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Approach to perturbation theory for box models
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We generalize a recently developed perturbation approach [F. M. Fernandez and E. A. Castro, Phys.
Rev. A 46, 7288 (1992)], extending its applicability to a wider variety of separable quantum-mechanical
problems. As an illustrative example, we consider a particle in a one-dimensional box with a finite po-
tential wall perturbed by a linear potential and obtain the perturbation corrections to the wave function
and energy of an arbitrary state in terms of the corresponding unperturbed quantities.

PACS number(s): 03.65.Ge

I. INTRODUCTION

Particles within boxes prove to be useful models for the
simulation of many quantum-mechanical physical phe-
nomena. The confinement produced by the box walls is
the simplest way of taking into account the effect of
neighboring particles on a given atom or molecule. In a
recent paper it was shown that perturbation theory is a
convenient way of obtaining analytic expressions for the
energy and other physical observables in the case of
impenetrable walls [1].

It has been argued that boxes with finite walls are more
realistic than boxes with impenetrable walls for the simu-
lation of the environment of an atom or molecule because
the former walls allow one to take into account long-
range forces between particles [2]. The Schrodinger
equation for such models has only been solved numerical-
ly. In spite of the vast literature on the subject there are
no analytic perturbation calculations on box models ex-
cept for the case of impenetrable walls [3].

The purpose of the present paper is the generalization
of a recently developed perturbation method for box
models to allow the treatment of a much larger variety of
problems and the illustration of its application to a sim-
ple nontrivial box model with a finite wall. In this way
we intend to extend the scope of calculation of analytic
expressions by means of perturbation theory. One attrac-
tive feature of the example discussed is that the unper-
turbed eigenvalues are not given in closed form but deter-
mined by a transcendental equation.

In Sec. II we develop general perturbation equations
for separable problems and in Sec. III we consider the il-
lustrative example mentioned above. The application of
the method to other problems is briefly discussed in Sec.
Iv.

II. THE METHOD

The Schrddinger equation for separable problems in N
dimensions is reduced to a set of NV equations of the form

P(x)®"(x)+Q(x)®'(x)+R (x)P(x)=0, (1

where the prime stands for differentiation with respect to
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the argument of the function. Typically the function
R (x) also depends on the energy eigenvalue and on the
separation constants. If at least one of the resulting equa-
tions is not exactly solvable one resorts to an approxi-
mate method. Perturbation theory, for instance, con-
structs an approximate solution of (1) from the known
solutions of a closely related problem, say

P(x)®(x)+Q (x)Pp(x)+ R o(x)Do(x)=0 . 2)

We will prove that it is convenient to look for a solu-
tion of Eq. (1) of the form

D(x)= A (x)Py(x)+P(x)B(x)dy(x) , (3)
where A4 (x) and B (x) satisfy
PA"+QA’'—2R,PB'— (PR, +P'R,)B

+(R—Ry)A=0, (4a)
PB"+(2P'—Q)B'+2A4'+(P"—Q')B+(R —Ry)B=0.
(4b)

When ®y(x)=sinKx and P =1 the ansatz (3) reduces to
the one used in the previous paper [1]. The ansatz (3) re-
minds one of the method of Dalgarno and Stewart [4] in
which the perturbed solution is written
®(x)=F (x)Py(x). The advantage of Eq. (3) is that the
resulting equations (4) do not depend on ® explicitly. In
the method of Dalgarno and Stewart [4], on the other
hand, the equation for F(x) contains a term of the form
®y/P, which forces one to treat one state at a time.
Therefore this approach becomes impractical for the
treatment of highly excited states. The complication
caused by the appearance of two coupled differential
equations in the present approach is counterbalanced by
a considerable gain in simplicity as shown below.
In order to apply perturbation theory one chooses an
appropriate perturbation parameter A and writes
R(x)—Ry(x)= 3 rj(x)kj. (5)

