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Energy functionals in momentum space: Exchange energy, quantum corrections,
and the Kohn-Sham scheme
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We derive, to leading order, the momentum-space functionals of the exchange energy and of the quan-
tum corrections to the electrostatic energy. The energy functionals thus refined are used to introduce a
Kohn-Sham scheme for self-consistent momentum-space calculations. This scheme is applied to helium
and beryllium. The results differ from those obtained in the standard Kohn-Sham scheme in
configuration space. The total binding energies predicted by the momentum-space computation are
somewhat better than those of the configuration-space method.

PACS number(s): 31.15.+q, 31.20.Sy, 31.90.+ s

INTRODUCTION

In two recent papers [1,2] we formulated the general
theory of energy functionals in momentum space-
momental functionals, for short. We thereby extended
Henderson's [3] proposal, which dealt only with function-
als of the momentum density, by introducing the concept
of the effective kinetic energy. The tools developed for
the corresponding spatial formalism based upon the
effective potential energy, reviewed more technically in
[4] and [5] and more pedagogically in [6], are then appli-
cable. In [1] and [2] we studied the Thomas-Fermi (TF)
and Thomas-Fermi-Scott (TFS) approximations to the
momental energy functionals for atoms and found that
the spatial and momental TF models are perfectly
equivalent, in contrast to the two TFS models, which are
not. The latter observation illustrates that analogous
physical approximations performed in different contexts
need not produce identical results. Indeed, the motiva-
tion for developing the momental formalism, as a supple-
ment to the standard spatial one, originates in applica-
tions where the spatial formalism, and in particular the
spatial Kohn-Sham (KS) scheme, cannot provide for reli-
able answers. Examples are the computation of momen-
tal densities and related quantities such as Compton
profiles.

In the present contribution we go beyond the TF and
TFS approximations of [1] and [2] by including the ex-
change energy, in the Dirac-Jensen approximation, and
quantal corrections to the direct electrostatic interaction
energy into the momental energy functional. We then
proceed to the momental KS scheme, hinted at briefly in
[1],which we apply to helium and beryllium. We observe
differences between the momental densities inferred from
the standard spatial KS scheme and those obtained self-
consistently in the new momental KS scheme. For both
helium and beryllium these differences are marked.

The total binding energies obtained in the two KS

schemes are different, too. We find that the spatial KS
scheme underestimates the binding energies, whereas the
momental KS scheme overestimates them. The numbers
are in favor of the momental scheme, inasmuch as the er-
rors in the energies it produces are smaller than the cor-
responding errors in the spatial scheme.

A momental KS code that will be capable of dealing
with more complicated atoms is being developed and re-
sults will be reported in due course. We use atomic units
throughout and employ the notational conventions of [1]
and [4].

EXCHANGE

The exchange energy

acquires a more useful form upon expressing the spatial
one-particle density matrix n(r';r") in terms of the corre-
sponding Wigner function v(r', p'),

n(r';r") =
3

v
(dp')
(2m )

(2)

viz. ,

E = — y(d )
(dp') (dp")
(2~)' (2n. )'

v(r', p')v(r', p" )

(p' —p" )' (3)

Let us note in passing that Dirac himself in his seminal
1930 paper [7] made use of a phase-space distribution
that was later named the "Wigner function" after
Wigner's paper [8] appeared in 1932. To find the Dirac-
Jensen [7,9] approximations to E,„we have to insert the
TF approximation to the Wigner function, given by
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v(r', p') =2g[ [3~ n(r')]'i —p') (4)

if the dependence on the spatial density n(r') is em-
phasized, or by

v(r', p') =2g[ [3' p(p')]'~ r—'] (5)

E,„[n]= — f (d r') [3' n (r') ]
1

(7)

which is the familiar spatial Dirac-Jensen functional, and

E..[p]=— , f (dp')(dp")
4~ (p' —p" )'

which is the corresponding new momental exchange-
energy functional. For a momental density that is spheri-
cal symmetric, p(p')=p(p'), and monotonically decreas-
ing, p& =p(p& ), the latter functional has the strikingly
simple form

E..l p) = f—(d—p')S'p(p')1

Incidentally we note that this states that the coefficient
BQ of [10] equals I/m=0. 3183, about two percent more
than the value found there by numerical data fitting.

