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Approach to perturbation theory for box models
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We generalize a recently developed perturbation approach [F. M. Fernandez and E. A. Castro, Phys.
Rev. A 46, 7288 (1992)],extending its applicability to a wider variety of separable quantum-mechanical

problems. As an illustrative example, we consider a particle in a one-dimensional box with a finite po-
tential wall perturbed by a linear potential and obtain the perturbation corrections to the wave function
and energy of an arbitrary state in terms of the corresponding unperturbed quantities.

PACS number(s): 03.65.Ge

I. INTRODUCTION

Particles within boxes prove to be useful models for the
simulation of many quantum-mechanical physical phe-
nomena. The confinement produced by the box walls is
the simplest way of taking into account the effect of
neighboring particles on a given atom or molecule. In a
recent paper it was shown that perturbation theory is a
convenient way of obtaining analytic expressions for the
energy and other physical observables in the case of
impenetrable walls [1].

It has been argued that boxes with finite walls are more
realistic than boxes with impenetrable walls for the simu-
lation of the environment of an atom or molecule because
the former walls allow one to take into account long-
range forces between particles [2]. The Schrodinger
equation for such models has only been solved numerical-
ly. In spite of the vast literature on the subject there are
no analytic perturbation calculations on box models ex-
cept for the case of impenetrable walls [3].

The purpose of the present paper is the generalization
of a recently developed perturbation method for box
models to allow the treatment of a much larger variety of
problems and the illustration of its application to a sim-
ple nontrivial box model with a finite wall. In this way
we intend to extend the scope of calculation of analytic
expressions by means of perturbation theory. One attrac-
tive feature of the example discussed is that the unper-
turbed eigenvalues are not given in closed form but deter-
mined by a transcendental equation.

In Sec. II we develop general perturbation equations
for separable problems and in Sec. III we consider the il-
lustrative example mentioned above. The application of
the method to other problems is briefly discussed in Sec.
IV.

II. THE METHOD

The Schrodinger equation for separable problems in X
dimensions is reduced to a set of X equations of the form

P (x)N"(x)+Q(x)@'(x)+R (x)@(x)=0,
where the prime stands for differentiation with respect to

the argument of the function. Typically the function
R (x) also depends on the energy eigenvalue and on the
separation constants. If at least one of the resulting equa-
tions is not exactly solvable one resorts to an approxi-
mate method. Perturbation theory, for instance, con-
structs an approximate solution of (1) from the known
solutions of a closely related problem, say

P (x)@o(x)+Q (x)4o(x)+Ro(x)@o(x)=0 . (2)

We will prove that it is convenient to look for a solu-
tion of Eq. (1) of the form

N(x)= A (x)4&o(x)+P (x)8 (x)Po(x), (3)

When @o(x)=sinKx and P =1 the ansatz (3) reduces to
the one used in the previous paper [1]. The ansatz (3) re-
minds one of the method of Dalgarno and Stewart [4] in
which the perturbed solution is written
@(x)=F(x)&o(x). The advantage of Eq. (3) is that the
resulting equations (4) do not depend on @o explicitly. In
the method of Dalgarno and Stewart [4], on the other
hand, the equation for F(x) contains a term of the form
4 p/C p which forces one to treat one state at a time.
Therefore this approach becomes impractical for the
treatment of highly excited states. The complication
caused by the appearance of two coupled differential
equations in the present approach is counterbalanced by
a considerable gain in simplicity as shown below.

In order to apply perturbation theory one chooses an
appropriate perturbation parameter k and writes

Substitution of this expansion and the corresponding ones
for A (x) and 8 (x),

where A (x) and 8 (x) satisfy

PA "+QA ' —
2RoPB

' —(PR o+P'Ro )8

+(R —Ro)A =0, (4a)

PB"+(2P' —Q)8'+2A'+(P" Q')8 +(R ——Ro)8 =0 .

