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We review work on constrained systems in which (3+1)-dimensional field theories are reduced
to effective (2+1)-dimensional ones. Known results are extended to encompass the Dirac equation
and the nonrelativistic limit is examined. We discuss to what extent this system can really be made
two dimensional and obtain a lower bound on the thickness. Some comments are made about recent
theories involving fractional statistics.

PACS number(s): 03.65.—w

I. INTRODUCTION

Activity in low-dimensional physics has intensiBed in
recent years, largely due to the discovery of the fractional
quantum Hall effect and. high temperature superconduc-
tivity, which are widely believed to be two-dimensional
phenomena [1,2]. The starting point for descriptive theo-
ries is a (2+1)-dimensional system in which no residue of
the third space-time direction survives. Work by Jensen
and Koppe [3] and da Costa [4] has emphasized that a two
dimensional system would in general have some knowl-
edge of its surrounding three-dimensional space. In this
paper we extend the work of Refs. [4—7] and comment
upon its application to the more recent theories which
have been used to study the quantum Hall efFect and
high-temperature superconductivity.

The literature on two-dimensional physics is not new.
In semiconductor device technology, thin wafers may be
thought of as confining electrons to an efFectively two-
dimensional space, trapped in three dimensions. See the
review by Ando, Fowler, and Stern [8] for a considerable
list of references. Since no physical system is truly two-
dimensional, it is natural to ask how much such an osten-
sibly two-dimensional system would be able to "sense"
of its three-dimensional embedding space. If the sur-
face is curved, either instrinsically or extrinsically, then
the system will at least be able to "feel" this curvature
in the form of some mass or effective potential. This
efFect may be studied by expanding around the two-
dimensional space for vanishingly small excursions in the
third direction. The procedure has been studied in both
the first quantized [3,4] and path-integral [6,7] formalisms
for the Schrodinger equation. This is probably the case
with the strongest validity in low-dimensional systems
where there is little reason to think a priori that rela-
tivistic effects would be important. More recent work
on chiral spin liquids and quantum Hall systems have
used relativistic formulations, however (see [2] and refer-
ences contained therein for a overview), and some authors
have even considered anyons in the framework of Dirac
theory [9]. Relativistic fermions also appear as the rele-
vant low-energy degrees of freedom in the strong-coupling
limit of the Hubbard model and strongly correlated sys-

tems [10]. Since a two-dimensional theory must be con-
Bned in some way by a rather large potential, it is impor-
tant to consider the relativistic effects which might result.
We have in mind the so-called "Klein's paradox" [11,12]
which we shall refer to in Sec. III to obtain some limits on
how two-dimensional a system can really be in the strict
sense. This limitation has not previously been considered
in the (2+1)-dimensional literature, although an appli-
cation of the Dirac equation has been briefl. y treated. in
Ref. [13]. Other issues in Dirac theory are also of interest.
In reducing the Dirac equation from 3+1 dimensions to
2+1 dimensions one may transform from the 4 represen-
tation to the fundamental 2 representation of the Clifford
algebra, which is given by 2 x 2 matrices. In the process
of reduction one normally expects to acquire two copies
of the 2 matrices with opposite signs. This is required for
invariance under parity transformations, since the angu-
lar momentum vector cr is a pseudovector. In the pres-
ence of a magnetic Beld, or some other mechanism under
which P invariance is naturally broken, one might expect
to obtain an asymmetric theory naturally expressible in
the 2 representation. It is interesting to discover whether
or not the type of two-dimensional surface a physical
system is restricted to could induce a breach of parity
invariance, leading to an asymmetric theory. If such a
residue of non-P invariant Dirac fermions survives, then
a Chem-Simons Lagrangian could arguably be induced
by radiative corrections in a field theory [14]. This is of
particular interest to recent work on the theory of anyons
and fractional statistics [15—17].