As a check we evaluate (8), or (9), perturbatively by in-
serting the momental density obtained in the TF approxi-
mation [1],

1p(p') =,r'
37T2

with r' determined by

V(r')+g= —
—,'p'

(10)

where V(r') is the corresponding effective TF potential
and g is the negative of the chemical potential. A change
of the integration variable from p' to r' reproduces the
known answer [11,12]

if the dependence on the momental density p(p') is fo-
cused upon. In (4) and (5), g(x) denotes Heaviside's unit
step function, and the factors of 2 account for the spin
multiplicity.

In view of the common r' argument of the two Wigner
functions in (3), the step functions in (4) and (5) imply

4g [ [3' n (r') ]' —p & ] for (4)
v(r', p')v(r', p")=

4g[(3m p&)'~ —r'] for (5),
where p& =max[p', p" ] and p& =min[p(p'), p(p")].
One can then either perform the two momentum integra-
tions in (3) or the one remaining spatial integration. The
outcomes are

in (7). Here the square root of negative arguments is zero
by convention.

The exchange energy functionals (7) and (8) suffer from
analogous insufficiencies. The spatial one overestimates
the exchange energy in the low-density region of large r'.
Correspondingly, the momental functional (8) overesti-
mates the contribution from the small-p' range where
p(p') is large. These features are particularly obvious in
the two Thomas-Fermi-Dirac (TFD) functionals that one
obtains by adding E,„[n]of (7) or E,„[p]of (9) to the two
TF functionals, given in Eqs. (59) and (60) of [1], respec-
tively. Both TFD functionals are inconsistent, unless one
confines the spatial density n(r') to the interior of a r'
sphere and the momental density p(p') to the exterior of
a p' sphere with a corresponding radius. In this way, the
troublesome large-r' and small-p' regions are explicitly
excluded by hand. In return one has to accept that the
densities are discontinuous at these artificial boundaries.
Their locations are, of course, not uniquely determined
but merely restricted to corresponding ranges, within
which each value is equally acceptable [13]. The spatial
TFD model thus constructed is then perfectly equivalent
to the corresponding momental TFD model, as can be
demonstrated analogously to the related discussion in [1]
that concerns the equivalence of the two TF models.

In addition to this mathematical inconsistency of the
TFD approximation there is also a physical one. The ex-
change energy contributes nine-elevenths to the Z
term in the total atomic binding energy (the leading TF
term is proportional to Z ~ ), the remaining two-
elevenths are supplied by quantum corrections [12] that
improve upon the TF evaluation of the independent-
particle energy, denoted by E, [ V+ g] and E, [T+g] in

[1], and also —in the momental formalism —the evalua-
tion of the direct electrostatic interaction energy. Includ-
ing only exchange into the description but not
also the quantum corrections is, therefore, physically
unreasonable —not to mention the left-out Scott correc-
tion [11,14,2], which is of order Z . These difficulties are
avoided, at least to a large extent, by not evaluating the
independent-particle energies semiclassically at all, but
rather fully quantum mechanically, which unfortunately
can only be done numerically. This is achieved by the KS
schemes, the standard spatial one and the momental one.

QUANTUM CORRECTIONS

As mentioned, consistency requires the inclusion of
quantal corrections into the momental functional E„[p]
of the direct electrostatic energy. It is expedient to ex-
press the electrostatic energy

E,„=— f (dr')( —2[V(r')+g]]1

4m
(12) E =—' (dr')(dr") (14)

in which the domain of integration is the classically al-
lowed region where V+ / is negative. One usually arrives
at (12) by employing the TF result

with the aid of the signer function introduced in (2),

(dp') (dp")
(2~) (2m. )

n(r')= [
—2[V(r')+g]]1

3
(13) f (d, )(d „)v(r', p')v(r", p")

(15)
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this is Eq. (58) of [1].
The leading quantum correction 6 „v to v(r', p') is de-

rived in the Appendix. It amounts to replacing (5) by

1v(r', p') =2i)(R r')+—
36 Br'

