponen-
tials of the perimetric coordinates first introduced by
James and Coolidge [5]. They also reported some expec-
tation values of powers of r. More recently, high-
precision variational calculations have been performed by
Baker and co-workers [6,7] and Drake [8,9] yielding non-
relativistic energies accurate to 12 digits or better.

Other approaches to the problem include the Hartree-
Fock method [10], the CFHH (correlation-function
hyperspherical-harmonic) method [11,12] and the
method of finite difFerences [13]. One of the more recent
approaches to the problem is the method of finite ele-
ments (FEM), which was pioneered by Levin and
Shertzer [14] to determine the nonrelativistic ground-
state energy of helium and expectation values with
respect to the ground state of the operators r &,r, ', r„
and r &. One of the advantages of the FEM is that no glo=

bally defined expansion basis is required. This flexible ap-
proach is useful in such physical situations, where analyt-
ical basis functions do not capture the essential physics.
(A general introduction about the FEM for calculating
energy eigenvalues of quantum-mechanical systems can
be found in Ram-Mohan et al. [15].) In addition to work
published by Levin and Shertzer [14] we calculated both
triplet and excited states making rigorous use of the an-

II. THE METHOD OF FINITE ELEMENTS
FOR HELIUM S STATES

The spin-independent nonrelativistic Hamiltonian for
the helium atom reads in spherical coordinates and Z-
scaled atomic units [energies in Z (=4) Ry and lengths
in az =a B,h, /Z =

—,'aii, h, ]

2 1H= g —V; ——+
r; rl r2

As is well known, the wave function of the S states de-
pends only on the two radial coordinates and the in-
terelectronic angle 0. To apply the FEM, the infinite
volume of coordinate space spanned by r, , r2, and
u =cos0 is truncated by introducing a cutoff r „.The
wave function is set equal to zero for r, ~ r „,i = 1,2 and
the truncated domain subdivided into parallelepipedal
elements as shown in Fig. 1. The nodes R; along r] and
r2 are given by

l
l 2 ITISX

n,
l:Op ~ ~ ~ 7 fl

U; =cos m—

with n„ the number of intervals in this direction.
Due to the (anti)symmetry of the wave function on in-

terchange of the two radial coordinates, only the ele-
ments 6 k (k = I, . . . , JV) below and intersected by the

where n„ is the number of intervals in the radial direc-
tions, hence concentrating the elements near the origin,
where the Coulomb interaction is strongest. The nodes
U,- in the direction of u are equidistantly placed in the in-
terelectronic angle, i.e.,
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ment 6'k as a linear combination of shape functions,
defined as a product of interpolating polynomials for
equidistant nodes of degree co in each direction. By con-
struction there are in each direction co+ 1 such polynomi-
als and nodes. Therefore on each element 8k there are
n = (co+ 1 ) shape functions f,'"' and corresponding
nodes r;, i = 1, . . . , n with(k)

f (k)(r(k) )
—gj IJ (4)

The wave function is then given by

qg(r) —y (v(k)) f(k)(r)

FICx. 1. Discretization used in the finite-element calculation
for n„=4 and n„=2. Only the elements below and intersected
by the diagonal plane (r& =r2) are actually used in the calcula-
tion.

plane r, =r2 (see Fig. 1) are actually used in the calcula-
tions.

The key of the calculation is to approximate the un-
known wave function locally on each parallelepipedal ele-

with V(r'" ) =(v'" )

Substituting Eq. (5) in Eq. (1) we get

& ylHl(II& = y ck&v("'l IE'"'+ v'"'+ ' v' 'I v'"'&
k=1

(6)

where the local matrices reduce for S states to

Bf,'"'(r) Bf'"'(r) Bf'"'(r) Bf'"'(r)
J + I J

Br1 Br 1 Br Br
1r 2dr 1 dr2d2 2

( V(k) )
—f f(k)(r)

k

(k) 2 2
fz (r)r)rzdr(dr2du,

r2

r12

and the factor

Vz"',
z
= f f("'(r) f '"'(r)r (r &dr(dr2du,

k

1 if 6k is intersected by the plane r =r
Ck

1 2

2 otherwise,

due to the Pauli exclusion principle.

(k) ~

By the values of the wave function %' on the finite-element grid given above th l b l t
nection with the local vectors v is given by the connectivity matrices Ik

e, e g o a vector w is aefined. Its con-

1 if the local node j has the global index i and lies below or on the plane r(=re pane r1 —r2

( —1)s if the local node j has the global index i and lies above the plane r( =re p ane r1 —r2

0 otherwise .

These matrices allow an easy implementation of
boundary conditions: if the wave function vanishes on a
local node, the corresponding column of Ik vanishes.
The values which depend on 5 take care of the
(anti) symmetry requirements.