II. GEOMETRY

Our aim is to probe three-dimensional space from the
viewpoint of a two-dimensional system. We begin by
defining the geometry of an arbitrary surface S in R
(see Fig. 1 in Ref. [5]). Since our aim is to end up in-
side this surface it is useful to expand a set of vectors
X which live in the immediate neighborhood outside the
surface S to a set of vectors w which define the surface
itself. We can use these as the basis for two sets of three-
dimensional coordinates X' and x', which we shall em-
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ds' = —dt'+ G,, dX* dX'+ (dX')'
= —dt' + g;, dx' dx' + (dx )',

(1)
(2)

i, j = 1, 2. Our aim is now to relate these two metrics
by expressing G,~ as a perturbation around g;~. If V- is
a covariant derivative in the given basis e~ then we may
define the extrinsic curvature of our surface as follows.
Since the derivatives of the normals lie in the tangent
space we have

ploy in the analysis. X' is essentially equal to x' plus
a small perturbation in the direction normal to S. We
shall use small letters to refer to geometrical objects in
these "small-x" coordinates.

Let e~ (p = 0, . . . , 3) be a basis for our surface coor-
dinates x, so that a vector in x has components x', x .
The basis vector e3 = n is normal to the surface. The
space-time line element may be written in either of our
two coordinate regimes [4,5]

quantization and in the path-integral formulation very re-
cently by Matsutani [6,7]. We begin by brieffy recounting
the work of these authors.

The action for the Schrodinger Beld in the coordinates
x of our surface is

S= dV tiap — V„ t V„
1

2m

where dV = dtdsz~g. Integrating the action by parts
we obtain

dV t imp+ V' + dV V'"1

2m )

where the latter term arises as a result of our boundary
S. The variation of this action leads to the Beld equation
subjected to a boundary condition which is stipulated by
the vanishing of the second term

7'-, es ———K;(e,.) = —K,~e~ . A(at%'sg), (14)

K,.~ may also be expressed in terms of the three-
components of an affine connection as in Ref. [6]. More-
over, a vector in X expresses the same information as a
vector in x before we squeeze x ~ 0; thus we may write

X(x', x', x') = x(ej, e2) + z es.

Thus the metric G,.~, which we shall assume to be diag-
onalizable, may be written in terms of the two-bein

(5)
d z~g gt (z)Q(z) =

¹ (15)

where e3 is the normal to the surface S. This is satis-
Bed provided the three-dimensional Beld is smooth as it
passes through S.

The conserved current associated with the Schrodinger
Beld implies that the probability density of finding a par-
ticle at x is proportional to gf(z)g(z), so that the total
number of particles (which is a constant) is given by

where

E, = V'- (x(eq, e2) + z es)
= (8,' —z K,. ')e~.

(6)

(7) dsX~G yt(X)y(X) = X. (16)

One demands, under a change of coordinates, that this
scalar quantity be preserved. Passing to coordinates X',
we have

Substituting this result and using the orthonormality of
the basis vectors (e, . ez) = g,~ one obtains that From Eq. (10) it follows that

G,, =g;, —2K,,x +K,"gg K (x) .

The determinant of this quantity will be useful later. To
order (zs) 2 we have

G = g[1 —2TrKzs+ (2K+ TrK2)(zs)2+ .], (9)

We are now in a position to see what eKect an excursion
away from the surface has on the action. Reformulating
(12) in X coordinates,

where G = det(G;~), g = det(g, ~) K = detK, and
TrK = K, . The square root of this determinant is also
required for the invariant volume element. Expanding
the binomial to order (x ) we have

d~/
2m

where dV' = dt d X~G so that

(18)

where

Gl/2 1/2 ( (10) 8= dV(((kt( '/') iBo+ v' (@( '/'))
2m

( = [1 —T K x'+ K(x')'+ ].

III. SCHRODINGER EQUATION

The nonrelativistic treatment of this perturbative
scheme has been considered by da Costa [4,5] in the first

where V' = G /' 0, G'~G /' B.. The new boundary con-
dition requires the continuity of K through the surface.
This will be satisfied as long as the surface is not dis-
continuous. Pulling ( through the derivatives introduces
extra additive terms into the action which depend upon
all of the coordinates X, . . . , X . In the limit of a (2+1)-
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dimensional theory we are interested in the case x ~ 0;
thus we expand in terms of the x coordinates keeping
terms which are zeroth order in xs. [Note that since
second-order derivatives are present we must know ( to
order (x )2.] Thus, to zeroth order (in the limit x ~ 0)
one finds that the following extra terms appear in the
I agrangian density:

1 1 2 2 1-1 2lim Q t —( (Os() — (—'
(Bs()F3~0 2m 4 2

(2o)

p,,~ = (4TrK —K).
2m 4 (21)