T '2

=v~F+ A„„v,

1 1X6 r' R
a 1

Bp R

(17)

where R =R(p')—:[3n. p(p')]' . We note that the
spherical symmetry of the atom has been explicitly used
in the derivation of (17). The resulting correction to E„
1S

bq„E„[p]=—,f (dp')(dp")p'('V'p(' '1
(18)

One easily confirms that the TF approximation (5) to v
yields the TF approximation to E„,

E TF
[p ] 3

( 3~2 )
i / 3f ( d p

i
)( d p

~ ~

)[p
2 / 3p 1

p
5 / 3

]

(16)

If the density p(p') is monotonically decreasing,
p &

=p(p & ), this simplifies to

b „E„[p]= f (dp ) P P(P )

I.

2

(20)

Please observe that the first term compensates for two-
ninths of the exchange energy (9).

In summary, the total momental functional E„[p] of
the electron-electron interaction energy, in a consistent
approximation to order Z, is given by the sum of (16),
(19) [or (20)], and (8) [or (9)],

with V—:8/Bp. In the TF regime one has p-Z andp-Z, so that E„"-Z, whereas E„-Z and,
indeed, AqUEes Z

Partial integrations turn (18) into the equivalent ex-
pression

bq„E„[p]= 2 f (dp')(dp")[ —,', V p&
—

—,'(V+p&) ] .1

9m.

(19)

E„[p]=E .',"[p]+~,.E,.[p]+E..[p]

, f (dp')(dp") [(3m'p, )' ' —
—,'(3m- p, )' ']p, + —,', V'p, —

—,', (V+p, )'—
4~

P(
(21)

or, for monotonic densities,

E„[pl= —,'(3~') ' ' f (dp')(dp")[p(p, )]' 'p(p, )

f (dp') ,'(3~')'/'p'[p—(p')]' '+ ,'p'p(p')+ —,',p-' &, ~ p(p')
2

(22)

The analogous spatial functional is, of course,

E„[n]=E„[n]+E,„[n]

( d /

) ( d f f
)

n ( r '
)n (r" )

2 I II

1

3 f (d r') [3m n (r' ) ]4/3
4~

(23)

for

E„[p„l=pE„[pl,
E„[n„]=pE„[n]

(24)

p„(p') =v 'p(p'/v»

n„(r')=p n(pr') .
(25)

Note that these functionals obey the expected scaling
laws

The momental functional must scale like this for all p) 0
(see [1]),whereas the spatial one is required to do so only
in the vicinity of p = 1 (see [15]).

A comment is in order. In Eq. (17) the leading quan-
tum correction of relative order Z is taken into ac-
count, but the Scott correction is left out, although it
(superficially) appears to be of relative order Z ' . The
approximation (17) is tailored, of course, to the evalua-
tion of (15), where the Scott correction is irrelevant.
Indeed, the electrostatic interaction energy of the elec-
trons E„remains unchanged by the Scott correction,
which a6'ects only the kinetic energy of the electrons and
their interaction energy with the nuclear charge. This is
well known in the spatial formalism [16]. To show that it
remains true in the momental formalism, we remark that
the Scott correction would amount to replacing p by

p
—b,,p on the right-hand side of Eq. (16), where b,,p(p')

equals Z times a function of p'/Z [ 2, 17], in contrast
to p(p'), which is (roughly) equal to Z ' times a function
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of p'/Z . %'hen keeping these different scaling proper-
ties in mind and recalling that b,,p(p') is only relevant for
large p', then one finds that the resulting extra terms in
E„are at most of relative order Z and, therefore,
quite irrelevant. In short, there is no Scott correction to
E..I:p).

Another remark concerns the electrostatic self-energy
contained in (14). It is compensated for by the self-
exchange energy which is part of (1). Therefore, the
functionals (21) and (23) are free of any self-energy —at
least within the range of validity of the approximations
used. Thus, for the helium atom, in which no physical
exchange energy is present, the exchange energy contri-
butions to (21) and (23) are pure self-energies. They must
be taken into account, nevertheless, because they are
needed as compensation for the unphysical electrostatic
self-energy.