(4b)
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A (x)= g A (x)A,', B(x)= g B (x)A', ,
j=0 j=0

into (4) leads to the following differential equations for
the perturbation corrections:

leads to the quantization condition

For the unperturbed system (A, =O) we have

(10)

PAk +QAk 2PRQBk (PRQ +P Rp )Bk
k

+ g r~Ak J=O,
j=1

PBk'+(2P' —Q)Bk+2Ak+ (P"—Q')Bk
k

+ g rBk . =0.
j=1

(7a)

(7b)

C1sinqox if 0 & x ~ 1

@Q(x)= .
C e ' if 1&x,

tanqo = —
qo /Ko (12)

in which qp
=+Ep and Kp =Q WQ EQ. —The energy ei-

genvalues are given by the transcendental equation

One solves these equations hierarchically starting from
Ho=1 and Bo =0. In many cases if the initial equation
(1) is conveniently chosen, say by an appropriate selection
of the independent and dependent variables, the pertur-
bation corrections Ak and Bk are polynomials and the
calculation is straightforward.

III. APPLICATION TO A SIMPLE MODEL

The time-independent dimensionless Schrodinger equa-
tion,

N" (x)+ [E—V(x)]4(x)=0,
is a particular case of (1) with P =1, Q =0, and
R (x)=E —V(x). In order to illustrate the application of
the equations just developed to a quantum-mechanical
box model with penetrable walls we choose the simple
potential-energy function,

if x&0
V(x)= Af(x) if 0&x &1

8'o if x)1,
and consider only bound states: E & 8'o. Any physically
acceptable solution of (8) with the potential (9) vanishes
at x =0 and is of the form N(x)=Ce for x ) 1, where
K =QWQ E. Continuit—y of both 4 and 4' at x =1

In order to apply the perturbation method discussed
above we write @(x) as in Eq. (3) for 0&x & 1 and solve
the perturbation equations (7) in this interval. For con-
creteness we specialize in f (x)=x. By inspection of Eqs.
(7a) and (7b) for this particular case one concludes that
the perturbation corrections Az(x) and Bk(x) are poly-
nomials of order 0 ( Ak ) =2k + —,

' [( —1)"—1] and
0 (Bk ) =2k —

—,
' [( —1)"+ 1], respectively, for which we

write

O(Ak) 0(B )

A„(x)= g a„,x, B„(x)= g b„,x'.
j=0 j=1

(13)

Clearly, with these perturbation corrections, the wave
function satisfies the boundary condition at x =0. The
quantization condition (10) can be rewritten

Expansion of this equation in A,-power series leads to
k

Ak(1) —kQBk(1) —WQBk(1)+ g K Ak (1)
j=1

k—Kp g K Bk (1)=0,
j=1

2 '(1)—kpB'( I )
—WQB (1)+(K —Kp ) 3 (1)

+KQ(KQ K)B (1)=0 . —(14)

TABLE I. Perturbation corrections to the wave function and energy of the particle in a one-
dimensional box with a Anite potential wall.

A )(x)=a)p+
4Ep

( 1+2Ep+ Wp)Ãpx
B)(x)=

4(E p + WpKp +Ep )Ep 4Ep

(1+2Kp+ Wp)Kp

2W, (Z, + i)

E2 = (6WpEp+Ep WpKp EpKp wp 36EQWQ 54EQ +4EQWQ +5EQ wp 15 WpKp

+27EQKQ —15WQ 60EQKQ —45KQ W—
Q +24EQ —45 Wp + 6E(~) +60EQ WQ + 33EQ2WQ

+ 15EQ WQKQ +30EQ WQKQ+ 25KQEQ WQ ) /[48 WQEQ (1+3 Wp+ 3KQ+ WQKQ —3EQ EQKQ )]—
KQ=QWQ EQ—
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which together with

i —1

IC;= — E;+ +It. E;
0 j=]

(16) Ep+ EI A, Ep +E ] A +E2 A, Accurate numerical

TABLE II. Dimensionless energy eigenvalues of the
Schrodinger equation with the potential (9) and f(x)=x.

determines the perturbation corrections to the energy.
The procedure is straightforward and can be easily car-

ried out by hand. However, the calculation of exact per-
turbation corrections of order larger than the second one