@ = @ii(t x' x')&~(x'). (22)

The part of the wave function which represents behavior
perpendicular to the two-dimensional surface is a func-
tion of x only and is subject to a confining potential.
The aim is to increase the strength of this potential
so that the eigenfunction of the resulting motion be-
come a delta function b(xs). To show this, one expands

in eigenfunctions, parallel and normal to the two-
dimensional surface

The new term appearing as the "effective action" for the
theory is a direct result of second-order derivatives prob-
ing the space around the surface. These terms survive
even in the (2+1)-dimensional limit in the form of a min-
imal coupling to an effective potential. This potential
makes a negative contribution to the energy. Matsutani
interprets this as a chemical potential while da Costa
treats it as an ordinary attractive potential which can
lead to bound states. We prefer the latter interpretation
since a system with nonconstant chemical potential is not
in thermodynamic equilibrium and will therefore adjust
itself by some transport of charge or matter until it is
in equilibrium. Since a system cannot become uncurved
simply by a flow of charge, it seems more natural to think
of the potential only as a contribution to the energy.

We discuss now the issue of how the system is to be
constrained to the surface S. We shall return to this more
analytically in Sec. IV. Matsutani has addressed this
issue in some detail by introducing a harmonic potential,
effectively putting particles on springs and increasing the
spring constant without limit. One begins by writing the
wave function

the Gaussian wave function [6]

q~, - a, gm~/~e--~*'l'.

In the limit u ~ oo, the Gaussian function becomes the
b-function. One may therefore integrate over x setting
x = 0 everywhere.

This semiclassical idea provides a formal procedure for
the squeezing, but physically it is only an approxima-
tion. It is not possible to increase the strength of an arbi-
trary potential indefinitely without violating some physi-
cal condition on the system. We shall discuss this remark
more carefully below in the relativistic treatment of the
problem and attempt to determine some limits on the
extent to systems may be regarded as two dimensional.

We note briefly that the form of the above eigenfunc-
tions admits another confinement parameter, namely the
mass. If the effective mass of particles were to increase as
the particle moved away from the plane, i.e. , m = m(xs),
a similar confinement might be obtained. Whether or
not this is a feasible picture depends partly on the na-
ture of the model in question. If we imagine that our
two-dimensional theory is really part of some layered
system, with many similar systems on top of one an-
other, then this may be given some substance (though
note our remark in Sec. IV). In high-temperature super-
conductor models, for instance, there are many layers of
different types, some of which are doped and therefore
have a surplus of charge which could repel electrons from
neighboring planes. If it is assumed that there is elec-
tromagnetic coupling between the layers, then electrons
in S will behave like polarons, inducing a polarization
cloud in neighboring planes, gaining an effective mass.
This effect will give rise to a slight attractive or repul-
sive potential depending on the geometry, encouraging
the particles to either traverse the gap between parallel
layers or be repelled. However, if the layers are charged
with the same sign as the normal charge carriers of the
system, this effect will be small compared to the normal
Coulomb repulsion at some distance. Approximating the
field between neighboring layers to that of a parallel plate
capacitor would give an effective mass for the polaron
which would increase linearly with x as it approached
the neighboring plane. In the nonrelativistic treatment
this is a reasonable point of view because the role of the
mass and the coupling u are the same. This is not the
case in relativistic theory.

= ) . unpin (23) IV. DIRAC EQUATION

These functions have eigenvalues A, which satisfy an
equation of the form

We now turn to the relativistic Dirac equation. The
treatment here is complicated by the presence of the spin
connection I'„. On an arbitrary curved space-time man-
ifold the Dirac equation is given by

2m ' 2
V's+ —m~ (x ) g~„= A„g~„. (24)

(& v'. +m)q =o. (26)

As the strength of the confining potential w increases, the
states are confined more and more to the lowest-energy
level, namely the ground state, which is characterized by

The p matrices are defined relative to a given tetrad field
e„(ur = e dx") and obey the usual anticommutation
relation
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(~,~'} = 2n'. (27) From (38)

Including a minimal coupling to a vector field A„ the
covariant derivative V is defined by

(poDO + p*D, + 2 psTrK + m)

V = e "(0„—i,eA„—I'„),
where the spin connection is

(28)
po( —ieAo~) + psBs + Am(x ) + O(x )

a b v AI ~ = ——'7 '7 e (B~eb —eb I g ~)4
(29) (39)

and eb ——G „eb". When e "I'„=Owe define D = V'

We may compute the Dirac equation in our coordinate
system X relative to an orthonormal tetrade frame so
that

= dt)
1 1/2 1= G11 dx

1/2= G22 dx )

(d = dx

(30)

(31)

(32)
(33)

I'3 ——0,
zI', = —z,~K,,o.