KOHN-SHAM SCHEMES

The approximate functionals (21) and (23) do not ac-
count for correlation energies, which are roughly propor-
tional to Z, and therefore it is consistent to disregard
as well all correlation contributions to the independent-
particle energies. In other words, we shall use the
noninter acting-electron approximations for the
independent-particle energies, as given in Eqs. (23) and
(41) of [1]. The functionals of the total energy are thus

E[T,p, g]=tr[(H+g)g( H —g)]-
—f (dp')[T(p ) —,p )p(p )

eigenstates and eigenvalues are not identical.
Since the analytical properties of T(p) and V(r) are

rather unknown, it is natural to use momental wave func-
tions y (p')=(p'Iy & and spatial wave functions
g (r')=(r'Iy, &, respectively. The eigenvalue equations
(30) are then turned into a less-familiar momental integral
equation,

(
fl

)
[T(p') —@ ]g (p')=, f (dp")

27T2 (p' —p" )'

and a quite-familiar spatial differential equation,
2

(31)

(32)

(33)

Therefore, the momental density inferred from the spatial
KS wave functions y (r'), via their Fourier transforms
y, (p'), will be different from the self-consistently-
determined momental density, constructed from the mo-
mental KS wave functions y„(p').

The stage is now set for a presentation of the KS
schemes. We begin with the standard spatial one [18].
The stationary property of the energy functional (27) un-
der variations of V and g implies

Note that the two KS wave functions appearing here are
not Fourier transforms of each other:

—i p'. r'

y (p')Ay (p')=(p' q, &= f (dr'), ~, y (r') .

+E„[p] gN—
for the momentum-space formalism, and

E[ V, n, g] =tr[(H +g)g( H —g)]—
—f (dr') V(r')+ —, n(r')r'

(26) n (r')=, tr[(H +g)q( H g))——6
5V(r')

(34)

+E„[n]—gX (27) X= tr [(H +g)g( H —g) ]=trr)—( H —g)—a
a

for the configuration-space formalism. The trace tr in-
cludes a factor of 2 for the spin multiplicity.

The respective independent-particle Hamilton opera-
tors

=2+ rl( —8 —g) .

(35)

ZH= T(p) ——
r

H= —,'p + V(r)

(28)

(29)

For a given effective potential V, Eq. (35) determines
which KS orbitals contribute to the sum in (34) such that
the count of electrons equals the preassigned value N.
Then (34) supplies the spatial density of that given V(r).
On the other hand, the stationary property of (27) under
variations of n implies

involve the effective kinetic energy T(p) or the effective
potential energy V(r). Their eigenstates Ip, & and I&p„&

are the KS orbitals, the eigenvalues 8 and 4 are the KS
energies:

V(r') = ——,+, E„[n]= ——,+ V„(r'), (36)
Z 5 Z
r' on (r') " r'

where the interaction contribution is given by

Hlq „&= Iq. & e. ,

H
I q. & I

=
I y, & @..

(30)

V„(r')=f (dr"), „——[3' n(r')]'n(r") 1

r' —r"
I

(37)

Inasmuch as H does not commute with EX, the respective if E„[n]of (23) is referred to. Equation (36) tells us the
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effective potential when the spatial density is known. The
self-consistent circle is now complete.

The well-known spatial KS scheme is a self-consistent
iteration that begins with an initial guess for V(r), for
which the KS orbitals y have to be found from the
difFerential equation (32) along with their eigenvalues 6 .
Then (34) and (35) produce the spatial density n, which is
inserted, via (37), into (36) to yield an improved effective
potential. This procedure is repeated as often as neces-
sary to reach the desired accuracy. With V, n, and g thus
determined the various contributions to the total energy
(27) can be evaluated, among them

