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Nonadiabatic variational calculations for the ground state of the positronium molecule
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For a four-particle system consisting of two electrons and two positrons, the nonadiabatic wave func-
tion is constructed with the use of an expansion in terms of explicitly correlated Gaussian-type basis
functions and a Cartesian-coordinate laboratory frame. Motions of all particles are correlated at the
same time in the wave function. The energy of the center-of-mass motion is effectively eliminated from
the total nonrelativistic energy of the system by defining the variational principle based on the internal
Hamiltonian. The ground-state energy is computed for different lengths of Gaussian expansions and
values are compared with previous literature results. Our best estimation of the binding energy of the
positronium molecule is 0.435 eV.

PACS number(s): 31.20.—d, 36.10.Dr

I. INTRODUCTION II. POSITRONIUM MOLECULE

The possibility of the formation of bound states be-
tween electrons and positrons was first theoretically pre-
dicted by Wheeler [1]. The earlier quantum-mechanical
study performed by Hylleraas and Ore [2—4] confirmed
the dynamical stability of such systems. Since this
pioneering work, a large number of studies has been done
on systems with positrons (for example, Refs. [5—7]), in-
cluding the first experimental observation of the posi-
tronium negative ion Ps (e+e e ) [8]. Quantum-
mechanical description of systems containing electrons
and positrons represents a rather difFicult task. Any
correct theoretical approach to such systems requires an
equivalent treatment of all particles since the masses of
the electrons and positrons are the same, and the usual
Born-Oppenheimer or adiabatic approximations cannot
be applied. The internal energies of the Ps ion [9,10]
and the PsH system [11], including series of resonance
states [12], were determined variationally using wave
functions explicitly dependent on the interparticular dis-
tances. Relatively less attention has been devoted to the
Ps2 system, known as the positronium molecule, biposi-
tronium or quadronium. The calculated value of the
binding energy [i.e. , 2E(Ps) —E(Ps2) for the positronium
molecule varies from 0.116 eV (lowest) [2] to 0.948 eV
(highest) [20]. There could be several reasons for such
discrepancy. A more detailed analysis will be presented
in the next section.

Theoretical calculations on Ps2 are important since the
experimental results for this system are not yet available
[13]. In the present study nonadiabatic calculations for
the ground state of the positronium molecule are present-
ed. The nonadiabatic method based upon an effective el-
imination of the center-of-mass motion [14,15] it utilized
in this study. The variational wave function is construct-
ed with the use of explicitly correlated Gaussian func-
tions [16—19].

In this section we would like to brieAy review previous
theoretical investigations concerning the positronium
molecule. The bound state for this system has been inves-
tigated theoretically in a number of studies; however, as
mentioned before, the resulting values for the total ener-

gy have not been consistent. The first theoretical calcula-
tions were performed by Hylleraas and Ore [2] to find the
binding energy of 0.116 eV, and reexamined later by Ore
[3] to obtain the energy of 0.135 eV. The calculations
were performed without an explicit separation of the
center-of-mass motion. They assumed that "the motion
of the center-of-mass of the cluster is irrelevant. . .". The
first description of the internal state of the positronium
molecule with explicit separation of the center-of-mass
motion has been presented by Sharma [20]. He used the
transformation (r„r2,r~, r~)~(R, , R, R„R2), where 1

and 2 denote the electrons, and 3 and B denote the posi-
trons, defined as

R, =
—,'(r, +r2+r„+rii ), (2.1)

and internal coordinates

(2.2)

(2.3)

(2.4)

to separate the center-of-mass motion from the internal
motion, and obtained the binding energy of 0.948 eV.
This binding energy has been questioned by other authors
[21] in that it could possibly contain some errors. In
Table I we show results of some of the relevant calcula-
tions on the ground state of Ps2.