~
. I,

2

(34)

(35)

where i = 1, 2 is summed and I is the identity for 4
spinor indices. We are now in a position to construct the
covariant derivative explicitly. Since I'3 ——0 one sees that
this is unnecessary however: there will be no contribution
from the spin connection to the geometrical terms. We
may therefore proceed to separate the Dirac equation into
parallel and perpendicular parts. We have

(p D~ + m)(g(A)( '~
) = 0, (36)

where A = 0, . . . , 3. Pulling ( through the derivatives we
have

D + —p TrK+ m+ O(x ) I1P(A) = 0.3 3
2

3 3 (37)

We shall assume that the equation is separable, as in the
non-relativistic case, and write

&(x) = 4~(x')&i~i(x' *' t)& (3s)

where g is a constant, four-component spinor. For later
convenience we shall also define v)~ = Pgg, v)~~

= P~~g,
and A = A&(xs) + Ao~~ (x, x2, t) and m = m, + Am(x ).

The beins (tetrads) may therefore be read off from a
knowledge of the metric.

Defining g = @tp, the current j:—vga @ is co-
variantly conserved V' j = 0. The conserved current
gives the probability density for the Dirac equation as
@p Q = /tv'. Hence under a change of coordinates from
x to X, probability conservation requires that the Dirac
spinor g(X) ~ @(A)( ~ as for the Schrodinger field.
We assume for simplicity that the surface has vanishing
intrinsic curvature. We may then parametrize the surface
by Cartesian coordinates. It is then easy to show that

QL(x ) cc exp —
I

—(x ) + kx
I

— dx m, (x )
3 s ~ sl 3 3

i2
(40)

The first term in the exponential falls off like a Gaussian
function, i.e. , a b function in the limit of infinite A as in
Matsutani's scheme. The presence of a nonzero separa-
tion constant spoils this falloff by introducing a straight-
forward exponential decay with characteristic length k
The mass parameter m(x ), which is initially at least lin-
ear in x, will also give rise to a Gaussian falloff. Thus
increasing the coupling of this parameter will also have
the desired effect of squeezing the system. The residual
Dirac equation is

l( 1
I ~ D- + —~'T K+ (m —k)

I 0~~
= o

2
(41)

At this juncture we raise an issue associated with rel-
ativistic fields, which occurs when the confining poten-
tial becomes strong A )) m . As a strong potential is
increased arbitrarily, it will cause the creation of parti-
cle pairs [11]. This phenomenon is connected to what is
known as Klein's paradox in the literature [18]. It does
not occur when the confinement is affected by m(x ),
i.e., the potential transforms like the mass, since this
only increases the energy gap in the rest frame of the
particles. But for any four-vector-type potential this will
be a relevant concern. The creation of particle antipar-
ticle pairs happens essentially because there is enough
energy available in the field to promote virtual particles
into real ones. In the case of scalar particles, if the con-
fining potential is nonhomogeneous and real particles are

The usual argument for the separation of these equations
is that the left-hand side is only a function of x, x, t
while the right-hand side is only a function of x; thus
both sides must be equal to some separation constant k.
This is not quite correct, as we noted before, owing to the
terms . O(x )s which contain the curvature K,~, which
is a function of x, x . However, we are assuming that
the excursions into x are small owing to the physics of
the problem; thus we shall for the time being adopt the
standard procedure and neglect these higher-order terms.
(We shall return to this point in Sec. VI, since it is not
entirely trivial. ) To eliminate x from the problem we
may identify Ao with a squeezing potential Ao ———x,
so that nontrivial solutions, given by the vanishing of
the determinant of the operator on the right-hand side
of (40), are characterized by
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P
j"~ e "*' dx

I e-"*' d2:
(42)

The integrals define the distance d(A) or conversely A(d).
Since we have a bound dA ( m this should specify the
condition uniquely

1
A(d) = —

i
ln(1 —P)i. (43)

Reinstating SI units we obtain

hc
A = —

~
ln(l —P)~,

ht-
d )

~

ln(1 —P)~.