E,p =—tr[(H+g)rj( H ——g)] —(N=2 + 8 ri( —6 —g),

(38)

an explicit sum over the independent-particle energies.
The analogous equations for the new momental KS

scheme result from the stationary property of the mo-
mental energy functional (26) under variations of T, g,
and p, viz. ,

p(p') =, tr[(H+g)r)( H ——g)]5T(p')
=2 g ~q,(p') 'g( —@„—g) (39)

and

N= tr[(H+g)i)( H —g)]=—2g ri( —6' —g),
ag

(40)

as well as

T(p')= —,'p' +, E„[p]=—,'p' +T„(p') . (41)
6

If E„[p]of (22) is used, then the interaction contribution
1S

T„(p')=[3m p(p')]' r4vr J dp"p" p(p")+ —J dp"p" [3'p(p")] ~ — p' [3vr p(p')] ~ — p'

p ap(p )

81' p(p
'

) ap
'p' 10

2
p' ap(p') +2 p' a'p(p')

p(p') ap' p(p') ap'
(42)

valid for monotonic densities.
The momental KS scheme begins with an initial guess

for T(p'), for which the KS orbitals y„(p') have to be
found from the integral equation (31) along with their ei-
genvalues g . Then (39) and (40) produce the momental
density p, which is inserted, via (42), into (41) to yield an
improved effective kinetic energy. One repeats this pro-
cedure until the desired accuracy is reached. With T, p,
and g thus determined self-consistently, one can evaluate
the various contributions to the total energy (26), where-

by

E,p
—=tr[(H+ g)rI( H —g) ] gN— —

(43)

exhibits an explicit sum over the independent-particle en-
ergies 6 .

Please observe that the KS orbitals are auxiliary quan-
tities to be used for the sole purpose of evaluating the
independent-particle traces that appear in Eqs. (34) and
(39), for example. The KS orbitals do no possess a physi-
cal significance per se. Neither are they identical with
Lowdin s natural orbitals [1], nor is the true many-
particle wave function a Slater determinant of KS orbit-
als. Indeed, the KS schemes do not provide us with in-
formation about the many-particle wave function of the
atom. To the accuracy of the physical approximations
that enter (27), the spatial KS scheme supplies the correct
spatial density (rn') of the ground state and the correct
ground-state energy —and nothing else. Likewise, the
momental KS scheme supplies the correct momental den-

sity p(p') of the ground state and the correct ground-
state energy —nothing more and nothing less. In partic-
ular, the spatial KS scheme cannot provide for a truly re-
liable momental density, although the natural attempt
that employs the p (p') of (33) in (39) instead of the

y (p'),

p(p') —=2 g ~ y (p') ~'rj( —&,—g), (44)

usually produces a reasonable approximation.
We have presented the standard, traditional reasoning,

where the starting points are the energy functionals, and
the densities are determined self-consistently. It has re-
cently been demonstrated [21—24] that the reverse is pos-
sible, too. Provided that the (spatial) density is known,
one can find —by more than one method —the (spatial)
KS orbitals and also the effective potential (36) for that
given density. The KS orbitals thus found for the neutral
beryllium atom, based on a theoretical density believed to
be accurate, are compared with Hartree-Fock (HF) orbit-
als in [22] and also with "HF-KS" orbitals, fake KS or-
bitals generated from the HF density. It is observed that
although "the three sets of orbitals are qualitatively simi-
lar, they are in fact significantly different" [22]. Neither
the similarities nor the differences are unexpected. The
HF orbitals are constructed to produce the optimal Slater
determinant approximating the true many-particle wave
function. The HF density is always at variance with the
true density. Consequently, the true KS orbitals cannot
be identical with the HF orbitals. Further, we note that
HF orbitals are essentially unique, whereas the present
work shows that there is more than one set of equally
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consistent KS orbitals, quite different sets as a matter of
fact, in view of the unequal sign in (33). It would be in-
teresting to see if methods analogous to those of [21—24]
can be used to find the momental KS orbitals for a known
momental density.

1.8

NUMERICAL RESULTS

We have applied the momental KS scheme to neutral
helium and neutral beryllium. In these atoms, only s or-
bitals are present, for which (31) simplifies to the one-
dimensional integral equation

I + It

[T(p') —@.]X.(p') =—f dp "», „X.(p")
0 P P 0.2 0.6 0.8 1.4

t "(y)=2 4
3' /x, (46)

with x related to y by
' 1/3

4
g =2

3&
&F(x ) /x (47)

which involves the neutral-atom TF function F(x).
Please note that t (y =0)&0; that is, T (p'=0)&0,
for both helium and beryllium. Since Tk;„(p ) = —,'p van-

ishes for p=0, these positive values of T originate in
the interaction contribution T„.