From the above-listed results, the most reliable seems
to be the calculations performed by Lee and co-workers
[24] with the use of the Green's-function Monte Carlo
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TABLE I. Calculations of binding energies of the positronium molecule Ps2 ~

Authors

Hylleraas and Ore
Ore
Sharma
Akimoto and Hanamura
Huang
Brinkman, Rice, and Bell
Lee, Vashista, and Kalia
Vinitsky and Vukajlovic
Ho
Vukajlovic and Vinitsky
Kinghorn and Poshusta

Reference

[2]
[3]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[29]

Method

Variational
Variation al'
Variational
Variational'

FPI
Variational

GFMC'
Variational'
Variationalg
Variational
Variational"

hE (eV)

0.116
0.135
0.948
0.187
0.846
0.197
0.408+0.027
0.220
0.411
0.221
0.435

'Linear combination of "atomic" and "ionic" functions.
James-Collidge method.
With elimination of the center-of-mass motion.
Feyman's path integrals.

'Green's-function Monte Carlo.
'Adiabatic with coupled equations.
With Hylleraas-type functions.
With explicitly correlated Gaussian-type functions and elimination of the center-of-mass motion.

method. They obtained the binding energy of
0.408+0.027 eV, which was later confirmed by Ho [26],
who found the binding energy of 0.411 eV in his varia-
tional calculation accomplished with a Hylleraas-type
wave function. The above two historical calculations put
the value of the binding energy of Ps2 into proper per-
spective. To conclude this discussion, let us quote
Drachman [28]:

"After the initial proof that the molecule (Psz) is actu-
ally bound (by at least 0.1 eV), a series of calculations of
increased sophistication were performed. Unexpectedly,
these did not lead to gradually increasing lower bonds of
the dissociation energy as might have been
expected. . .and it is hard to tell whether there are actual
errors in some of the calculations or whether the ap-
parently better results are due to better coordinate sys-
tems or trial functions. "

In the next section we will present our calculations of
the binding energy for the positronium molecule.

III. METHODOLOGY

"ia ~2W ~2@
(3.1)

where 1 and 2 denote the electrons and 3 and B the posi-
trons, respectively. The four-particle nonadiabatic wave
function utilized in this work has the following form:

M
'Il„,(r„rz, r„,r~ ) = g Ck [P( A, B)P(1,2)cok(r„rz, r~, r~ ) ]

k=1

X e( A, B)e(1,2), (3.2)

with spatial function cok given as a one-center explicitly
correlated Gaussian function,

Let us consider the complete nonrelativistic Hamiltoni-
an for the Ps2 system,

1 1

F12 P AB

I

k 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2~k( 1 2 2 rB ) P( ~1~ 1 z~z 2 A ~B B plzr 12 ply 1A plBr 1B pzA ~23 pzBrzB pAB AB )

=exp[(r„rz, r„,rz| )( A"+B")(r„rz,r~, r~ ) ],
where A and 8 are defined as follows:

(3.3)

k
1 0 0 0

gk

0 ez 0 0

0 0 a~ 0

0 0 0 n~

k

k

pl A +pzA +pAB
k

pAB

—piz

piz+ pz~ +pea
kpz~-
kpza—

r

pk +pk +pk~
—piz

k

—p)pia—
k—pza

—p~a

plB +pzB +pAB

(3.3a)

(3.3b)
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X —[a(A)P(B)—P(A)a(B)] .
1

2
(3.4)

It was assumed that there is no spin coupling between the
electrons and positrons. The spatial part of the variation-
al nonadiabatic wave function Eq. (3.2) is symmetric with
respect to exchanging electrons as well as positrons,
which is achieved by the permutational operators
P(1,2) =(1,2)+(2, 1) and P( A, B)=( A, B)+(B,A ). One
could also consider the charge-reversal symmetry which
corresponds to the simultaneous exchange of the two
electrons against the two positrons [29]. We do not make
an explicit use of this type of symmetry in this work. In
function (3.3), motions of all particles are correlated
through the squares of the interparticular distances
present in the exponent. In a conventional nonadiabatic
approach, the center-of-mass motion is explicitly separat-
ed from both the Hamiltonian and the wave function. In
the present approach we remove the center-of-mass
motion from the total Hamiltonian but not from the wave
function. This leads to the following form of the varia-
tional functional:

(3.5)

where

c.m.