(44)

(45)

", is notably the Compton wavelength of the particles.
Substituting for the electron mass we have ", 10
m, which is clearly much smaller than the interatomic
spacing d~t ~ 10 m.

A qualitative feel for the kind of charge density o re-
quired to confine a gas of charged particles to two di-
mensions can be obtained by treating the system as a
parallel plate capacitor. Here the electric field is given
by E = cr/eo and thus we may write

"'
[
ln(1 —P) i. (46)

present, then this production may even be stimulated to
increase [18,19]. This is a phenomenon which resembles
the well-known laser effect [11]. In the literature it is
known as superradiance [18], though it does not occur
for fermions [18) essentially because the Pauli principle
prohibits the occupation of the out-going states by more
than one particle [20].

This production of particle-antiparticle pairs from the
associated particle vacuum for suKciently strong external
fields [21] spoils the idea of absolute confinement in a rel-
ativistic system. One does not really escape the problem
by only treating Schrodinger fields, which are clearly only
a low-energy approximation to either a Dirac or Klein-
Gordon field. One might argue that in very strong po-
tentials particle fields should be treated relativistically
precisely because of this limitation. On the other hand,
since real layered materials clearly do not spontaneously
expel particles, one should ask whether or not a poten-
tial which does not lead to such difIiculties is capable of
making a physical system truly two dimensional. The
relativistic case therefore provides us with a natural lim-
itation by which to gauge how two-dimensional a "two-
dimensional" system can be. I et us examine this prob-
lem.

If the confining potential A m, then we are in dan-
ger of producing particle pairs. Although we are only
after an order of magnitude estimate, we can be a little
more precise. Assuming that the distribution around the
surface S is Gaussian, one may define the probability P
of all the particles being within —d ( x ( d by

V. 2 REPRESENTATION FOR SPINORS

In purely (2+1)-dimensional theories it is natural to
express the Dirac equation in terms of the fundamental
representation of the Clifford algebra. This may be con-
structed from the 2 x 2 Pauli matrices, which we shall
denote the 2 representation. In 3+1 dimensions the fun-
damental representation is in terms of 4 x 4 (4) matrices.
In 2+1 dimensions a 4 representation is also possible. In-
deed the reduction of the Dirac equation in the preceding
section must clearly lead to a 4 x 4 matrix expression.
This 4 representation is therefore reducible in 2+1 di-
mensions. It is worth pointing out that the Pauli spin
matrices are a pseudovector in 2+1 dimensions, which
means that the Dirac equation expressed in terms of these
matrices is not parity invariant in a massive theory. The
two equations

(P+m)@ = 0 (47)

are inequivalent [14]. This problem does not arise in the
4 representation since the 4 representation reduces to
two copies of the 2 representation symmetrized with re-
spect to the mass. In an arbitrary curved surface it is not
inconceivable that the curvature itself might break the re-
fIection symmetry of the system in 2+1 dimensions, lead-
ing to an effective two-dimensional theory with a definite

If we make the distance d(A) to be an order of mag-
nitude less than the atomic spacing and require that
all of the wave function be inside this distance [take
~
ln(1 —P)

~

100, for instance], then the necessary con-
fining field is of the order of 10 " N/C. Compared to
a typical atomic field Ze/47reod2t 10 Z V/m this is
enormous. It corresponds in fact to a charge density
of 10 C m, which is about 10 electron charges per
square angstrom. We can start again with a more sensi-
ble estimate for the charge density. With o. 16 C m
that is, about 1 electron per square atom and P = 0.8
(47) gives d 4 x 10 io m. This is within the realms of
credibility. The characteristic thickness of thin films and
quantum wires is of the order of 100 A. [22], whereas the
layer separation in high-temperature superconductors is
of atomic proportions. In the latter case one must ex-
pect that the dominant forces involved in enforcing two
dimensionality are due to chemical bonds which have a
greater aKnity for substances in the same surface than
for substances in neighboring planes. At a distance of
one Bohr radius from a typical atom, the electric field is
well within the limits we have found above. On the other
hand, a two-dimensional gas does not seem as plausible
in the strict sense.