For large p' values, the KS density contains the Scott
correction, so that p(p')-p' asymptotically as in the
TFS model [2]. Consequently, Eq. (42) implies

(45)

obeyed by the radial wave functions y,(p') =p'y (p').
This first, and rather elementary, application served the
sole purpose of demonstrating the differences between the
momental densities obtained self-consistently in the mo-
mental KS scheme and those inferred, via (44), from the
spatial KS orbitals. The numerical method used for solv-
ing (45) was neither very fast nor highly accurate, though
quite sufficient for said present purpose. A much more
efficient computer code for momental KS calculations—
capable of dealing with more complicated atoms contain-
ing also p, d, and f electrons —is in the working.

Figure 1 shows the self-consistently computed effective
kinetic energies t=T/Z ~ as functions of y=p'/Z ~ .
The scaling by these powers of Z' facilitates the com-
parison with the universal TF approximation [1]

2/3

FIG. 1. Effective kinetic energy T(p') for helium ( ———)

and beryllium ( —~ —- —). The plot actually shows t = T/Z" '
as a function of y =p'/Z . The solid line is the universal TF
result.

KS t l t2

+
z f (dp")[3' p(p")] ~ +1

(48)

where the ellipses represent contributions that vanish in
the limit p' —+ ~. The p'-independent term equals 4.02
for helium and 9.62 for beryllium. In the TF and TFS
models, this term approximates the electrostatic energy
E&, between the nucleus and the electrons according to

—E, /Z for TF
f (d p') [3' p(p ') ] ~ —= ' — (49)

2~2

see Eq. (52) in [1] and Eq. (21) in [2]. The KS values re-

ported for E~, in Tables I and II give 3.44 (TF) and 5.44
(TFS) for helium as well as 8.37 (TF) and 12.4 (TFS) for
beryllium on the right-hand side of (49), in satisfactory
agreement with the actual values on the left-hand side.

Further, we note that the effective kinetic energy for
the one-shell-atom helium is smooth, whereas that of the
two-shell-atom beryllium exhibits oscillations around the
TF curve, which one naturally associates with the shell
structure.

Let us now turn to the wave functions plotted in Fig. 2.
As stated at the end of the preceding section, these wave
functions are auxiliary quantities of little interest in

TABLE I. Energies for helium, determined self-consistently in both KS schemes, the momental and the spatial one. The columns
list the KS energy of the 1s electrons, the independent-particle energy of Eqs. (38) or (43), the kinetic energy, the electrostatic interac-
tion energy between the nucleus and the electrons, the direct electrostatic interaction energy between the electrons (TF contribution
only for the momental scheme), the quantum correction to it (momental scheme only), the exchange energy, and the total energy.

Scheme

Momental
Spatial

—0.812
—0.517

En
—1.62
—1.03

E

2.99
2.72

ENe

—6.89
—6.56

E„
0.93
1.12

ETF
es

2.04
1.97

~qUEes

—0.22

E„
—0.91
—0.85

Etotal

—2.99
—2.72
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n ', labeled as in Table I, except for the additional column for the KS energy of the 2sTABLE II. Energies for beryllium, columns labeled as in Ta e, excep
electrons.

Scheme

Momental

Spatial

—4.63
—3.79

—0.387
—0.170

Eip

—10.0
—7.92

El in

14.7
14.2

ENe

—33.5
—33.2

4.08
4.77

ETF
es

6.96
7.05

5 „Ees

—0.56 —2.32
—2.28

Etotal

—14.7
—14.2

0.6

0.5

0.4

0.3

0,2

0, 1

themselves. Nevertheless, it is worth observing that the
momental KS wave functions @(p') differ substantia y
from the Fourier transforms Ip(p') of the spatial KS wave
functions. The unequal sign in (33) is convincing y
confirmed. The corresponding KS energies in Tables
and II have little in common, too.