2

(3.6)

For the positronium molecule

=-,'(pi+p2+p~+pa)'

V;V),
i =1,2, A, Bj=1,2, A, B

(3.7)

since M=4 (in a.u. ).
The minimization of the above functional leads to

lowering of the internal energy of the system because the
functional Eq. (3.4) represents only the internal Hamil-
tonian. One can expect, after optimization, that the vari-
ational wave function should be a sum of products of the
integral ground state and wave functions representing
different states of the center-of-mass motion:

The spin functions representing the electron and positron
singlet states are given as

6( A, B)e(1,2) = [a(1)P(2)—P(1)a(2)]1

v'2

which according to variational principle is

min[J['It„t]] &E;„t . (3.10)

In Appendix A we present formulas for the integrals re-
quired to calculate the functional (3.5).

IV. NUMERICAL RESULTS

TABLE II. Total binding energy calculated using difterent
numbers of basis functions used in the expansion of the wave
function. The total energy is expressed in atomic units and the
binding energy in eV. (1 a.u. =27.211 396 1 eV.)

Optimization of the functional Eq. (3.5) has been per-
formed with the variational wave function expanded in
terms of 16, 32, 64, 128, 210, and 300 explicitly correlated
Gaussian functions. The numerical conjugate-gradient-
optimization technique was employed. To indicate the
extent of the optimization effort involved, it suffices to
say, for example, for the wave function expanded into a
series of 300 Gaussian functions one needs to optimize as
many as 3000 exponential parameters. The results of the
calculations are presented in Table II. For all the expan-
sion lengths considered the optimizations were quite well
converged, though with a large number of nonlinear pa-
rameters, one can never be sure whether a local or global
minimum was reached or whether some more optimiza-
tion would lead to further improvement of the results.
Upon examining the convergence of the results with
elongation of the expansion, one sees that the values of
the binding energy are quite well converged. Our best re-
sult of 0.435 eV is identical with the recent result of
Kinghorn and Poshusta [29]. The calculations of
Kinghorn and Poshusta were also accomplished with the
use of the correlated Gaussian functions but with an ex-
plicit elimination of the center-of-mass motion from both
the Hamiltonian and from the wave function through a
transformation to a center-of-mass coordinate system.
Our best result for the total energy ( —0.515 980 a.u. ) is
virtually identical to the best result of Kinghorn and
Poshusta ( —0.515 977 a.u. ) and lower than the best
literature value of Ho [26] ( —0.515 105 a.u. ). It should
be mentioned that all the above results are rigorously
variational.

An interesting question one is always curious about
once a nonadiabatic wave function becomes available per-
tains to the structure of the system under consideration.
The answer requires calculation of averaged interparticu-
lar distances. For the wave function expressed in terms
of explicitly correlated Gaussian functions, the easiest to

tot intX+ i Pc tn. . (3.8)
Number

of functions Total energy
Binding
energy'

(e,„,iH...—T,.ic,„,&

min[ J[tI'tot]] =min .
int @int

(3.9)

However, since the internal Hamiltonian only acts on the
internal wave function, the variational functional J[+„t]
becomes

16
32
64
128
210
300

—0.510 762
—0.515 385
—0.515 852
—0.515 949
—0.515 974
—0.515 980

'Exact energy of the e+e system is equal to —0.25 a.u.

0.293
0.419
0.431
0.434
0.435
0.435
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TABLE III. Averaged squares of the interparticular dis-
tances &r;~) calculated for different expansion lengths of the
wave function. Results are in atomic units.

Number
of functions

34
64

128
210
300

+ +

44.139
45.311
45.681
45.881
45.911

27.932
28.565
28.762
28.863
28.878

e e

44. 134
45.312
45.679
45.879
45.911

calculate are the averages of the squares of the distances.
This can be accomplished with the procedure described
in Appendix B. The results of the calculations for the Psz
molecule are presented in Table III. Upon examining the
results, one notices that the e -e distance is virtually
the same as e+-e+ distance. This is a reAection of the
charge-reversal symmetry discussed above. The second
observation is that the e+-e distance is significantly
shorter than the e + -e + and e -e distances. This sug-
gests that the Psz molecule is a complex of two Ps sys-
tems.