The local vectors can be written in terms of the global
vector w,

(k) (I )T

& +IHI+ &
=

& wl&lw &,

with

JV
m= y c„l„[Z(„",)+ V',"'+-,' V,(")](Ik)'.

k=1

By defining local normalization matrices

U'"'),"= f f, "'(r)f '" (r)r )r2dr(dr2du

(13)

(15)

Inserting this in Eq. (6), we finally arrive at a similar treatment as above yields for the normalization
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TABLE I. Comparison of the energy (in units of 4 Ry) for the helium ground state from this finite-
element calculation with already published values.

Calculation

Baker et al. [7]
Pekeris [4]
Baker, Hill, and Morgan [6]
Drake [8]
Haftel and Mandelzweig [11]
Leven and Shertzer [14]
Hawk and Hardcastle [13]
This work

—1.451 862 188 517 059 2
—1.451 862 188
—1.451 862 188 51704
—1.451 862 188 517 053
—1.451 862 184
—1.451 6
—1.451 80
—1.451 805 9

5 X10-"
2X 10-'4
6X10-"
5X 10-'
3 X10-'
6X10-'

5.6X10-'

condition

(e e')=(w~Vl~w)=l,

with

(16)

(17)

The variational principle for & under the condition (16)
leads to the generalized eigenvalue problem

&w= A.V/w . (18)

III. RESULTS

The local matrices were determined by numerical in-
tegration. As the integrands of V& ', E,',d, and U' ' are
polynomials of the three coordinates, it is straightforward
to calculate them analytically. However, for larger
values of co each of these matrix elements is a sum of al-
ternating contributions, which leads to a significant loss
of accuracy for the computation of these analytical ex-
pressions [16]. Therefore we used three-dimensional
Gauss-Legendre quadrature with seven abscissas in each
direction. The discretization parameters chosen for the
FE calculation are n, =18, n„=2, co=4, and r,„=120.
The dimension X of the generalized eigenvalue problem is
given by N=con„(con„+1)(con„+ I )/2 in the singlet and
by N=con„(con„—1)(con„+I )/2 in the triplet case, hence
X =23 652 for the singlet and X =23004 for the triplet
calculation for the parameters given above and was
solved by the spectral transformation Lanczos method
[17].

A. Energies of the helium S states

The energies obtained from the finite-element calcula-
tion are shown in Tables I and II. In Table I the energy
of the ground state determined with the method of finite
elements is compared with already published values.
(The value from Baker et al. [7] is considered exact and
used to calculate the error. ) In Table III the ground-state
energy and its error are given for three values of n„.
Doubling the number of intervals results in a reduction of
the error by a factor of =200. This strong dependence is
a consequence of using polynomials of high order for the
interpolation.

In Table II the energies of the excited states are com-
pared with the results from Pekeris [4], Accad, Pekeris,
and Schiff [2], Drake [8], and Baker, Hill, and Morgan
[6]. The relative accuracy of the energy for the ground
state is 3.9 X 10, and the relative accuracy of the ener-
gies of the excited states is better than 10 . The
ground-state energy from the finite-elements calculation
is less accurate than for the excited states, because the in-
teraction between the electrons is stronger for the ground
state.

B. Expectation values for the helium S states

The expectation values of 1!r„r„r„~5(r,) for the
states considered above have been calculated with respect
to the wave functions determined by the FEM. Note that
due to the symmetry properties of the eigenstates these
expectation values are independent of the particle under
consideration.

To obtain the expectation value of an operator 0 we
define, for convenience, the local matrices o by

TABLE II. Comparison of the energies (in units of 4 Ry) of excited helium S states from the finite-element calculation with ener-
gies from Pekeris [4], Accad, Pekeris, and Schiff [2], Drake [8], and Baker, Hill, and Morgan [6].

Energy

State

2'S
3'S
4'S
2 S
3 S
4'S

FEM

—1.072 980 0
—1.030 631 3
—1.016 788 9
—1.087 6107
—1.034 340 7
—1.018 252 2

Ref. [4]

—1.087 614 689 12

Ref. [2]

—1.072 987 022
—1.030 636 0
—1.016793

—1.034 344 531
—1.018 256 04

Ref. [8]

—1.072 987 023 027 14

—1.087 614 689 118395 5

Ref. [6]

—1.072 987 023 027 10
—1.030 635 994 870 305
—1.016793 358 513 92
—1.087 614 689 118 39
—1.034 344 533 736 18
—1.018 256 041 549 02
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9
12
18

—1.450 619 2
—1 ~ 451 658 0
—1.451 805 9

1.2X10-'
2.0X 10
5.6X10-'