As a consequence of the differing wave functions, the
resuiting momen al

' t l densities are also at variance.
~ ~ ~

demonstrate in ig. , wd F' 3 where we plot the radial densities4'' p(p') rather than p(p') itself, because the beryllium
shells are only visible in the radial density.

The Compton profiles
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FICx. 2. Momental KS wave functions y(p') for (a) helium, 1s
e dashedstate; (b) beryllium, 1s state; (c) beryllium, 2s state. The das

lines show the Fourier transforms y(p') of the corresponding
spatial KS wave functions y(r').

0FIG. 3. Radial momental densities 4~p' p(p') for (a) helium
and (b) beryllium. The solid lines show the self-consistent densi-

d lines show theties of the momental KS scheme, and the dashe ines
approx'roximations inferred in the spatia S scheme with the aid
of Eq. (44).
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J(q) =
(
" =2m 1 dp'p'p(p')

2p Iql

for the momental KS energies, and

~o~a1 —= ip cs 3 Eex (52)
are shown in Fig. 4. Of course, the differences seen in
Figs. 2 and 3 are here manifest, too. Since Compton
profiles can be determined experimentally, the question
arises whether experimental data could tell us which
theoretical prediction is better. At the present stage of
the development, however, it is still too early for that, be-
cause both the momental and the spatial energy function-
als are rather crude approximations in the small-p range,
where the differences between the two Compton profiles
are largest. It is quite possible that the gaps in Figs. 2 —4
narrow when better functionals are employed.

The energy values reported in Tables I and II can be
checked for consistency in various ways [25]. First, the
virial theorem requires that the kinetic energy equals the
binding energy, that is, the negative of the total energy.
We have used this as a natural control for the accuracy of
our numerical procedure and have confidence in the di-
gits given in the tables. More subtle are the relations that
express to which extent the interaction of each electron
pair is counted multiply in the sum of the independent-
particle energies, viz.

for the spatial ones. Both are obeyed quite well by the
respective numbers in the tables. A derivation of (51) be-
gins with the observation that, in view of the various
powers of p that enter the functionals E „" and
Eex +~quEes ~ the identity

I (&p')p(p')[T(p') —
—,'p']= J (&p')p(p')

5
,
)

Eee [p]
P P

(53)

is obeyed by the actual p and T. In conjunction with the
definition of the independent-particle energy E,p in (38),
this implies (51). Likewise, proceeding from

J (dr')n(r')[V(r')+Z/r']= J'(dr')n(r')

5X, E„[n]
TF (51) =2E„+4E,„ (54)

0.6

0
0 0.2 0.4 0.6 0.8 1.2 1.6

0
0 0.2 0.6 0.8

FIG. 4. Compton profiles JI,'q) to the densities in Fig. 3.

1.2

one establishes (52).
Both KS schemes are self-consistent and involve analo-

gous physical approximations. So the two schemes are
equally good in the first place, although they are not per-
fectly equivalent. For instance, the two schemes produce
different predictions for the total binding energies. Both
the comparison with the experimental binding energies
(helium, 2.9038 a.u. ; beryllium, 14.669 a.u. ) and with the
nonrelativistic HF predictions (helium, 2.8617 a.u. ; beryl-
lium, 14.573 a.u. ) show that the spatial KS scheme un-
derestimates the binding energy, whereas the momental
one overestimates it. The momental-scheme numbers are
much closer to the experimental values. The fairer com-
parison, though, is with the HF results; for helium the
HF energy is half-way between the two KS numbers; for
beryllium, however, the comparison is clearly in favor of
the binding energy predicted by the momental KS
scheme.

This observation should not induce the reader into
believing that the momental KS scheme generally outper-
forms the spatial one. Indeed, the momental density and
the Compton profile of beryllium calculated from the HF
wave functions [26] resemble more the ones obtained in
the spatial KS scheme than those of the momental one.
In view of the structural similarities between the HF
equations and those of the spatial KS scheme, this resem-
blance is not surprising.