Finally, we should mention that although the lowest
variational energy of the Psz system was achieved in the
present study, there is a certain drawback to using Gauss-
ian basis functions in expanding the wave function of a
system with Coulombic interactions. The problem is re-
lated to smooth behavior of these functions at cusps lead-
ing to less perfect results than in the case of the
Hylleraas-type functions fulfillment of the cusp condition.
This problem will be investigated in our future studies.

TIk = &~i(ri, r„r, , r, ) l

—
—,
' & V';l~k(r), rz, r, ,r, ) )

i =1,2, A, B

Ilk
i =1,2, A, B

(A2)

while the kinetic energy for the center-of-mass motion
reads

Tc.m. lk s I Ik

i =1,2, A, Bj=1,2, A, B
(A3)

The above integrals are expressed in terms of the integral
Ii resulting from integration by parts of the integral in-
volving the V;Vj operator:

I J
= ' ' ' V;o)( r1, rz, rA, rB

X [V~cok(ri, rz, r~, r~)]dr, drzdr„dry .

(A4)

As it was shown in our previous work, the integral I .

can be expressed in terms of the generalized overlap in-
tegral as follows:

I,"=4 a,'a,"-J(r, , r, ;1,1)+a,' g b,kJ(r, , r„.1, 1)
s=1,2, A, B

+a~ g b' $(r, ,r;1,1)
m =1,2, A, B

m =1,2, A, B s =1,2, A, B
b b,",J(r, r, ; 1,1), (A5)

where b' „denotes an element of the B' matrix and the
generalized overlap integral J(r,r; n, , nz ) is defined as

J(r„,r;n&, nz)= f f f f r 'r 'exp[ —r( A +B'")r ]
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APPENDIX A:
INTEGRALS OVER GAUSSIAN FUNCTIONS

We would like to present here the explicit formulas for
integrals required to determine the matrix elements of the
Hamiltonian for the positronium molecule. These are
particular cases of the formulas derived previously for in-
tegrals involving general explicitly correlated, multi-
center Cartesian Gaussian functions [19].

The overlap integral can be obtained as

I„=(ru, (ri, rz, ra, ra )look(ri, rz, r„,rzi ) )

ir6[det( Alk+ Qlk) ]
—3/2

It is more convenient to rewrite Eq. (A4) in the following
form:

I lk
EJ X X

m =1,2, A, B s=1,2, A, B
(a' 5;+b )(a,"5, +b,", )

XJ(r, r„'l, l) . (A7)

Ilk
EJ X X

m =1,2, A, B s =1,2, A, B
(a' 5, +b,' )(a,5, +b,", )

x „&co, lrok ) .1 a

(A9)

The integral with n, =nz =
jk can be calculated as a par-

tial derivative of the overlap integral with respect to the
b ' element of the B' matrix,

J(r, r;1,1)=,k (cu, leuk ),
pg 0&pq

where 6, is the Kronecker delta. Using the expression
for J(r,r; 1, 1), integral I, "becomes

where A = A + A and 8 =8 +8 . The kinetic-
energy integral has the following form:

Further simplification can be made by introducing the ex-
pression for the first derivative of the overlap integral
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Ilk
det( AIk+BIk) V ' (A10)

the integral I,' allows us to express the kinetic-energy in-
tegral in the final form as

where

W; =
m =1,2, A, Bs=1,2, A, B

(a' 5, +b,' )(a,6, +b,", )

X det( A'"+ 8'
l 1, ) . (Al 1)

(~(leak

~

T)tk Y W;;
det( A'"+ 8'")

and the integral of the center-of-mass motion as

(A12a)

In the last equation, det( A'"+8'"l l, ) denotes the result
of the derivative (()/()b'", )det( A'"+8' ). It can be
demonstrated that diA'erentiation of the determinant
det( A'"+8'") with respect to b'", is equivalent to setting
the s column and I row equal to zero, and replacing the
element ( A'"+8'"), with l. Using the expression for

3 (~I ~k ~

4 det( A'"+8'")

The Coulomb integral has the following form:

(A12b)

I lk lk T&~1(r),r„r~, ri ) exp[ —r( A'"+8'")r ],
l

dr, dr2dr~drII
r; —r, Ir; r.

5/2=~3 det( Alk+ 81k. I
.