In Ref. [22] the authors obtain another limit of inter-
est by determining an upper bound on d. This bound
is fixed by the requirement of having at least one bound
state arising from the induced potential in the nonrela-
tivistic case. Combined with the above condition one has
now a range of permissible distances over which bound
states may be obtainable. As these authors remark, these
distances are achievable with current technology.
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parity. We have in mind screw dislocations, for example,
where one has torsion which behaves in many ways like
a magnetic field. This issue is of some interest in connec-
tion with Chem-Simons theories of anyons, since it im-
plies that a Chem-Simons term would be induced in the
effective action at one-loop. This could be manifested by
an asymmetry in the effective mass of the fermions after
diagonalization. We begin by showing that there is, how-
ever, no violation of parity at least at the classical level
if the Dirac equation can be diagonalized. The standard
representation of the p matrices in 3+1 dimensions is

M = +Qm2 —p2,

O, M = e,.~B~p.

(55)
(56)

For constant p, a related result has been derived in [23].
Noting that these equations are operator identities we
have

V' M + (8;M )0, = e,, (8;p) 8 ~+ [Bj,82]p. (57)

p' and i = 1, 2 are linearly independent matrices, we have
three equations

o) o —o'l-
(48) Using (57) this becomes

(p"D„+m+-pp )4g = 0, (49)

where 6 = 0, . . . , 3, D is an arbitrary covariant deriva-
tive, and p is, in general, a real function of x, x2 (in our
case p, oc TrK). Writing this equation. in terms of 2 x 2
matrices

iDp+ m i(cr"DI, + cr p) l
( —2(o."Dk + o. p) —zDp + m )

(50)

This equation may be diagonalized by solving the secular
equation for the eigenvalues. Formally,

A = m 6 —D p2 + Dq~ + p2 + ~ [o', o &]D,D (51)

where p = p2 + ek~p~(Oky). The operator inside the
square root, has the form of a Klein-Gordon operator,
the square root of which may be expressed in the form
p~D„+ A, where the p matrices are now in the 2 repre-
sentation; thus squaring up and comparing

Dp + D„+—2Ap"D„+ p" (O„A) + A

Dp + 0„'+p'. —(52)

If, additionally, we assume that the eigenvalues A may
be expressed in the form p"8„+M = 0, then we have
simultaneously A+m = M and 2AM+p~(B„A)—+A
p ) w'hlch ln1plles

p'OM+ M = m + p, + eg, p'(Ogp). (53)

The general solution to this equation is in general rather
complicated and may be expressed in the form

M=) " +m+) 5 (x —xp)
(~ ~ )n

(54)

A special solution may be obtained by noting that, since

These satisfy a number of relations which are summa-
rized in the appendix. To create a 4 representation
in 2+1 dimensions it is sufhcient to drop p . The re-
maining three matrices satisfy the same relations, except
that p5 ———p p p now commutes with the other ma-
trices, as does its 2 representation. Consider the (3+1)-
dimensional equation

V'M=J, (58)

where J = [Oq, 82]p. The Dirac equation is thus diag-
onalizable for any surface satisfying (58). We note, in
particular, that the geometrical terms p have the form of
an effective mass or rest energy here (the efFective mass
is reduced), not an efFective potential either in the form
of a chemical potential or a four-vector potential. More-
over, the eigenvalues are symmetrical with respect to the
sign of the mass and therefore there is no loss of par-
ity invariance when diagonalization is possible, provided
there is no impending physical reason for neglecting half
of the solutions. (This may be the case in a strong mag-
netic field at low energies, where one may isolate spin-
up and spin-down states. ) In most situations J = 0,
but this is not necessarily the case if there are conical
singularities or holes in the manifold. Physically, this
might occur around a vortex or disclocation of some kind.
In this situation it is known that Aharanov-Bohm-type
phases can result [15,24, 16]. If the hole is not penetrated
by any external Aux, then the dynamics of the field de-
termine the phase around the singularity [24]. Periodic
bosons and antiperiodic fermions minimize the free en-
ergy [24,25]. This bears some qualitative resemblance to
the phenomenon of fractional statistics [15,16,25].