HF results are approximate themselves, of course, they
cannot be used as an absolute criterion for judging the
quality of approximate spatial or momental functionals.
The purpose of the KS schemes is not the reproduction of
HF numbers but to provide independent predictions.
Indeed, the two KS schemes are independent formula-
tions, independent of each other and also independent of
the HF approach.
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SUMMARY

We have extended the momentum-space functional
method for atomic structure calculations by including
both the exchange energy and the quantum corrections to
the electrostatic energy. The momental KS scheme that
is based upon these refinements has been introduced and
applied to helium and beryllium. As expected, we have
found that the results are different from those obtained in
the standard spatial KS scheme. The quality of the bind-
ing energies computed in the momental scheme is not
worse than that of the spatial-scheme ones. So we now
have not one, but two, KS predictions for the binding en-
ergy of each of these atoms; both the experimental values
and the HF predictions are sandwiched by the KS num-
bers.

for which

h(r', p')=v(R(p')) —v(r') .

and

hAhAh = Bv(R) 8
Bp' Br'

2

2
Bv(r') 8

Br' Bp'

Here [R—:R (p ') everywhere in the sequel]
2

hA h = —2, , u(r')u(R)2= a. a
Br' Bp'

(A6)

(A7)

(A8)
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APPENDIX

If we denote by h(r', p') the Wigner function of an
operator H(r, p), then the TF approximation to the
Wigner function g(r', p') of an operator function G(H) is
given by

g(r', p')—=G(h(r', p')) . (Al)

Quantum corrections to this (highly) semiclassical ap-
proximation involve even powers of the two-sided
differential operator

a a a a
Br' Bp' Bp' Br'

(A2)

in terms of which the classical Poisson bracket has the
compact form

2

2
1 Bu(r')
3 Bl' v(R) .

Bp

After rearranging the resulting terms in (A4) we then find
that the leading quantum correction to (Al) is

'2
a u(r')

Br'

'2
a

Bp
g(r', p') =G(h)+ 1

72
'2

v(R)
a

Bp

X, . G(h)Br'

2

Upon restricting the possible use of (A4} to situations
where either a (dr') or a (dp') integration is performed,
we can average over the angular dependence in (A7) and
(A8). This produces the equivalent replacements

2 2

hA h~ ——,v(r'), v(R),2 2 a ~ a
3 Br Bp

(A9)

hAhAh —,( ')
3 Bp Br

Bg Bh Bg Bh

ar ap Bp' Br' (A3)
1 8 G(h)

72
u(r'), u(R) . (A10)Br' Bp

Inasmuch as in the TF regime of an atom r' is of the or-
der Z ' and p'-Z, we find A-Z ', so that the
leading quantum corrections to (Al) are represented by
the terms of order A . These are exhibited in

2

g(r', p') =G(h) —
—,', [h A h j G (h)

a

We regard (5) as corresponding to v(r', p')=g(r', p')
with

G(H) =2q —T(p) —g+ —=2il[v(R(p)) —u(r)],Z

'3

+ —,', jhAhAh ] G(h)+, (A4)

where A acts only upon those functions h(r', p') that
stand immediately next to it inside the curly brackets,
and the ellipses indicate terms that involve at least four
factors of A.

Consider now a spherically symmetric H of the form

(A 1 1)

p(p')= f 3
v(r', p') .(dr')

(2~ )
(A12}

where u(r') = —Z/r', and R (p') is related to the momen-
tal density by

H(r, p) =v(R (p)) —u(r), (A5) In (A10), we then encounter
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2

v(r') G(h)=2vr5(r')(r'+R )Br'

G(h) =2' Z Z
r' R

=2g(R —r'),
(A13)

X5(R —r')

=Svr5(r')R 5(R )

=0,
2 1 1 1G(h)= —5 —,——= (r'+R ) 5(R r'), —

Bh Z r' R 2Z
a U(r')

Br'

(A14)

G(h) = 5(r')(r'+R )

'2 2, 1 1
G(h) = 5'

Bh Z ' R

1 (r'+R ) 5'(R r'), —
8Z

and in particular the vanishing products

X 5'(R —r')

5(r')R 5'(R)
Z

=0.
As a consequence, (A10) produces (17). We finally note
that b, q„v in (17) does not contribute to the integral in
(A12), so that p(p') = 3m [R (p') j'.
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