)
—3/2

D(i, j)[D(i)+D(j)+2(8'2'),"]' 2
(A13)

where the determinant det( A "+8;i,j ) does not contain columns and rows with indices i and j, respectively, and the
indexes i and j can be 1, 2, A, or B. The quantities D(i), D(j), D(i, j), and (8 ); will be defined later in this section.
The Coulomb integral results from a two-step integration. The first step, which we called "reduction, " is the integra-
tion over coordinates of all particles except i and j. The way of reduction is independent of the order of integration.
The second step is the integration over coordinates of the i and j particles.

To demonstrate practical realization of the reduction scheme, let us consider the matrix element given by Eq. (A13).
Let indices p),p2 denote the particles not involved in the Coulombic interaction (i.e., if i =2 and j= 3, then pi can be 1

and p2=B, or p, =B, p2=1). Let us now reassign the particle labels so that i =1, j=2, p2=3, p, =4. It is required
that the A and 8 "matrices are rearranged accordingly. After integrating over r in Eq. (A13), one obtained the fol-

P1

lowing result:

~ / (a' +b' )
/ f f f exp[ —(r, ,r, r„)(A'"+8"')(r, , r, r ) ]

l l

dr, dr, dr„
7 J

(A14)

where a ' denotes an element of the A' matrix and A' " is a 3 X 3 matrix that was obtained from A' by removing
P1P1 (I) .

the pi row (the last row) and the pi column (the last column). 8 is also a 3 X 3 matrix that is obtained as

(A15)

where m, nWp T(he above expression is the result of the first reduction (i.e., integration over the coordinates of the p)
electron). The integration of Eq. (A14) over the coordinates of the p2 electron leads to the result

~3/2(I2 Ik + b Ik
)
—3/2&3/2(Q(1) +b(1) )

3/2 exp[ —(r r )( A' +8' ')(r r ) ] dr, dr .
1

1~1 j 1~1 PpPp P2P2 7 0 J Iw j
l l

Ir j
7 J

(A16)

where A' ' is a 2X2 matrix that was obtained from A'" by removing p, and p2 rows (last two rows) and p, and p2
columns (last two columns). Similarly, 8' ' is a 2 X2 matrix generated as follows:

det A'"+8"I.
(A17)

where m, n&p„p2. In the final step, the integration over the coordinates of i and j particles is performed, leading to
the following result for the Coulomb integral:

where

1 5/2

exp[ —(r;,rj)( A' '+8' '(r;, r ) ] dr, dr =
Dij Di+D j+2B'';. (A18)

D(I)=(A'") +(8'");;, D(j)=(A"') +(8"')
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and

&(i,j)=
( A121) + (B'2') (B' )

(B'2') ( A' ') +(B1 ') . .
V JJ JJ

(A19)

APPENDIX B: AVERAGES OF THE SQUARES OF INTERPARTICULAR DISTANCES

The ( r,, ) were calculated with the use of the standard expectation value formula

(, r,', ) =(e...~r,', ~e...)

g CICk (P( A, B)P(1,2)cot ~r, ~P( A, B)P(1,2)cok ) .
k =11=1

(B1)

The matrix element involving the square of the interparticular distance can be easily evaluated by differentiation of the
overlap integral with respect to the sum of appropriate correlation exponents (the calculation for ( r, 2 ) is shown):

( co r 2
co ) ( co

i
to ) ~9/2 [det( Alk+ Blk) ]

—3/2a a
I 12 k gplk I k gplk

12 12

(B2)

By adding the second row to the first row and then the second column to the first column in the determinant in the last
expression, one eliminates the correlation exponent /31"2 from all elements except the diagonal (2,2) element. By
differentiating the resulting determinant with respect to p', 2, one obtained the final formula for (col ~r, 2 ~cok ):

(,cotjr2 co ) = ', tr 3(—to—t~cok)'/3

~l ++2 +I 1A +~1B+~2A +~2Blk Ik lk lk lk Ik

lk Ik

—
&IB

—
lll2B

lk lk

lk +plk +plk +ptk

lk—
IlAB

lk
~AB

+B +~1B+I 2B +I AB

(B3)
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