(o"),"= f f,'"'(r)Of i "l(r)r irzdridr2du,
k

which yields

&eioie&=&wiGiw&,

with

JV0= g ckIko "(Ik)
k=1

(19)

(20)

(21)

The results for the expectation values are shown in Table
IV and are compared with the expectation values of Pek-
eris [4], Accad, Pekeris, and Schiff [2], Hawk and Hard-
castle [13], Levin and Shertzer [14], Haftel and Man-
delzweig [11],Drake [8], and Krivec, Haftel, and Man-
delzweig [12]. For the ground state 1 'S a comparison is
possible for all expectation values. Pekeris [4] and Haftel

TABLE III. Ground-state energy (in units of 4 Ry) of helium
as a function of the number n„of radial intervals.

n„

and Mandelzweig [11],who used different methods, are in
excellent agreement. Therefore their results should have
an accuracy of at least seven digits. With respect to those
values, our results show a relative deviation of 2.9 X 10
for & llr, &, 8.3X10 for &r, &, and 8.8X10 for
& r i &, which is of the same order of magnitude as the rel-
ative error of the energy. This is one of the positive prop-
erties of a FE calculation using a locally defined basis set
as compared to the expansion in global functions, where
the relative error of the non-Hamiltonian expectation
values is much larger than the relative error of the ener-
gies.

The expectation values from the other finite-element
calculation by Levin and Shertzer are superior to our re-
sults for 1/r, and inferior for all other cases but they did
not calculate &5(ri) &. The finite-difference results by
Hawk and Hardcastle are, especially for 1/r„ less accu-
rate than the finite-element calculations, although their
ground-state energy is almost as accurate as ours.

IV. CONCLUSION

It has been shown that the method of finite elements,
applied to the 5 states of helium, yields accurate results
for the energies and the expectation values of r,", i =1,2,
n = —1, 1,2 and of m.5(r, ). In contrast to other methods

TABLE IV. Expectation values of the operators r;", n = —1, 1,2, i = 1,2 and m6(rl ); r; in units of
2 aB,h, .

State Source (~8(r, 1)

1'S Finite elements
Pekeris [4]
Haftel and Mandelzweig [11]
Leven and Shertzer [14]
Hawk and Hardcastle [13]
Drake [8]

0.844 133 8
0.844 158 4
0.844 158 4
0.844 15
0.845 8

1.859 016 3
1.858 944 6
1.858 944 7
1.858 6
1.856 6

4.774 354 4
4.773 932 0
4.773 932 5
4.765 4
4.762 4

0.710 890 8
0.710953 0
0.710952 26

0.710953 931

2'S

3'S

4's

Finite elements
Accad, Pekeris, and Schiff [2]
Krivec, Haftel, and Mandelzweig [12]
Drake [8]

Finite elements
Accad, Pekeris, and Schift [2]
Krivec, Haftel, and Mandelzweig [12]

Finite elements
Accad, Pekeris, and Schiff [2]
Krivec, Haftel, and Mandelzweig [12]

0.567 695 8

0.567 712 3

0.529 251 0

0.529 3172

0.516 238 1

0.516 321 6

5.946 364 3
5.946 12
5.944 970 2

13.023 729
13.024
12.993 636

23.098 478
23.1

23.047 382

64.362 524
64.356 4
64.322 608

343.580 92
343.6
341.848 45

1124.994 8
1126
1120.920 2

0.514 201 6
0.514 220
0.514 217 654
0.514 224 045

0.503 584 6
0.503 88
0.503 856 2

O.S01 551 1

0.501 56
0.501 597 3

2 S Finite elements
Pekeris [4]
Drake [8]

0.577 326 2
0.577 332 1

5.100940 7
5.100 925 4

45.857 519
45.857 287

0.518 473 0
0.518 502 2
0.518 502 228 4

3 S

4 S

Finite elements
Accad, Pekeris, and Schiff [2]

Finite elements
Accad, Pekeris, and Schiff [2]

0.531 831 3

0.517 280 3

11.711 961
11.711 960

21.321 109
21.322 4

274.834 48
274.836

954.149 27
954.32

O.S04 290 9
0.504 642

0.501 3137
0.501 812
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that use globally defined basis functions, the relative er-
rors of the expectation values are not much larger than
those of the energies. By extending r,„ to larger values
and increasing the number of intervals in the u direction,
we are confident to lower the error of the ground-state
energy and to cover higher excited states. The major
disadvantage of FEM is the need for large computer
storage and the requirements of CPU time. However, if
one is, e.g., interested in the isoelectronic sequence, it is
suKcient to calculate the local matrices only once. We
also intend to apply the method of finite elements to the

two-electron problem in a superstrong magnetic field in
order to understand the observed absorption spectra of
magnetic white dwarfs.
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