In the nonrelativistic model considered in [4,5,22] the
authors find a bound state in the so-called "bookcover"
surface. This two-dimensional surface consists of a plane
wrapped partially around a cylinder. It has no intrinsic
curvature, but TrK oc 1ja, K = 0. A bound state also
seems to be possible in the relativistic theory insofar as
the self-energy is reduced by the curvature of the man-
ifold. This in itself seems counterintuitive: one might
expect that particles in curved regions would be eager
to escape their confinement, not be attracted by it. It
is not diKcult to see that the paradox is resolved when
one takes account of whatever forces are actually repon-
sible for the curvature. Formally it is no more surprising
than the lowering of potential energy in a gravitational
well. What is curious is that the relativistic fermion sys-
tem only probes the surrounding space to first order in
the derivatives, whereas both Schrodinger fermions and
bosons probe to second order. The nonrelativistic sys-
tem seems to extract more information from the manifold
than the relativistic one. In particular the determinant
K, which appears nonrelativistically, is related through
the Gauss-Bonnet theorem to the topological class of the
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manifold. (This is not as deep as it sounds, since it is
the integral which decides the topology and not the local
form of the curvature. ) In the nonrelativistic limit, this
information is returned as higher derivatives of the wave
function and spin-connection appear.

VI. THE NONRELATIVISTIC LIMIT

& —ia, +M (D, ——in, ) & (u, )
( —(Dx + iD2) iso+ M ) (u2) (s9)

In Fourier space this becomes two positive-energy equa-
tions

In this section we remark on the nonrelativistic limit of
the Dirac equation in the operator formalism. It is con-
venient to use the diagonalized 2 form for this purpose.
As pointed out in [23] the two reduced blocks, after diag-
onalization, correspond to spin up and spin down when
the positive- and negative-energy solutions are isolated.
It is suKcient for our purpose to consider one of these
blocks:

tic limit of the Dirac equation before separation, which
is the correct procedure.

In summary, we have considered the reduction from
3+1 dimensions to 2+1 dimensions of a system of con-
strained fermions. Relativistic effects are considered. We
Bnd limits on the possiblie strength of a confining vec-
tor potential beyond which effective confinement breaks
down. We show that surfaces which do not contain holes
or conical singularities do not generate parity breaking
theories when reducing from 3+1 dimensions to 2+1 di-
mensions.

APPENDIX: CONVENTIONS

Our conventions for the curvature follow those of Mis-
ner Thorne and Wheeler. The metric signature is —+++
and g b is the metric in Bat Minkowski space-time. Rel-
ative to a vielbein field we define the Dirac matrices in
3+1 dimensions to satisfy

(Ai)

( E+ M)—ui —iir*u2 ——0,
—iirug + (E+.M)u2 ——0,

(6o)
(6I) ps is taken as

where ir = p —eA —I is the Fourier transformers. mo-
mentum. In this positive energy regime, the u2 solutions
are small by a factor v/c; eliminating these and writing
E = ENR + m, where ENR is the nonrelativistic energy,
gives

and

Y5 =
Y 'V 'Y 'Y (A2)

p2 eB—ENR —m+ Qm —p + 6 kT,
2m 2m

(62)
The Pauli matrices are chosen so that

where T represents terms which can arise when there is
torsion in the connection. Since, by our previous assump-
tions, p p (( m and M m —p /2m we have

OI l'
I O )

= p'
ENR =

2m

2

+T.
2m 2m

(0 —i)

From (42) it is seen that we should take p =
2 TrK;

however, this gives an answer which is not in agreement
with the nonrelativistic case. This does not come as any
great suprise, for two reasons. First, there is no reason
to expect that the limit x ~ 0 would commute with the
nonrelativistic limit. It is impossible to work to consis-
tent order when one has already set x to zero. Second,
in the nonrelativistic case we have neglected spin. Spin is
easily added in the nonrelativistic formulation so that the
covariant derivative is modified by a spin connection and
the wave functions become two component wave func-
tions. However, no terms arise in our efFective mass or
potential as a result of the spin connection. Thus we have
that p =

2 TrK and

0 —ZO3) (A4)

for i = 1, 2. These satisfy

(As)
(A6)
(A7)
(A8)

In 2+1 dimensions the fundamental 2 representation of
the p matrices is satisfied by

I 1 T~2
2m 2m 4

(64) In the 4 representation in 2+1 dimensions the results are
as for 2 except that

in partial agreement with (21). The missing terms in K
cannot be corrected for unless one takes the nonrelativis- Tr(p p'p')4 ——O. (A9)
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