0.01
0.1

1

W'p =20 Ep =6.441 880 0
6.447 457 6.447 456 4
6.497 646 6.497 630 7
6.999 54 6.998 034

6.447 456 4
6.497 630 7
6.998 026 9

is rather tedious and the use of a symbolic processor is
advisable. For a given perturbation order (say k) one ob-
tains the coefficients ak and bk from . Eqs. (7a) and (7b) in

0.01

8 p
=50 Ep =7.525 096 2 29.285 889 0

7.530 648 7.530 647 7 7.530 647 7
29.290 816 6 29.290 816 6 29.290 816 6

terms of unevaluated Ek. To this end one solves a set of
systems of two equations with two unknowns. The al-
lowed value of Ek follows from Eqs. (15) and (16). An al-
ternative strategy for the latter step is to make use of
standard perturbation formulas which allow the calcula-
tion of the perturbation corrections E„E2, . . . , E2k+,
from @„4&2,. . . , @k [1]. The undetermined coefficients

aI, O are obtained from the normalization condition.
Because the length of the expressions increases rapidly

with their order in Table I we only show the perturbation
correction of first order to the wave function and the first
two perturbation corrections to the energy. When
8'o~ ~, qo~n~, n =1,2, . . . , and the results in Table
I reduce to those obtained before for a box with impen-
etrable walls,

x x(x —1)
A, (x)=a,o+, Bi(x)=-

4EO' 4EO

Eo —15
E =—', E

48E0

(17)

where Eo =n ~ .
For 8'o ( ~ the results are given in terms of Eo and

the state is determined solely by the chosen root of Eq.
(12). The fact that the unperturbed eigenvalues are ob-
tained from a transcendental equation has no effect on
the calculation of the perturbation corrections. The un-
perturbed model has at least one bound state provided
Wc) tr l4. If f (x) is bounded in [0,1] the norm of the
perturbation is finite and according to a theorem by Kato
[5] the perturbation series has a nonzero radius of conver-
gence r, for any bound state with energy lower than 8'o.
Typically there will be a critical value of A, , say
A,, =A,, (Wo, n), for which E( Wc, n, l,, )=WO, n being the
quantum number. In such a case r, ~

~A,, ~
provided that

Eo(Wc, n)( Wo. According to a well-known variational
theorem, if Ec( Wo, n =0)+RE, ( Wo, n =0)( Wo, the
perturbed potential supports at least one bound state.

From a practical point of view one expects the series to
converge slowly if ~A,

~
is smaller than but close to r, . This

situation is likely to occur for large values of A, and small

0.1
7.580 612 5

29.335 164 7

8.080 258 5

29.778 646 5

7.580 598 2
29.335 166 7

8.078 828 64
29.778 846

7.580 598 2
29.335 166 7

8.078 826 0
29.778 843 0

IV. FURTHER COMMENTS

Unlike the previous approach [1] the method presented
here is not restricted to one-dimensional equations and s
states of spherically symmetric potentials. It applies to a
much wider variety of separable problems which can be
reduced to a set of difFerential equations of the form (1).
Here we have concentrated on a particle in a one-
dimensional box with a finite wall because this problem
was not treated before by perturbation theory in closed
form. We believe that in this way we are helping to ex-
tend the applicability of perturbation theory to models
commonly treated by alternative approximate methods
which do not produce analytic expressions.
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values of 8 0. In Table II we compare the perturbation
series including only the first two corrections to the ener-

gy with accurate numerical results obtained by expansion
of the eigenfunction within the well in power series about
x =0. Those results suggest that the analytic expression
given by perturbation theory is accurate enough for most
purposes for a wide range of values of 8'0 and A, .

One easily finds cases in which the perturbation expan-
sion fails. For instance, if 8'0=2. 8 the unperturbed
problem has just one bound state with dimensionless en-

ergy Eo =2.774 816. For A, = 1 there are no bound states
in agreement with the first-order result
Eo+A,E, =2.875 516. However, Eo+A,E, +A, E2
=2.755458 predicts a bound state. The study of larger
orders will show that the series diverges in this case.
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