Jj=1

Substitution of this expansion and the corresponding ones
for 4 (x) and B (x),
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A(x)=3 A;(xM, B(x)=3 B;(x)V, (6)
j=0 j=0

into (4) leads to the following differential equations for

the perturbation corrections:

PA}'+QA;—2PR,B, —(PRy+P'R,)B,

k
+ 3 rjA,_;=0, (7a)
j=1

PB} +(2P'—Q)B; +2 A, +(P"—Q")B,

k
+ X riB,_;=0. (7b)

ji=1
One solves these equations hierarchically starting from
Ay=1 and B;=0. In many cases if the initial equation
(1) is conveniently chosen, say by an appropriate selection
of the independent and dependent variables, the pertur-
bation corrections 4; and B; are polynomials and the

calculation is straightforward.

III. APPLICATION TO A SIMPLE MODEL

The time-independent dimensionless Schrodinger equa-
tion,

P’ (x)+[E —V(x)]P(x)=0, (8)

is a particular case of (1) with P=1, Q =0, and
R (x)=E —V(x). In order to illustrate the application of
the equations just developed to a quantum-mechanical
box model with penetrable walls we choose the simple
potential-energy function,

o if x <0
Af(x) if0<x =<1 9)
W, ifx>1,

Vix)=

and consider only bound states: E < W,. Any physically
acceptable solution of (8) with the potential (9) vanishes
at x =0 and is of the form ®(x)=Ce ~X* for x > 1, where
K =1/W,—E. Continuity of both ® and ®’ at x =1

leads to the quantization condition
o'(1) _
(1)

For the unperturbed system (A=0) we have

—K . (10)

C;singox if 0=x =1

Dy(x)= - (11)
0 Cye X% if1<x,

in which ¢,=V"E, and K,=1/W,—E,. The energy ei-
genvalues are given by the transcendental equation

tang,=—qy/K, . (12)

In order to apply the perturbation method discussed
above we write ®(x) as in Eq. (3) for 0=x <1 and solve
the perturbation equations (7) in this interval. For con-
creteness we specialize in f(x)=x. By inspection of Egs.
(7a) and (7b) for this particular case one concludes that
the perturbation corrections A4;(x) and Bj(x) are poly-
nomials of order O(4,)=2k+1[(—1)*—1] and
O(Bk)=2k—%[(—1)k+1], respectively, for which we
write

0(4y) ‘ O(By) _
A (x)= 3 ayx), Br(x)= 3 byx’. (13)
j=0 j=1

Clearly, with these perturbation corrections, the wave
function satisfies the boundary condition at x =0. The
quantization condition (10) can be rewritten

A'(1)—koB'(1)— WyB(1)+(K —K,) A (1)
+Ko(Ky—K)B(1)=0. (14)

Expansion of this equation in A-power series leads to

k
A1) =koBL(1)=W,B,()+ 3 K; 4, (1)

j=1

k
—Ky 3 K;B_;(1)=0, (15)
ji=1

TABLE 1. Perturbation corrections to the wave function and energy of the particle in a one-

dimensional box with a finite potential wall.

X
A =a;0t—
(x)=ay 4E,

(142Ko+ Wo)Kox x2
HKZ+WoKo+E)E, 4E,
(142K + Wo)K,

U WK+ 1)

Bl(x)=

E,=(6W,Ey+E WiK,—E3K,W3—36E3W,—54E3 +4E3W+SE Wi —15WiK,
+27E3K,—15W3—60E3K,— 45K W3+ 24E$—45W+6E} +60E,W};+33E3W,
+15E,WoKo+30E3W Ko +25KoEoW3) /[48WAER(1+3W,+3Ko+ WyKo—3E,—EK,)]

Konm
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which together with

1
K.=———
i~ 72K,

i—1
E+ Y KjKi_,.] (16)
j=1

determines the perturbation corrections to the energy.
The procedure is straightforward and can be easily car-

ried out by hand. However, the calculation of exact per-

turbation corrections of order larger than the second one

is rather tedious and the use of a symbolic processor is

advisable. For a given perturbation order (say k) one ob-
tains the coefficients a,; and b;; from Egs. (7a) and (7b) in
terms of unevaluated E;. To this end one solves a set of
systems of two equations with two unknowns. The al-
lowed value of E; follows from Egs. (15) and (16). An al-
ternative strategy for the latter step is to make use of
standard perturbation formulas which allow the calcula-
tion of the perturbation corrections E,E,,...,Ey 4+,
from ®,,P,, ..., P, [1]. The undetermined coefficients
ay, are obtained from the normalization condition.

Because the length of the expressions increases rapidly
with their order in Table I we only show the perturbation
correction of first order to the wave function and the first
two perturbation corrections to the energy. When
Wo— 0, go—nm, n =1,2,..., and the results in Table
I reduce to those obtained before for a box with impen-
etrable walls,

_ b o x(x—1)
AI(X)—GIO+E()—, B,(x)———4E-o—,
a7
E 1 E _EO_IS
T Rl

where E,=n>x?.

For W, < o the results are given in terms of E, and
the state is determined solely by the chosen root of Eq.
(12). The fact that the unperturbed eigenvalues are ob-
tained from a transcendental equation has no effect on
the calculation of the perturbation corréctions. The un-
perturbed model has at least one bound state provided
Wo>m*/4. If f(x) is bounded in [0,1] the norm of the
perturbation is finite and according to a theorem by Kato
[5] the perturbation series has a nonzero radius of conver-
gence r, for any bound state with energy lower than W,,.
Typically there will be a critical value of A, say
A=A (Wy,n), for which E(W,,n,A.)=W,, n being the
quantum number. In such a case r, = Ikcl provided that
E,(Wy,n)<W,. According to a well-known variational
theorem, if E (Wy,n=0)+AE(Wy,n=0)<W,, the
perturbed potential supports at least one bound state.

From a practical point of view one expects the series to
converge slowly if |A| is smaller than but close to 7,. This
situation is likely to occur for large values of A and small

TABLE II. Dimensionless energy eigenvalues of the

Schrodinger equation with the potential (9) and f(x)=x.
A Eo+E A E,+EA+E,\?
W,=20, E,=6.4418800

Accurate numerical

0.01 6.447 457 6.4474564 6.447456 4
0.1 6.497 646 6.4976307 6.497 6307
1 6.999 54 6.998 034 6.9980269

W,=50, E;=17.5250962, 29.2858890

0.01 7.530 648 7.5306477 7.5306477
’ 29.290816 6 29.290816 6 29.290816 6
0.1 7.5806125 7.5805982 7.5805982
’ 29.3351647 29.3351667 29.3351667
1 8.080258 5 8.078 828 64 8.078 8260
29.778 646 5 29.778 846 29.778 8430

values of W,. In Table II we compare the perturbation
series including only the first two corrections to the ener-
gy with accurate numerical results obtained by expansion
of the eigenfunction within the well in power series about
x =0. Those results suggest that the analytic expression
given by perturbation theory is accurate enough for most
purposes for a wide range of values of W, and A.

One easily finds cases in which the perturbation expan-
sion fails. For instance, if W;,=2.8 the unperturbed
problem has just one bound state with dimensionless en-
ergy E,=2.774816. For A=1 there are no bound states
in agreement with the first-order result
E,+AE,;=2.875516.  However, E,+AE,+\’E,
=2.755458 predicts a bound state. The study of larger
orders will show that the series diverges in this case.

IV. FURTHER COMMENTS

Unlike the previous approach [1] the method presented
here is not restricted to one-dimensional equations and s
states of spherically symmetric potentials. It applies to a
much wider variety of separable problems which can be
reduced to a set of differential equations of the form (1).
Here we have concentrated on a particle in a one-
dimensional box with a finite wall because this problem
was not treated before by perturbation theory in closed
form. We believe that in this way we are helping to ex-
tend the applicability of perturbation theory to models
commonly treated by alternative approximate methods
which do not produce analytic expressions.
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